The Effects of Ambient Water Quality and Eurasian Watermilfoil on Lakefront Property Values in the Coeur d’Alene Area of Northern Idaho, USA
Abstract
:1. Introduction
2. Related Literature
3. Methodology
3.1. Study Region
3.2. Data
Name | Description | Mean | S.D. | Data Source |
---|---|---|---|---|
Water-quality characteristics and invasive species | ||||
LNWQ | Ln (water clarity measured by Secchi disk depth, in meters) | 1.86 | 0.25 | IDEQ |
MILFOIL | 0,1 = presence of milfoil in the nearest bay | 0.23 | 0.42 | Avista |
Spatial characteristics | ||||
LNDISTCBD | Ln(distance to downtown, in meters) | 10.23 | 0.65 | KCG |
LNDISTHWY | Ln(distance to nearest highway, in meters) | 8.26 | 1.08 | KCG |
LNDISTMINING | Ln(distance to the historical mining district, or superfund site, in meters) | 10.83 | 0.08 | IDEQ |
Property characteristics | ||||
LNREALPR | Ln (assessed property values, in 2010 constant dollars) | 12.91 | 0.65 | KCG |
LNLIVING | Ln (living area, in square feet) | 2195 | 1,425 | KCG |
LNLOT | Ln (lot size, in acres) | 1.62 | 4.94 | KCG |
BEDRM | Number of bedrooms | 3 | 1.30 | KCG |
FULLBATH | Number of full bathrooms | 2 | 1.16 | KCG |
HALFBATH | Number of half bathrooms | 0.32 | 0.58 | KCG |
HOMEAGE | Home age (years) | 40 | 25 | KCG |
CENTRALAIR | 0,1 = central air conditioning | 0.08 | 0.27 | KCG |
LAKEFRONTAGE | Total frontage on the lake, in feet | 71.49 | 96.04 | KCG |
3.3. Model Specifications
4. Results
Variables | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
Coef. | T-value | Coef. | T-value | Coef. | T-value | |
LNLIVING | 0.279 *** | 5.648 | 0.268 *** | 5.469 | 0.276 *** | 5.654 |
LNLOT | 0.062 *** | 3.580 | 0.062 *** | 3.489 | 0.061 *** | 3.495 |
CENTRALAIR | 0.023 | 0.310 | 0.013 | 0.193 | 0.022 | 0.314 |
HOMEAGE | −0.001 | −1.149 | −0.001 | −1.125 | −0.001 | −0.678 |
FULLBATH | 0.065 *** | 2.673 | 0.073 *** | 2.957 | 0.070 *** | 2.851 |
HALFBATH | 0.127 *** | 3.625 | 0.125 *** | 3.562 | 0.128 *** | 3.655 |
BEDROOMS | −0.008 | −0.458 | −0.003 | −0.178 | −0.005 | −0.291 |
LAKEFRONTAGE | 0.003 *** | 13.282 | 0.003 *** | 13.071 | 0.003 *** | 12.973 |
LNDISTMINING | 1.552 *** | 5.747 | 1.353 *** | 5.309 | 1.599 *** | 5.951 |
LNDISTHWY | −0.130 *** | −0.854 | −0.038 | −1.516 | −0.034 | −1.358 |
LNDISTCBD | −0.024 *** | −3.206 | −0.112 ** | −2.550 | −0.095 ** | −2.143 |
LNWATER | 0.275 *** | 3.178 | 0.232 ** | 2.754 | ||
MILFOIL | −0.145 *** | −3.146 | −0.119 ** | −2.537 | ||
Year Dummy (reference: year of 2010) | ||||||
Year of 2011 | −0.050 | −0.792 | −0.049 | −0.776 | −0.052 | −0.827 |
Year of 2012 | −0.029 | −0.521 | −0.031 | −0.560 | −0.028 | −0.513 |
Year of 2013 | −0.086 | −1.523 | −0.081 | −1.425 | −0.085 | −1.511 |
Year of 2014 | 0.063 | 1.062 | 0.056 | 0.949 | 0.060 | 1.014 |
CONSTANT | −5.287 | −1.718 | −2.587 | −0.938 | −5.967 | −1.987 |
AIC | 721.523 | 721.730 | 715.964 | |||
BIC | 801.083 | 801.290 | 799.944 | |||
Log likelihood | −342.280 | −342.865 | −338.982 | |||
Adjusted R2 | 0.567 | 0.567 | 0.572 | |||
N. of observations | 614 | 614 | 614 |
Variables | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
Coef. | T-value | Coef. | T-value | Coef. | T-value | |
LNLIVING | 0.284 *** | 5.788 | 0.271 *** | 5.517 | 0.280 *** | 5.731 |
LNLOT | 0.059 *** | 3.324 | 0.057 *** | 3.156 | 0.059 ** | 3.297 |
CENTRALAIR | 0.025 | 0.355 | 0.018 | 0.262 | 0.023 | 0.326 |
HOMEAGE | −0.001 | −0.914 | −0.001 | −1.110 | −0.001 | −0.624 |
FULLBATH | 0.067 *** | 2.743 | 0.074 *** | 2.999 | 0.070 ** | 2.864 |
HALFBATH | 0.128 *** | 3.644 | 0.122 *** | 3.468 | 0.129 *** | 3.66 |
BEDROOMS | −0.008 | −0.428 | −0.004 | −0.225 | −0.006 | −0.302 |
LAKEFRONTAGE | 0.003 *** | 12.555 | 0.003 *** | 12.764 | 0.003 *** | 12.449 |
LNDISTMINING | 1.977 *** | 6.027 | 1.350 *** | 5.301 | 1.925 *** | 5.485 |
LNDISTHWY | −0.038 | −1.487 | −0.038 | −1.516 | −0.042 * | −1.668 |
LNDISTCBD | −0.087 * | −1.875 | −0.101 ** | −2.244 | −0.069 | −1.465 |
LNWATER (northern lake, near non-tribal waters) | 0.220 *** | 2.624 | 0.223 *** | 2.596 | ||
LNWATER (southern lake, near tribal waters) | 0.165 * | 1.755 | 0.166 * | 1.758 | ||
Milfoil (northern lake, near non-tribal waters) | −0.082 | −0.942 | −0.115 | −1.286 | ||
Milfoil (southern lake, near tribal waters) | −0.140 ** | −2.574 | −0.095 | −1.555 | ||
Year Dummy (reference: year of 2010) | ||||||
Year of 2011 | −0.047 | −0.753 | −0.050 | −0.798 | −0.049 | −0.788 |
Year of 2012 | −0.021 | −0.370 | −0.026 | −0.470 | −0.023 | −0.409 |
Year of 2013 | −0.078 | −1.378 | −0.078 | −1.380 | −0.080 | −1.406 |
Year of 2014 | 0.068 | 1.147 | 0.058 | 0.973 | 0.064 | 1.082 |
CONSTANT | −10.150 ** | −2.748 | −2.693 | −0.977 | −9.669 * | −2.46 |
AIC | 711.74 | 714.22 | 713.71 | |||
BIC | 791.30 | 793.78 | 797.69 | |||
Log likelihood | −337.87 | −339.110 | −337.857 | |||
Adjusted R2 | 0.574 | 0.573 | 0.574 | |||
N. of observations | 614 | 614 | 614 |
Water-Quality Related Attributes | % Change at Mean Property Values | Marginal Implicit Price (in 2010 Constant Dollars) |
---|---|---|
Secchi depth (1 meter increase) | ||
4 meters → 5 meters | 5.31% | $27,096 |
5 meters → 6 meters | 4.32% | $22,033 |
6 meters → 7 meters | 3.64% | $18,568 |
7 meters → 8 meters | 3.15% | $16,406 |
8 meters → 9 meters | 2.77% | $14,127 |
Invasive species | ||
Milfoil (presence->no presence) | 12.60% | $64,255 |
5. Conclusions and Implications
Acknowledgments
Author Contributions
Conflicts of Interest
References
- US Environmental Protection Agency (US EPA). History of the Clean Water Act. Available online: http://www2.epa.gov/laws-regulations/history-clean-water-act (accessed on 1 September 2015).
- US Environmental Protection Agency (US EPA). National Summary of State Information, Watershed Assessment. Available online: http://iaspub.epa.gov/waters10/attains_nation_cy.control (accessed on 3 September 2015).
- Olden, J.D.; Tamayo, M. Incentivizing the public to support invasive species management: Eurasian milfoil reduces lakefront property values. PLoS ONE 2014. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.W.; Boyle, K.J. The effect of an aquatic invasive species (eurasian watermilfoil) on lakefront property values. Ecol. Econ. 2010, 70, 394–404. [Google Scholar] [CrossRef]
- Horsch, E.J.; Lewis, D.J. The effects of aquatic invasive species on property values: Evidence from a quasi-experiment. Land Econ. 2009, 85, 391–409. [Google Scholar] [CrossRef]
- Boylen, C.W.; Eichler, L.W.; Madsen, J.D. Loss of native aquatic plant species in a community dominated by eurasian watermilfoil. Hydrobiologia 1999, 415, 207–211. [Google Scholar] [CrossRef]
- Eiswerth, M.E.; Donaldson, S.G.; Johnson, W.S. Potential environmental impacts and economic damages of eurasian watermilfoil (Myriophyllum spicatum) in western nevada and northeastern california. Weed Technol. 2000, 14, 511–518. [Google Scholar] [CrossRef]
- Michigan Sea Grant College Program. Eurasian Watermilfoil. Available online: http://www.miseagrant.umich.edu/files/2012/05/fs-EWM-milfoil1.pdf (accessed on 28 December 2015).
- Gräfe, S. Relationship between the Invasive Eurasian Milfoil (Myriophyllum spicatum L.) and Macrophyte Diversity across Spatial Scales; University of Ottawa: Ottawa, ON, Canada, 2014. [Google Scholar]
- Smith, C.S.; Barko, J. Ecology of eurasian watermilfoil. J. Aquatic Plant Manag. 1990, 28, 55–64. [Google Scholar]
- Valinoti, C.E.; Ho, C.-K.; Armitage, A.R. Native and exotic submerged aquatic vegetation provide different nutritional and refuge values for macroinvertebrates. J. Exp. Marine Biol. Ecol. 2011, 409, 42–47. [Google Scholar] [CrossRef]
- Martin, C.W.; Valentine, J.F. Impacts of a habitat-forming exotic species on estuarine structure and function: An experimental assessment of eurasian milfoil. Estuar. Coasts 2011, 34, 364–372. [Google Scholar] [CrossRef]
- Cason, C.; Roost, B.A. Species selectivity of granular 2,4-d herbicide when used to control eurasian watermilfoil (myriophyllum spicatum) in wisconsin lakes. Invasive Plant Sci. Manag. 2011, 4, 251–259. [Google Scholar] [CrossRef]
- Walsh, P.J.; Milon, J.W.; Scrogin, D.O. The spatial extent of water quality benefits in urban housing markets. Land Econ. 2011, 87, 628–644. [Google Scholar] [CrossRef]
- Egan, K.J.; Herriges, J.A.; Kling, C.L.; Downing, J.A. Valuing water quality as a function of water quality measures. Am. J. Agric. Econ. 2009, 91, 106–123. [Google Scholar] [CrossRef]
- Iovanna, R.; Griffiths, C. Clean water, ecological benefits, and benefits transfer: A work in progress at the us epa. Ecol. Econ. 2006, 60, 473–482. [Google Scholar] [CrossRef]
- Viscusi, W.K.; Huber, J.; Bell, J. The economic value of water quality. Environ. Resour. Econ. 2008, 41, 169–187. [Google Scholar] [CrossRef]
- Sander, H.A.; Zhao, C. Urban green and blue: Who values what and where? Land Use Pol. 2015, 42, 194–209. [Google Scholar] [CrossRef]
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgstrom, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, A.; Hamstead, Z.; Hansen, R.; et al. A quantitative review of urban ecosystem service assessments: Concepts, models, and implementation. Ambio 2014, 43, 413–433. [Google Scholar] [CrossRef] [PubMed]
- Von Döhren, P.; Haase, D. Ecosystem disservices research: A review of the state of the art with a focus on cities. Ecol. Indic. 2015, 52, 490–497. [Google Scholar] [CrossRef]
- CNN. 100 Best Places to Live and Launch. Available online: http://money.cnn.com/galleries/2008/fsb/0803/gallery.best_places_to_launch.fsb/95.html (accessed on 28 December 2015).
- Idaho Department of Environmental Quality (IDEQ). Cointued Monitoring of Water Quality Status and Trends in Coeur d'alene Lake, Idaho; Idaho Department of Environmental Quality (IDEQ): Idaho, ID, USA, 2012. [Google Scholar]
- Corporation, A. Coeur D'alene Lake Aquatic Weed Management Plan for Non-tribal Waters, 2012 Summary Report; Golder Associates Inc.: Spokane Valley, WA, USA, 2014. [Google Scholar]
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.; Mooney, H.A. The nature and value of ecosystem services: An overview highlighting hydrologic services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Downing, J.A. Emerging global role of small lakes and ponds: Little things mean a lot. Limnetica 2010, 29, 9–24. [Google Scholar]
- Howley, P. Landscape aesthetics: Assessing the general publics’ preferences towards rural landscapes. Ecolog. Econ. 2011, 72, 161–169. [Google Scholar] [CrossRef]
- Chang, H.; Thiers, P.; Netusil, N.R.; Yeakley, J.A.; Rollwagen-Bollens, G.; Bollens, S.M.; Singh, S. Relationships between environmental governance and water quality in a growing metropolitan area of the pacific northwest, USA. Hydrol. Earth Syst. Sci. 2014, 18, 1383–1395. [Google Scholar] [CrossRef]
- Bin, O.; Czajkowski, J. The impact of technical and non-technical measures of water quality on coastal waterfront property values in south florida. Marine Resour. Econ. 2013, 28, 43–63. [Google Scholar] [CrossRef]
- Lansford, N.H.; Jones, L.L. Recreational and aesthetic value of water using hedonic price analysis. J. Agric. Resour. Econ. 1995, 20, 341–355. [Google Scholar]
- Gibbs, J.P.; Halstead, J.M.; Boyle, K.J.; Huang, J.-C. An hedonic analysis of the effects of lake water clarity on new hampshire lakefront properties. Agric. Resour. Econ. Rev. 2002, 31, 39–46. [Google Scholar]
- Poor, P.J.; Pessagno, K.L.; Paul, R.W. Exploring the hedonic value of ambient water quality: A local watershed-based study. Ecol. Econ. 2007, 60, 797–806. [Google Scholar] [CrossRef]
- Clapper, J.; Caudill, S.B. Water quality and cottage prices in ontario. Appl. Econ. 2014, 46, 1122–1126. [Google Scholar] [CrossRef]
- Muller, N.Z. Using hedonic property models to value public water bodies: An analysis of specification issues. Water Resour. Res. 2009. [Google Scholar] [CrossRef]
- Tuttle, C.M.; Heintzelman, M.D. A loon on every lake: A hedonic analysis of lake water quality in the adirondacks. Resour. Energy Econ. 2015, 39, 1–15. [Google Scholar] [CrossRef]
- Halstead, J.M.; Michaud, J.; Hallas-Burt, S.; Gibbs, J.P. Hedonic analysis of effects of a nonnative invader (myriophyllum heterophyllum) on new hampshire (USA) lakefront properties. Environ. Manag. 2003, 32, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Frey, R. Coeur d’alene (schitsu’umsh). Available online: http://content.lib.washington.edu/aipnw/frey.html (accessed on 1 November 2015).
- Morra, M.J.; Carter, M.M.; Rember, W.C.; Kaste, J.M. Reconstructing the history of mining and remediation in the coeur d’alene, idaho mining district using lake sediments. Chemosphere 2015, 134, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Federal Housing Finance Agency. House price index. Available online: http://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index-Datasets.aspx#qpo (accessed on 28 December 2015).
- Rosen, S. Hedonic prices and implicit markets - product differentiation in pure competition. J. Political Econ. 1974, 82, 34–55. [Google Scholar] [CrossRef]
- Chasco, C.; Le Gallo, J. The impact of objective and subjective measures of air quality and noise on house prices: A multilevel approach for downtown madrid. Econ. Geogr. 2013, 89, 127–148. [Google Scholar] [CrossRef]
- Daniel, V.E.; Florax, R.; Rietveld, P. Flooding risk and housing values: An economic assessment of environmental hazard. Ecol. Econ. 2009, 69, 355–365. [Google Scholar] [CrossRef]
- Veronesi, M.; Chawla, F.; Maurer, M.; Lienert, J. Climate change and the willingness to pay to reduce ecological and health risks from wastewater flooding in urban centers and the environment. Ecol. Econ. 2014, 98, 1–10. [Google Scholar] [CrossRef]
- Mazzotta, M.; Besedin, E.; Speers, A. A meta-analysis of hedonic studies to assess the property value effects of low impact development. Resources 2014, 3, 31–61. [Google Scholar] [CrossRef]
- Chang, H.J. Water quality impacts of climate and land use changes in southeastern pennsylvania. Prof. Geogr. 2004, 56, 240–257. [Google Scholar]
- Li, H.; Wei, Y.H.D.; Huang, Z. Urban land expansion and spatial dynamics in globalizing shanghai. Sustainability 2014, 6, 8856–8875. [Google Scholar] [CrossRef]
- Hansen, W.D.; Naughton, H.T. The effects of a spruce bark beetle outbreak and wildfires on property values in the wildland-urban interface of south-central alaska, USA. Ecol. Econ. 2013, 96, 141–154. [Google Scholar] [CrossRef]
- Liao, F.H.; Wei, Y.D. Space, scale, and regional inequality in provincial china: A spatial filtering approach. Appl. Geogr. 2015. [Google Scholar] [CrossRef]
- Madsen, J.D.; Smith, D.H. Vegetative spread of eurasian watermilfoil colonies. J. Aquatic Plant Manag. 1997, 35, 63–68. [Google Scholar]
- Martin, C.W.; Valentine, J.F. Sexual and asexual reproductive strategies of invasive eurasian milfoil (myriophyllum spicatum) in estuarine environments. Hydrobiologia 2014, 727, 177–184. [Google Scholar] [CrossRef]
- Rothlisberger, J.D.; Chadderton, W.L.; McNulty, J.; Lodge, D.M. Aquatic invasive species transport via trailered boats: What is being moved, who is moving it, and what can be done. Fisheries 2010, 35, 121–132. [Google Scholar] [CrossRef]
- Kramer, B. Milfoil Attacked in St. Joe River: Coeur D’alenes Aim to Stop Weed from Reaching Lake. Available online: http://www.spokesman.com/stories/2009/jul/11/milfoil-attacked-in-st-joe-river/ (accessed on 28 December 2015).
- Martin, C.W.; Valentine, J.F. Eurasian milfoil invasion in estuaries: Physical disturbance can reduce the proliferation of an aquatic nuisance species. Marine Ecol. Progr. Series 2012, 449, 109–119. [Google Scholar] [CrossRef]
- Almasi, M.N.; Hoskin, C.M.; Reed, J.K.; Milo, J. Effects of natural and artificial thalassia on rates of sedimentation. J. Sediment. Petrol. 1987, 57, 901–906. [Google Scholar]
- Newell, R.I.E.; Koch, E.W. Modeling seagrass density and distribution in response to changes in turbidity stemming from bivalve filtration and seagrass sediment stabilization. Estuaries 2004, 27, 793–806. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, F.H.; Wilhelm, F.M.; Solomon, M. The Effects of Ambient Water Quality and Eurasian Watermilfoil on Lakefront Property Values in the Coeur d’Alene Area of Northern Idaho, USA. Sustainability 2016, 8, 44. https://doi.org/10.3390/su8010044
Liao FH, Wilhelm FM, Solomon M. The Effects of Ambient Water Quality and Eurasian Watermilfoil on Lakefront Property Values in the Coeur d’Alene Area of Northern Idaho, USA. Sustainability. 2016; 8(1):44. https://doi.org/10.3390/su8010044
Chicago/Turabian StyleLiao, Felix Haifeng, Frank M. Wilhelm, and Mark Solomon. 2016. "The Effects of Ambient Water Quality and Eurasian Watermilfoil on Lakefront Property Values in the Coeur d’Alene Area of Northern Idaho, USA" Sustainability 8, no. 1: 44. https://doi.org/10.3390/su8010044
APA StyleLiao, F. H., Wilhelm, F. M., & Solomon, M. (2016). The Effects of Ambient Water Quality and Eurasian Watermilfoil on Lakefront Property Values in the Coeur d’Alene Area of Northern Idaho, USA. Sustainability, 8(1), 44. https://doi.org/10.3390/su8010044