Public Acceptability of Introducing a Biogas Mandate in Korea: A Contingent Valuation Study
Abstract
:1. Introduction
2. Methodology
2.1. Object to Be Valued
- a blend of 2% BG for gas-supplying companies;
- improving the system of gathering and reusing waste resources to increase their use; and
- financially supporting the research and development of technology for the low-cost production of BG.
2.2. The Method of Investigating the Public Acceptability of Introducing a BG Mandate
2.3. CV Survey Design Issues
2.4. The Method of WTP Elicitation
2.5. Payment Vehicle
3. Modeling WTP Responses
3.1. The Basic WTP Model
3.2. The Model for Dealing with Zero WTP Responses: Spike Model
3.3. The OOHB DC Model
3.4. The OOHB DC Spike Model
4. Results and Discussion
4.1. Data
4.2. Estimation Results of the OOHB DC Spike Model
4.3. The Estimation Results of the OOHB DC Spike Model with Covariates
4.4. Discussion of the Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Krich, K.; Augenstein, D.; Batmale, J.P.; Benemann, J.; Rutledge, B.; Salour, D. Biomethane from Dairy Waste; Western United Dairymen: Modesto, CA, USA, 2005. [Google Scholar]
- Muradin, M.; Foltynowicz, Z. Potential for producing biogas from agricultural waste in rural plants in Poland. Sustainability 2014, 6, 5065–5074. [Google Scholar] [CrossRef]
- Torquati, B.; Venanzi, S.; Ciani, A.; Diotallevi, F.; Tamburi, V. Environmental sustainability and economic benefits of dairy farm biogas energy production: A case study in Umbria. Sustainability 2014, 6, 6696–6713. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. EPA Finalizes 2013 Renewable Fuel Standards & EPA Finalizes 2012 Renewable Fuel Standards; United States Environmental Protection Agency: Washington, DC, USA, 2013. [Google Scholar]
- Global Subsidies Initiative. Biofuels—At What Cost? Mandation Ethanol and Biodiesel Consumption in Germany; Global Subsidies Initiative: Geneva, Switzerland, 2012. [Google Scholar]
- Joe, J.H.; Lee, H.S.; Yang, E.M. A Foreign Case Study of Renewable Fuel Standard with Respect to Bio-Gas; Korea Environment Institute: Sejong City, Korea, 2013. [Google Scholar]
- Hite, D.; Duffy, P.; Bransby, D.; Slaton, C. Consumer willingness-to-pay for biopower: Results from focus groups. Biomass Bioenergy 2008, 32, 11–17. [Google Scholar] [CrossRef]
- Soliño, M.; Prada, A.; Vázquez, M.X. Designing a forest-energetic policy to reduce forest fires in Galicia (Spain): A contingent valuation application. J. For. Econ. 2010, 16, 217–233. [Google Scholar]
- Solomon, B.D.; Johnson, N.H. Valuing climate protection through willingness to pay for biomass ethanol. Ecol. Econ. 2009, 68, 2137–2144. [Google Scholar] [CrossRef]
- Petrolia, D.R.; Bhattacharjee, S.; Hudson, D.; Hemdon, C.W. Do Americans want ethanol? A comparative contingent-valuation study of willingness to pay for E-10 and E-85. Energy Econ. 2010, 32, 121–128. [Google Scholar] [CrossRef]
- Savvanidou, E.; Zervas, E.; Tsagarakis, K.P. Public acceptance of biofuels. Energy Policy 2010, 38, 3482–3488. [Google Scholar] [CrossRef]
- Cicia, G.; Cembalo, L.; Giudice, T.D.; Palladino, A. Fossil energy versus nuclear, wind, solar and agricultural biomass: Insights from an Italian national survey. Energy Policy 2012, 42, 59–66. [Google Scholar] [CrossRef]
- Lanzini, P.; Testa, F. Factors affecting drivers’ willingness to pay for biofuels: The case of Italy. J. Clean. Prod. 2016, 112, 2684–8692. [Google Scholar] [CrossRef]
- Saz-Salazar, S.; Hernández-Sancho, F.; Sala-Garrido, R. The social benefits of restoring water quality in the context of the Water Framework Directive: A comparison of willingness to pay and willingness to accept. Sci. Total Environ. 2009, 407, 4574–4583. [Google Scholar] [CrossRef] [PubMed]
- Saverio, M.; Fabrizio, F.; Rocco, M. Social evaluation approaches in landscape projects. Sustainability 2014, 6, 7906–7920. [Google Scholar]
- Huang, C.H.; Wang, C.H. Estimating the total economic value of cultivated flower land in Taiwan. Sustainability 2015, 7, 4764–4782. [Google Scholar] [CrossRef]
- Harun, R.; Muresan, I.C.; Arion, F.H.; Dumitras, D.E.; Lile, R. Analysis of factors that influence the willingness to pay for irrigation water in the Kurdistan regional government, Iraq. Sustainability 2015, 7, 9574–9586. [Google Scholar] [CrossRef]
- Schkade, D.A.; Payne, J.W. How people respond to contingent valuation questions: A verbal protocol analysis of willingness to pay for an environmental regulation. J. Environ. Econ. Manag. 1994, 26, 88–109. [Google Scholar] [CrossRef]
- Cameron, T.A.; Englin, J. Respondent experience and contingent valuation of environmental goods. J. Environ. Econ. Manag. 1997, 33, 296–313. [Google Scholar] [CrossRef]
- Smith, V.K.; Osborne, L.L. Do contingent valuation estimates pass a “scope” test? A meta-analysis. J. Environ. Econ. Manag. 1996, 31, 287–301. [Google Scholar] [CrossRef]
- Chien, Y.-L.; Huang, C.J.; Shaw, D. A general model of starting point bias in double-bounded dichotomous contingent valuation surveys. J. Environ. Econ. Manag. 2005, 50, 362–377. [Google Scholar] [CrossRef]
- Buschena, D.E.; Anderson, T.L.; Leonard, J.L. Valuing non-marketed goods: The case of elk permit lotteries. J. Environ. Econ. Manag. 2001, 41, 33–43. [Google Scholar] [CrossRef]
- Parsons, G.R.; Myers, K. Fat tails and truncated bids in contingent valuation: An application to an endangered shorebird species. Ecol. Econ. 2016, 129, 210–219. [Google Scholar] [CrossRef]
- Whitehead, J.C. Plausible responsiveness to scope in contingent valuation. Ecol. Econ. 2016, 128, 17–22. [Google Scholar] [CrossRef]
- Da Costa, C.A.; Santos, J.L. Estimating the demand curve for sustainable use of pesticides from contingent-valuation data. Ecol. Econ. 2016, 127, 121–128. [Google Scholar] [CrossRef]
- Gelo, D.; Koch, S.F. Contingent valuation of community forestry programs in Ethiopia: Controlling for preference anomalies in double-bounded CVM. Ecol. Econ. 2015, 114, 79–89. [Google Scholar] [CrossRef]
- Lo, A.Y.; Jim, C.Y. Protest response and willingness to pay for culturally significant urban trees: Implications for Contingent Valuation Method. Ecol. Econ. 2015, 114, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Börger, T. Keeping up appearances: Motivations for socially desirable responding in contingent valuation interviews. Ecol. Econ. 2013, 87, 155–165. [Google Scholar] [CrossRef]
- Longo, A.; Hoyos, D.; Markandya, A. Sequence effects in the valuation of multiple environmental programs using the contingent valuation method. Land Econ. 2015, 91, 20–35. [Google Scholar] [CrossRef]
- Bateman, I.J.; Munro, A.; Poe, G.L. Decoy Effects in Choice Experiments and Contingent Valuation: Asymmetric Dominance. Land Econ. 2008, 84, 115–127. [Google Scholar] [CrossRef]
- Champ, P.A.; Flores, N.E.; Brown, T.C.; Chivers, J. Contingent Valuation and Incentives. Land Econ. 2002, 78, 591–604. [Google Scholar] [CrossRef]
- Svedsäter, H. Economic Valuation of the Environment: How Citizens Make Sense of Contingent Valuation Questions. Land Econ. 2003, 79, 122–135. [Google Scholar] [CrossRef]
- Desvousges, W.; Mathews, K.; Train, K. An adding-up test on contingent valuations of river and lake quality. Land Econ. 2015, 91, 556–571. [Google Scholar] [CrossRef]
- Carson, R.; Hanemann, M. Ch 17 Contingent Valuation. In Handbook of Environmental Economics, Volume 2: Valuing Environmental Changes, 1st ed.; Mäler, K.G., Vincent, J.R., Eds.; North Holland: Amsterdam, The Netherlands, 2006; pp. 821–936. [Google Scholar]
- Carson, R.T.; Mitchell, R.C.; Hanemann, M.; Kopp, R.J.; Presser, S.; Ruud, P.A. Contingent valuation and lost passive use: Damages from the Exxon Valdez oil spill. Environ. Resour. Econ. 2003, 25, 257–286. [Google Scholar] [CrossRef]
- Arrow, K.; Solow, R.; Portney, P.R.; Leamer, E.E.; Radner, R.; Schuman, H. Report of the NOAA panel on contingent valuation. Fed. Regist. 1993, 58, 4601–4614. [Google Scholar]
- Yoo, S.H.; Kwak, S.Y. Willingness to pay for green electricity in Korea. Energy Policy 2009, 37, 5408–5416. [Google Scholar] [CrossRef]
- Ezebilo, E. Willingness to pay for improved residential waste management in a developing country. Int. J. Environ. Sci. Technol. 2013, 10, 413–422. [Google Scholar] [CrossRef]
- Hanemann, W.M.; Loomis, J.; Kanninen, B.J. Statistical efficiency of double-bounded dichotomous choice contingent valuation. Am. J. Agric. Econ. 1991, 73, 1255–1263. [Google Scholar] [CrossRef]
- McFadden, D. Contingent valuation and social choice. Am. J. Agric. Econ. 1994, 76, 689–708. [Google Scholar] [CrossRef]
- Bateman, I.J.; Langford, L.H.; Jones, P.; Kerr, G.N. Bound and path effects in double and triple bounded dichotomous choice contingent valuation. Resour. Energy Econ. 2001, 23, 191–213. [Google Scholar] [CrossRef]
- Carson, R.T.; Groves, T. Incentive and informational properties of preference questions. Environ. Resour. Econo. 2007, 37, 181–210. [Google Scholar] [CrossRef]
- Cooper, J.C.; Hanemann, M.; Signorello, G. One-and-one-half-bound dichotomous choice contingent valuation. Rev. Econ. Stat. 2002, 84, 742–750. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.C.; Carson, R.T. Using Surveys to Value Public Goods: The Contingent Valuation Method; Resources for the Future: Washington, DC, USA, 1989. [Google Scholar]
- Park, S.Y.; Yoo, S.H.; Kwak, S.J. The conservation value of Shinan Tidal Flat in Korea: A contingent valuation study. Int. J. Sust. Dev. World Ecol. 2013, 20, 54–62. [Google Scholar] [CrossRef]
- Lee, M.K.; Yoo, S.H. Public’s willingness to pay for a marina port in Korea: A contingent valuation study. Ocean Coast. Manag. 2016, 119, 119–127. [Google Scholar] [CrossRef]
- Egan, K.J.; Corrigan, J.R.; Dwyer, D.F. Three reasons to use annual payments in contingent valuation surveys: Convergent validity, discount rates, and mental accounting. J. Environ. Econ. Manag. 2015, 72, 123–136. [Google Scholar] [CrossRef]
- Hanemann, W.M. Welfare evaluations in contingent valuation experiments with discrete responses. Am. J. Agric. Econ. 1984, 66, 332–341. [Google Scholar] [CrossRef]
- Cameron, T.A.; James, M.D. Efficient estimation methods for “closed-ended” contingent valuation surveys. R. Econ. Stat. 1987, 69, 269–276. [Google Scholar] [CrossRef]
- McConnell, K.E. Models for referendum data: The structure of discrete choice models for contingent valuation. J. Environ. Econ. Manag. 1990, 18, 19–34. [Google Scholar] [CrossRef]
- Kriström, B. Spike models in contingent valuation. Am. J. Agric. Econ. 1997, 79, 1013–1023. [Google Scholar] [CrossRef]
- Yoo, S.H.; Kwak, S.J. Using a spike model to deal with zero response data from double bounded dichotomous choice contingent valuation surveys. Appl. Econ. Lett. 2002, 9, 929–932. [Google Scholar] [CrossRef]
- Krinsky, I.; Robb, A.L. On approximating the statistical properties of elasticities. Rev. Econ. Stat. 1986, 68, 715–719. [Google Scholar] [CrossRef]
- Korean Statistical Information Service. Available online: http://www.kosis.kr (accessed on 15 August 2016).
- Korea Government. Intended Nationally Determined Contribution Submitted by the Republic of Korea. Available online: http://www4.unfccc.int/submissions/INDC/Published%20Documents/Republic%20of%20Korea/1/INDC%20Submission%20by%20the%20Republic%20of%20Korea%20on%20June%2030.pdf (accessed on 15 October 2015).
Variable | Definition | Mean | Standard Deviation |
---|---|---|---|
gender | The respondent’s gender (0 = female; 1 = male) | 0.50 | 0.50 |
age | The respondent’s age in years | 44.78 | 9.48 |
family | The size of the respondent’s household (unit: persons) | 3.34 | 1.09 |
income | The household’s monthly income before tax deduction (unit: ten thousand Korean won = USD 9.11) | 420.32 | 228.96 |
education | The respondent’s education level in years | 14.13 | 2.37 |
Lower Bid Is Presented as the First Bid (%) b | Upper Bid Is Presented as the First Bid (%) b | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Bid Amount a | “Yes-Yes” | “Yes-No” | “No-Yes” | “No-No” | Totals | “Yes” | “No-Yes” | “No-No-Yes” | “No-No-No” | Totals | |
1000 | 3000 | 10 (13.9) | 16 (22.2) | 2 (2.8) | 44 (61.1) | 72 (100) | 16 (22.5) | 9 (12.7) | 5 (7.0) | 41 (57.7) | 71 (100) |
2000 | 4000 | 8 (11.3) | 9 (12.7) | 11 (15.5) | 43 (60.6) | 71 (100) | 15 (20.8) | 8 (11.1) | 6 (8.3) | 43 (59.7) | 72 (100) |
3000 | 6000 | 7 (9.9) | 12 (16.9) | 4 (5.6) | 48 (67.6) | 71 (100) | 13 (18.1) | 6 (8.3) | 6 (8.3) | 47 (65.3) | 72 (100) |
4000 | 8000 | 6 (8.3) | 14 (19.4) | 6 (8.3) | 46 (63.9) | 72 (100) | 16 (22.5) | 6 (8.5) | 4 (5.6) | 45 (63.4) | 71(100) |
6000 | 10,000 | 3 (4.2) | 6 (8.5) | 14 (19.7) | 48 (67.6) | 71 (100) | 7 (9.9) | 3 (4.2) | 14 (19.7) | 47 (66.2) | 71 (100) |
8000 | 12,000 | 3 (4.2) | 8 (11.3) | 16 (22.5) | 44 (62.0) | 71 (100) | 7 (9.9) | 6 (8.5) | 17 (23.9) | 41 (57.7) | 71 (100) |
10,000 | 15,000 | 2 (2.8) | 4 (5.6) | 14 (19.4) | 52 (72.2) | 72 (100) | 8 (11.1) | 4 (5.6) | 15 (20.8) | 45 (62.5) | 72 (100) |
Totals | 39 (7.8) | 69 (13.8) | 67 (13.4) | 325 (65.0) | 500 (100) | 82 (16.4) | 42 (8.4) | 67 (13.4) | 309 (61.8) | 500 (100) |
Variables | Estimates d |
---|---|
Constant | −0.553 (−8.43) # |
Bid a | −0.179 (−17.23) # |
Spike | 0.635 (41.75) # |
Mean WTP per household per year | KRW 2539 (USD 2.5) |
t-value | 14.41 # |
95% confidence interval b | KRW 2231 to 2920 (USD 2.2 to 2.8) |
99% confidence interval b | KRW 2125 to 3047 (USD 2.1 to 2.9) |
Number of observations | 1000 |
Log-likelihood | −1050.06 |
Wald statistic (p-value) c | 247.03 (0.000) |
Variables a | Estimates | t-Values |
---|---|---|
Constant | −1.605 | −2.44 * |
Bid b | −0.183 | −17.42 # |
Gender | −0.198 | −1.46 |
Age | 0.003 | 0.36 |
Family | 0.056 | 0.91 |
Income | 0.088 | 2.77 # |
Education | 0.077 | 2.34 * |
Spike | 0.635 | 41.75 * |
Mean WTP per household per year | KRW 2460 (USD 2.4) | |
t-value | 14.46 # | |
Wald statistic (p-value) c | 474.31 (0.000) | |
Log-likelihood | −1036.67 | |
Number of observations | 1000 |
Gender a | Age a | Income a | Education a | ||||
---|---|---|---|---|---|---|---|
Male | Female | Younger | Older | Lower | Higher | Lower | Higher |
KRW 2272 (USD 2.2) | KRW 2664 (USD 2.6) | KRW 2464 (USD 2.4) | KRW 2344 (USD 2.3) | KRW 1724 (USD 1.7) | KRW 2493 (USD 2.5) | KRW 2078 (USD 2.1) | KRW 2604 (USD 2.6) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-Y.; Park, S.-Y.; Yoo, S.-H. Public Acceptability of Introducing a Biogas Mandate in Korea: A Contingent Valuation Study. Sustainability 2016, 8, 1087. https://doi.org/10.3390/su8111087
Kim H-Y, Park S-Y, Yoo S-H. Public Acceptability of Introducing a Biogas Mandate in Korea: A Contingent Valuation Study. Sustainability. 2016; 8(11):1087. https://doi.org/10.3390/su8111087
Chicago/Turabian StyleKim, Ho-Young, So-Yeon Park, and Seung-Hoon Yoo. 2016. "Public Acceptability of Introducing a Biogas Mandate in Korea: A Contingent Valuation Study" Sustainability 8, no. 11: 1087. https://doi.org/10.3390/su8111087
APA StyleKim, H.-Y., Park, S.-Y., & Yoo, S.-H. (2016). Public Acceptability of Introducing a Biogas Mandate in Korea: A Contingent Valuation Study. Sustainability, 8(11), 1087. https://doi.org/10.3390/su8111087