Analysis of the Environmental Efficiency of the Chinese Transportation Sector Using an Undesirable Output Slacks-Based Measure Data Envelopment Analysis Model
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data Envelopment Analysis
3.2. Indicator Selection and Data Sources
Fuels | Coal | Petrol | Kerosene | Diesel | Fuel oil | Nature gas |
---|---|---|---|---|---|---|
CCF a | 27.28 | 18.9 | 19.6 | 20.17 | 21.09 | 15.32 |
HE a | 192.14 | 448 | 447.5 | 433.3 | 401.9 | 0.384 |
COF (%) | 92.3 | 98 | 98.6 | 98.2 | 98.5 | 99.0 |
4. Results
Inputs and Outputs | Variable | Unit | Mean | Max | Min | Std. Dev. |
---|---|---|---|---|---|---|
Non-energy input | Labor | 103 persons | 210.24 | 618.48 | 28 | 116.88 |
Capital | 109 yuan | 51.46 | 208.66 | 2.92 | 39.60 | |
Energy input | Energy | 103 TCEs | 7332.58 | 30,239.77 | 270.54 | 5605.03 |
Desirable output | Added Value | 109 yuan | 56.91 | 251.62 | 2.78 | 46.99 |
Undesirable output | CO2 emissions | 103 tons | 20,050 | 89,159.66 | 638.03 | 16,027.66 |
Provinces | CCR | SBM | |||||
---|---|---|---|---|---|---|---|
No Labor | No Capital | No Energy | No Labor | No Capital | No Energy | No CO2 | |
Beijing | 0.00 | −0.34 | −0.07 | −0.10 | −0.14 | 0.04 | 0.35 |
Tianjin | 0.00 | −0.04 | −0.05 | 0.00 | −0.02 | 0.00 | 0.15 |
Hebei | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Shanxi | 0.00 | −0.12 | −0.04 | 0.00 | −0.04 | 0.02 | 0.17 |
Inner Mongolia | −0.17 | 0.00 | 0.00 | −0.06 | −0.04 | 0.10 | 0.22 |
Liaoning | −0.01 | −0.27 | 0.00 | −0.03 | −0.12 | 0.08 | 0.32 |
Jilin | 0.00 | −0.16 | −0.03 | 0.00 | −0.06 | 0.02 | 0.20 |
Heilongjiang | 0.00 | −0.38 | −0.02 | 0.00 | −0.13 | 0.06 | 0.33 |
Shanghai | 0.00 | −0.74 | 0.00 | 0.00 | −0.84 | 0.00 | 0.00 |
Jiangsu | 0.00 | −0.16 | 0.00 | 0.00 | −0.39 | 0.00 | 0.00 |
Zhejiang | 0.00 | −0.12 | −0.03 | 0.00 | −0.05 | 0.04 | 0.20 |
Anhui | 0.00 | −0.21 | 0.00 | −0.03 | −0.10 | 0.07 | 0.26 |
Fujian | −0.09 | 0.00 | 0.00 | −0.03 | −0.02 | 0.01 | 0.18 |
Jiangxi | 0.00 | −0.27 | −0.03 | −0.05 | −0.10 | 0.05 | 0.28 |
Shandong | −0.04 | −0.16 | 0.00 | −0.02 | −0.16 | 0.12 | 0.33 |
Henan | 0.00 | −0.31 | −0.01 | 0.00 | −0.12 | 0.07 | 0.30 |
Hubei | −0.03 | −0.05 | 0.00 | −0.01 | −0.04 | 0.05 | 0.18 |
Hunan | 0.00 | −0.10 | −0.02 | 0.00 | −0.05 | 0.04 | 0.18 |
Guangdong | 0.00 | −0.37 | 0.00 | −0.06 | −0.14 | 0.08 | 0.35 |
Guangxi | 0.00 | −0.06 | −0.01 | 0.00 | −0.03 | 0.03 | 0.15 |
Hainan | −0.02 | −0.21 | 0.00 | −0.02 | −0.09 | 0.07 | 0.27 |
Chongqing | 0.00 | −0.04 | 0.00 | 0.00 | −0.02 | 0.02 | 0.13 |
Sichuan | −0.09 | 0.00 | 0.00 | −0.02 | −0.01 | 0.01 | 0.14 |
Guizhou | −0.24 | 0.00 | 0.00 | −0.07 | −0.00 | 0.07 | 0.34 |
Yunnan | −0.02 | −0.01 | 0.00 | −0.01 | −0.02 | 0.02 | 0.09 |
Shaanxi | 0.00 | −0.08 | 0.00 | 0.00 | −0.05 | 0.04 | 0.17 |
Gansu | 0.00 | −0.26 | −0.02 | 0.00 | −0.10 | 0.05 | 0.26 |
Qinghai | 0.00 | 0.00 | −0.01 | 0.00 | −0.01 | 0.01 | 0.08 |
Ningxia | 0.00 | −0.40 | 0.00 | 0.00 | −0.56 | 0.00 | 0.00 |
Xinjiang | 0.00 | −0.16 | 0.00 | 0.00 | −0.07 | 0.05 | 0.20 |
2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | |
---|---|---|---|---|---|---|---|---|---|---|
Beijing | 8.08 | 9.59 | 3.56 | 8.60 | 11.64 | 15.25 | 16.82 | 20.67 | 14.24 | 19.08 |
Tianjin | 0.00 | 0.00 | 3.69 | 4.94 | 4.62 | 5.80 | 5.46 | 2.80 | 5.58 | 6.08 |
Hebei | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Shanxi | 4.62 | 4.83 | 1.02 | 2.11 | 2.09 | 14.34 | 15.33 | 8.18 | 12.28 | 12.86 |
Inner Mongolia | 1.72 | 5.13 | 8.25 | 12.33 | 14.97 | 17.57 | 20.60 | 14.80 | 24.93 | 27.58 |
Liaoning | 12.76 | 10.33 | 19.89 | 25.84 | 29.69 | 29.31 | 32.12 | 20.53 | 38.26 | 41.84 |
Jilin | 2.23 | 1.43 | 0.59 | 2.37 | 5.58 | 6.63 | 7.24 | 5.48 | 7.99 | 8.81 |
Heilongjiang | 7.06 | 6.05 | 3.08 | 7.63 | 8.04 | 5.93 | 8.77 | 5.17 | 15.28 | 17.70 |
Shanghai | 19.91 | 26.77 | 26.13 | 35.19 | 42.51 | 44.64 | 49.36 | 26.37 | 42.49 | 0.00 |
Jiangsu | 12.19 | 13.28 | 6.65 | 9.35 | 12.06 | 14.94 | 16.71 | 0.00 | 0.00 | 0.00 |
Zhejiang | 4.89 | 0.00 | 9.02 | 13.07 | 15.22 | 17.38 | 19.51 | 10.83 | 21.91 | 24.03 |
Anhui | 4.30 | 3.69 | 0.00 | 1.72 | 3.52 | 3.35 | 6.24 | 4.29 | 8.46 | 15.51 |
Fujian | 0.00 | 0.00 | 0.00 | 2.12 | 2.82 | 7.21 | 10.49 | 6.21 | 12.88 | 13.21 |
Jiangxi | 7.99 | 5.92 | 2.01 | 4.28 | 4.61 | 4.49 | 5.67 | 3.98 | 8.13 | 7.83 |
Shandong | 12.27 | 2.29 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 17.34 | 39.86 | 52.77 |
Henan | 1.54 | 6.63 | 0.00 | 2.09 | 4.56 | 2.46 | 12.30 | 8.27 | 18.26 | 20.28 |
Hubei | 15.23 | 13.84 | 17.29 | 20.22 | 22.85 | 27.14 | 25.96 | 16.65 | 28.81 | 29.58 |
Hunan | 9.90 | 10.13 | 7.85 | 10.52 | 12.41 | 9.06 | 12.86 | 8.90 | 16.48 | 13.15 |
Guangdong | 15.97 | 23.41 | 31.17 | 36.44 | 42.33 | 47.28 | 51.35 | 31.90 | 55.63 | 58.30 |
Guangxi | 5.88 | 8.08 | 7.80 | 10.83 | 12.36 | 12.33 | 15.34 | 9.03 | 16.93 | 19.05 |
Hainan | 2.94 | 2.84 | 1.65 | 3.20 | 3.53 | 5.76 | 7.09 | 4.38 | 7.84 | 7.89 |
Chongqing | 2.51 | 7.19 | 3.85 | 5.21 | 8.10 | 9.58 | 8.46 | 6.61 | 11.23 | 13.03 |
Sichuan | 9.25 | 8.25 | 6.23 | 10.34 | 14.08 | 18.07 | 24.85 | 15.83 | 26.95 | 26.49 |
Guizhou | 3.10 | 3.82 | 3.22 | 5.03 | 6.52 | 9.32 | 7.06 | 4.46 | 8.62 | 11.13 |
Yunnan | 8.67 | 1.91 | 11.61 | 14.47 | 15.91 | 16.43 | 18.09 | 13.12 | 24.75 | 26.54 |
Shaanxi | 5.87 | 5.78 | 5.49 | 6.69 | 8.86 | 12.26 | 15.99 | 10.89 | 18.52 | 18.87 |
Gansu | 4.96 | 4.77 | 2.86 | 3.35 | 2.79 | 3.67 | 4.52 | 3.41 | 5.29 | 6.36 |
Qinghai | 0.42 | 0.18 | 0.00 | 0.21 | 1.18 | 1.65 | 2.01 | 1.44 | 2.34 | 2.41 |
Ningxia | 2.88 | 0.74 | 1.93 | 2.62 | 2.83 | 2.82 | 1.92 | 1.24 | 0.78 | 0.00 |
Xinjiang | 5.25 | 9.96 | 6.50 | 9.00 | 9.60 | 10.03 | 9.84 | 6.93 | 11.71 | 12.90 |
5. Discussion and Policy Implications
5.1. Discussion
5.2. Policy Implications
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix
Province | 2003 | 2006 | 2008 | 2010 | 2012 | Mean Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CCR | SBM | CCR | SBM | CCR | SBM | CCR | SBM | CCR | SBM | CCR | SBM | |
Beijing | 0.63 | 0.32 | 0.61 | 0.38 | 0.39 | 0.24 | 0.67 | 0.35 | 0.68 | 0.33 | 0.65 | 0.35 |
Tianjin | 1.00 | 1.00 | 0.74 | 0.51 | 0.51 | 0.39 | 0.84 | 0.63 | 0.64 | 0.49 | 0.75 | 0.62 |
Hebei | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Shanxi | 0.46 | 0.29 | 0.94 | 0.67 | 0.66 | 0.38 | 0.54 | 0.38 | 0.54 | 0.37 | 0.65 | 0.45 |
Inner Mongolia | 0.51 | 0.37 | 0.71 | 0.45 | 0.68 | 0.46 | 0.77 | 0.45 | 0.77 | 0.45 | 0.69 | 0.43 |
Liaoning | 0.82 | 0.45 | 0.50 | 0.32 | 0.41 | 0.28 | 0.56 | 0.36 | 0.70 | 0.38 | 0.65 | 0.39 |
Jilin | 0.50 | 0.29 | 0.67 | 0.46 | 0.51 | 0.34 | 0.48 | 0.32 | 0.53 | 0.32 | 0.56 | 0.37 |
Heilongjiang | 0.78 | 0.38 | 0.64 | 0.38 | 0.48 | 0.33 | 0.49 | 0.32 | 0.66 | 0.33 | 0.63 | 0.37 |
Shanghai | 0.55 | 0.29 | 0.54 | 0.36 | 0.43 | 0.28 | 0.84 | 0.39 | 1.00 | 1.00 | 0.64 | 0.40 |
Jiangsu | 0.67 | 0.55 | 0.81 | 0.65 | 0.78 | 0.59 | 1.00 | 1.00 | 1.00 | 1.00 | 0.85 | 0.73 |
Zhejiang | 0.96 | 0.64 | 0.81 | 0.47 | 0.69 | 0.45 | 0.72 | 0.51 | 0.60 | 0.40 | 0.77 | 0.53 |
Anhui | 0.54 | 0.41 | 0.88 | 0.71 | 0.77 | 0.66 | 0.78 | 0.53 | 0.65 | 0.39 | 0.74 | 0.58 |
Fujian | 1.00 | 1.00 | 0.93 | 0.81 | 0.87 | 0.61 | 0.75 | 0.52 | 0.64 | 0.46 | 0.86 | 0.71 |
Jiangxi | 0.44 | 0.30 | 0.64 | 0.46 | 0.72 | 0.50 | 0.68 | 0.45 | 0.81 | 0.53 | 0.67 | 0.46 |
Shandong | 0.81 | 0.58 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 0.71 | 0.90 | 0.57 | 0.96 | 0.84 |
Henan | 0.82 | 0.64 | 0.88 | 0.68 | 0.99 | 0.82 | 0.74 | 0.49 | 0.72 | 0.42 | 0.83 | 0.60 |
Hubei | 0.44 | 0.24 | 0.49 | 0.31 | 0.47 | 0.28 | 0.53 | 0.34 | 0.47 | 0.29 | 0.49 | 0.30 |
Hunan | 0.78 | 0.44 | 0.76 | 0.48 | 0.49 | 0.37 | 0.59 | 0.42 | 0.61 | 0.43 | 0.66 | 0.44 |
Guangdong | 0.84 | 0.58 | 0.68 | 0.46 | 0.56 | 0.38 | 0.66 | 0.41 | 0.79 | 0.43 | 0.72 | 0.46 |
Guangxi | 0.61 | 0.37 | 0.57 | 0.34 | 0.40 | 0.29 | 0.43 | 0.30 | 0.43 | 0.28 | 0.50 | 0.33 |
Hainan | 0.64 | 0.33 | 0.50 | 0.34 | 0.40 | 0.25 | 0.41 | 0.25 | 0.54 | 0.27 | 0.55 | 0.32 |
Chongqing | 0.39 | 0.28 | 0.55 | 0.43 | 0.43 | 0.29 | 0.46 | 0.31 | 0.40 | 0.27 | 0.45 | 0.32 |
Sichuan | 0.59 | 0.41 | 0.64 | 0.44 | 0.46 | 0.32 | 0.36 | 0.22 | 0.33 | 0.19 | 0.51 | 0.34 |
References
- SCPRC. China’s Twelfth Five Year Plan for 2011–2015. Available online: http://www.britishchamber.cn/content/chinas-twelfth-five-year-plan-2011-2015-full-english-version (accessed on 6 July 2015).
- Zhou, P.; Ang, B.W.; Poh, K.L. Slacks-based efficiency measures for modeling environmental performance. Ecol. Econ. 2006, 60, 111–118. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Ramli, N.A.; Munisamy, S. Modeling undesirable factors in efficiency measurement using data envelopment analysis: A review. J. Sustain. Sci. Manag. 2013, 8, 126–135. [Google Scholar]
- Scheel, H. Undesirable Outputs in Efficiency Valuations. Eur. J. Oper. Res. 2001, 132, 400–410. [Google Scholar] [CrossRef]
- Tyteca, D. Linear Programming Models for the Measurement of Environmental Performance of Firms-Concepts and Empirical Results. J. Prod. Anal. 1997, 8, 183–197. [Google Scholar] [CrossRef]
- Ali, A.I.; Seiford, L.M. Translation Invariance in Data Envelopment Analysis. Oper. Res. Lett. 1990, 10, 403–405. [Google Scholar]
- Golany, B.; Roll, Y. An application procedure for DEA. Omega 1989, 17, 237–250. [Google Scholar] [CrossRef]
- Seiford, L.M.; Zhu, J. Modeling Undesirable Factors in Efficiency Evaluation. Eur. J. Oper. Res. 2002, 142, 16–20. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lovell, C.A.K.; Pasurka, C. Multilateral Productivity Comparisons When Some Outputs are Undesirable: A Non-Parametric Approach. Rev. Econ. Stat. 1989, 71, 90–98. [Google Scholar] [CrossRef]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and Undesirable Outputs: A DDF Approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Bian, Y. Efficiency Evaluation with Undesirable Factors based on DEA. In Proceedings of the 4th International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, China, 12–14 October 2008; pp. 1–5.
- Charnes, A.; Cooper, W.W.; Golany, B.; Seiford, L.; Stutz, J. Foundations of Data Envelopment Analysis for Pareto-Koopmans Efficient Empirical Production Functions. J. Econ. 1985, 30, 91–107. [Google Scholar] [CrossRef]
- Portela, M.C.A.S.; Thanassoulis, E.; Simpson, G. Negative Data in DEA: A Directional Distance Approach Applied to Bank Branches. J. Oper. Res. Soc. 2004, 55, 1111–1121. [Google Scholar] [CrossRef]
- Fukuyama, H.; Weber, W.L. A Slacks-based inefficiency measure for a two-stage system with bad outputs. Omega 2010, 38, 398–409. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. Directional distance functions and slacks-based measures of efficiency. Eur. J. Oper. Res. 2010, 200, 320–322. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Goto, M.; Ueno, T. Performance analysis of US coal-fired power plants by measuring three DEA efficiencies. Energy Policy 2010, 38, 1675–1688. [Google Scholar] [CrossRef]
- Cooper, W.W.; Park, K.S.; Pastor, J.T. RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA. J. Prod. Anal. 1999, 11, 5–42. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Lozano, S.; Gutiérrez, E. Slacks-based measure of efficiency of airports with airplanes delays as undesirable outputs. Comput. Oper. Res. 2011, 38, 131–139. [Google Scholar] [CrossRef]
- Mandal, S.K.; Madheswaran, S. Environmental efficiency of the Indian cement industry: An interstate analysis. Energy Policy 2010, 38, 1108–1118. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Wang, H. Energy and CO2 Emission Performance in Electricity Generation: A Non-radial Directional Distance Function Approach. Eur. J. Oper. Res. 2012, 221, 625–635. [Google Scholar] [CrossRef]
- Li, L.B.; Hu, J.L. Ecological total-factor energy efficiency of regions in China. Energy Policy 2012, 46, 216–224. [Google Scholar] [CrossRef]
- Song, M.L.; An, Q.X.; Zhang, W.; Wang, Z.Y.; Wu, J. Environmental Efficiency Evaluation Based on Data Envelopment Analysis: A review. Renew. Sustain. Energy Rev. 2012, 16, 4465–4469. [Google Scholar] [CrossRef]
- Telle, K.; Larsson, J. Do environmental Regulations Hamper Productivity Growth? How Accounting for Improvements of Plants’ Environmental Performance Can Change the Conclusion. Ecol. Econ. 2007, 61, 438–445. [Google Scholar] [CrossRef]
- Banerjee, S. Environmental Regulation and Technical Efficiency: A Data Envelopment Analysis for Indian Cement Industry. Available online: http://www.isical.ac.in/~eru/erudp/2007-01.pdf (accessed on 13 July 2015).
- Wang, Y.; Liu, J.; Hansson, L.; Zhang, K.; Wang, R. Implementing Stricter Environmental Regulation to Enhance Eco-efficiency and Sustainability: A Case Study of Shandong Province’s Pulp and Paper Industry, China. J. Clean. Prod. 2011, 19, 303–310. [Google Scholar] [CrossRef]
- Yörük, B.K.; Zaim, O. International Regulations and Environmental Performance. Appl. Econ. 2008, 40, 807–822. [Google Scholar] [CrossRef]
- Burnett, R.D.; Hansen, D.R. Eco-efficiency: Defining a role for environmental cost management. Account. Organ. Soc. 2008, 33, 551–581. [Google Scholar] [CrossRef]
- Boyd, G.A.; Pang, J.X. Estimating the linkage between energy efficiency and productivity. Energy Policy 2000, 28, 289–296. [Google Scholar] [CrossRef]
- Boyd, G.A.; Tolley, G.; Pang, J. Plant Level Productivity, Efficiency, and Environmental Performance of the Container Glass Industry. Environ. Resour. Econ. 2002, 23, 29–43. [Google Scholar] [CrossRef]
- Tongzon, J. Efficiency measurement of selected Australian and other international ports using data envelopment analysis. Transp. Res. A 2001, 35, 107–122. [Google Scholar] [CrossRef]
- Merkert, R.; Hensher, D.A. The impact of strategic management and fleet planning on airline efficiency—A random effects Tobit model based on DEA efficiency scores. Transp. Res. A 2011, 45, 686–695. [Google Scholar] [CrossRef]
- Lin, L.C.; Hong, C.H. Operational performance evaluation of international major airports: An application of data envelopment analysis. J. Air Transp. Manag. 2006, 12, 342–351. [Google Scholar] [CrossRef]
- Chang, Y.T.; Zhang, N.; Danao, D.; Zhang, N. Environmental efficiency analysis of transportation system in China: A non-radial DEA approach. Energy Policy 2013, 58, 277–283. [Google Scholar] [CrossRef]
- Chung, W.; Zhou, G.H.; Yeung, I.M.H. A study of energy efficiency of transport sector in China from 2003 to 2009. Appl. Energy 2013, 112, 1066–1077. [Google Scholar] [CrossRef]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Tone, K. Toronto: Presentation at NAPW III. In Dealing with Undesirable Outputs in DEA: A Slacks-Based Measure (SBM) Approach; National Graduate Institute for Policy Studies: Tokyo, Japan, 2004. [Google Scholar]
- Mei, G.P.; Gan, J.Y.; Zhang, N. Metafrontier Environmental Efficiency for China’s Regions: A Slack-Based Efficiency Measure. Sustainability 2015, 7, 4004–4012. [Google Scholar] [CrossRef]
- Jacob, V.; Sharma, S.C.; Grabowski, R. Capital stock estimates for major sectors and disaggregated manufacturing in selected OECD countries. Appl. Econ. 1997, 29, 563–579. [Google Scholar] [CrossRef]
- Shi, G.M.; Bi, J.; Wang, J.N. Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs. Energy Policy 2010, 38, 6172–6179. [Google Scholar] [CrossRef]
- Bian, Y.W.; Yang, F. Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon’s entropy. Energy Policy 2010, 38, 1909–1917. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (accessed on 6 July 2015).
- Energy Research Institute NDRC. Study on the Sustainable Energy Development and Carbon Emission Scenarios Analysis in China; Energy Research Institute NDRC: Beijing, China, 2007. [Google Scholar]
- U.S.–China Joint Announcement on Climate Change. Available online: http://www.fmprc.gov.cn/mfa_chn/zyxw_602251/t1210034.shtml (accessed on 7 July 2015).
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Hao, Y.; Zhu, X. Analysis of the Environmental Efficiency of the Chinese Transportation Sector Using an Undesirable Output Slacks-Based Measure Data Envelopment Analysis Model. Sustainability 2015, 7, 9187-9206. https://doi.org/10.3390/su7079187
Song X, Hao Y, Zhu X. Analysis of the Environmental Efficiency of the Chinese Transportation Sector Using an Undesirable Output Slacks-Based Measure Data Envelopment Analysis Model. Sustainability. 2015; 7(7):9187-9206. https://doi.org/10.3390/su7079187
Chicago/Turabian StyleSong, Xiaowei, Yongpei Hao, and Xiaodong Zhu. 2015. "Analysis of the Environmental Efficiency of the Chinese Transportation Sector Using an Undesirable Output Slacks-Based Measure Data Envelopment Analysis Model" Sustainability 7, no. 7: 9187-9206. https://doi.org/10.3390/su7079187
APA StyleSong, X., Hao, Y., & Zhu, X. (2015). Analysis of the Environmental Efficiency of the Chinese Transportation Sector Using an Undesirable Output Slacks-Based Measure Data Envelopment Analysis Model. Sustainability, 7(7), 9187-9206. https://doi.org/10.3390/su7079187