Financial Development, Financial Structure, and Macroeconomic Volatility: Evidence from China
Abstract
:1. Introduction
2. Literature Review
3. Data, Variables, and Methodology
3.1. Data
3.2. Methodology
4. Empirical Results and Discussion
4.1. The Impact of Financial Development on Macroeconomic Volatility
4.2. The Impact of Financial Market Development on Macroeconomic Volatility
4.3. The Impact of Financial Structure on Macroeconomic Volatility
4.4. Robustness Test
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schumpeter, J. The Theory of Economic Development; Harper & Brothers: Manhattan, NY, USA, 1912. [Google Scholar]
- Goldsmith, R.W. Financial Structure and Development; Yale University Press: New Haven, CT, USA, 1969. [Google Scholar]
- McKinnon, R.I. Money and Capital in Economic Development; Brookings Institution: Washington, DC USA, 1973. [Google Scholar]
- Levine, R. Financial Development and Economic Growth: Views and Agenda. J. Econ. Lit. 1997, 35, 688–726. [Google Scholar]
- Levine, R. Finance and Growth: Theory and Evidence. In Handbook of Economic Growth; Aghion, P., Durlauf, S.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 865–934. [Google Scholar]
- Ang, J.B. A Survey of Recent Developments in the Literature of Finance and Growth. J. Econ. Surv. 2008, 22, 536–576. [Google Scholar] [CrossRef]
- Aizenman, J.; Pinto, B. (Eds.) Managing Economic Volatility and Crises: A Practitioner’s Guide; Cambridge University Press: Cambridge, UK, 2005.
- Denizer, C.; Iyigun, M.; Owen, A. Finance and Macroeconomic Volatility. Contrib. Macroecon. 2002. [Google Scholar] [CrossRef]
- Silva, G.F. The Impact of Financial System Development on Business Cycles Volatility: Cross-Country Evidence. J. Macroecon. 2002, 24, 233–253. [Google Scholar] [CrossRef]
- Tiryaki, G.F. Financial Development and Economic Fluctuations. METU Stud. Dev. 2003, 30, 89–106. [Google Scholar]
- Beck, T.; Lundberg, M.; Majnoni, G. Financial Intermediary Development and Growth Volatility: Do Intermediaries Dampen or Magnify Shocks? J. Int. Money Financ. 2006, 25, 1146–1167. [Google Scholar] [CrossRef]
- Easterly, W.; Islam, R.; Stiglitz, J. Shaken and Stirred: Explaining Growth Volatility. In Annual World Bank Conference on Development Economics; Pleskovic, B., Stern, N., Eds.; The World Bank: Washington, DC, USA, 2000; pp. 191–211. [Google Scholar]
- Kunieda, T. Financial Development and Volatility of Growth Rates: New Evidence. Available online: https://mpra.ub.uni-muenchen.de/11341/1/MPRA_paper_11341.pdf (accessed on 28 September 2015).
- Aghion, P.; Angeletos, G.; Banerjee, M.A.; Manova, K. Volatility and Growth: Credit Constraints and the Composition of Investment. J. Monet. Econ. 2010, 57, 246–265. [Google Scholar] [CrossRef] [Green Version]
- Darrat, A.F.; Salah, A.S.; Hassan, A.Y. Assessing the Role of Financial Deepening in Business Cycles: The Experience of the United Arab Emirates. Appl. Financ. Econ. 2005, 15, 1–16. [Google Scholar] [CrossRef]
- Larrain, B. Do Banks Affect the Level and Composition of Industrial Volatility? J. Financ. 2006, 61, 1897–1925. [Google Scholar] [CrossRef]
- Bernanke, B.; Gertler, M. Agency Costs, Net Worth, and Business Fluctuations. Am. Econ. Rev. 1989, 79, 14–31. [Google Scholar]
- Bernanke, B.; Gertler, M.; Gilchrist, S. The Financial Accelerator and the Flight to Quality. Rev. Econ. Stat. 1996, 78, 1–15. [Google Scholar] [CrossRef]
- Kiyotaki, N.; Moore, J. Credit Cycles. J. Polit. Econ. 1997, 105, 211–248. [Google Scholar] [CrossRef]
- Aghion, P.; Banerjee, A.; Piketty, T. Dualism and Macroeconomic Volatility. Q. J. Econ. 1999, 114, 1359–1397. [Google Scholar] [CrossRef]
- Caballero, R.J.; Krishnamurthy, A. International and Domestic Collateral Constraints in a Model of Emerging Market Crises. J. Monet. Econ. 2001, 48, 513–548. [Google Scholar] [CrossRef]
- Bacchetta, P.; Caminal, R. Do Capital Market Imperfections Exacerbate Output Fluctuations? Eur. Econ. Rev. 2000, 44, 449–468. [Google Scholar] [CrossRef]
- Acemoglu, D.; Zilibotti, F. Was Prometheus Unbound by Chance? Risk, Diversification and Growth. J. Polit. Econ. 1997, 105, 709–751. [Google Scholar] [CrossRef]
- Wang, P.F.; Wen, Y. Financial Development and Economic Volatility: A Unified Explanation. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1396720 (accessed on 28 September 2015).
- Hausmann, R.; Gavin, M. Securing Stability and Growth in a Shock—Prone Region: The Policy Challenge for Latin America’. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1815944 (accessed on 30 September 2015).
- Buch, C.M.; Pierdzioch, C. The Integration of Imperfect Financial Markets: Implications for Business Cycle Volatility. J. Policy Model. 2005, 27, 789–804. [Google Scholar] [CrossRef]
- Tharavanij, P. Capital Market and Business Cycle Volatility. Monash University Economics Discussion Paper. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1015182 (accessed on 28 September 2015).
- Wang, X.; Li, L. Financial Development, Economic Volatility and Economic Growth in China. Shanghai Econ. Rev. 2009, 2, 34–43. (In Chinese) [Google Scholar]
- Wahid, J. Financial Development and GDP Volatility in China. Econ. Not. 2010, 39, 27–41. [Google Scholar] [CrossRef]
- Zhu, T.; Qi, X.; Li, L. Financial Development, Exogenous Shock and Economic Volatility. J. Bus. Econ. 2011, 1, 52–59. (In Chinese) [Google Scholar]
- Yao, Y.; Peng, L.; Zeng, X. Financial Development Dampening Macroeconomic Fluctuation in China: Empirical Analysis Based on EGARCH Model. Jianghan Acad. 2013, 6, 5–10. (In Chinese) [Google Scholar]
- Wang, Y.; Zhao, Q. Financial Development and Macroeconomic Volatility. Stud. Int. Financ. 2015, 2, 3–13. (In Chinese) [Google Scholar]
- Mallick, D. Financial Development, Shocks, and Growth Volatility. Macroecon. Dyn. 2014, 18, 651–688. [Google Scholar] [CrossRef]
- Hahn, F.R. Financial Development and Macroeconomic Volatility: Evidence from OECD Countries; WIFO Working Papers No. 198; Austrian Institute of Economic Research: Vienna, Australia, 2003. [Google Scholar]
- Luo, Z.; Du, Y. Banking Development and Macroeconomic Volatility in China: Theory and Empirics. Mod. Econ. Sci. 2009, 1, 65–71. (In Chinese) [Google Scholar]
- Aghion, P.; Bacchetta, P.; Banerjee, A. Financial Development and the Instability of Open Economies. J. Monet. Econ. 2004, 51, 1077–1106. [Google Scholar] [CrossRef]
- Zhao, Z.; Yu, Z.; Liu, M. The Nonlinearity between Credit Market and Macroeconomic Volatility in China: An Empirical Research from the Perspective of Financial Accelerator. Econ. Res. J. 2007, 6, 27–38. (In Chinese) [Google Scholar]
- Yao, Y.; Bao, X. Does the Development of Financial Intermediation smooth Economic volatility? Evidence From China. J. Financ. Econ. 2013, 1, 61–70. (In Chinese) [Google Scholar]
- Raddatz, C. Liquidity Needs and Vulnerability to Financial Under-Development. J. Financ. Econ. 2006, 80, 677–722. [Google Scholar] [CrossRef]
- Yeh, C.C.; Huang, H.C.; Lin, P.C. Financial Structure on Growth and Volatility. Econ. Model. 2013, 35, 391–400. [Google Scholar] [CrossRef]
- Du, T.; Pang, D. The Relativity of the Shock of Finance and the Business Cycle: From Three Aspect. J. Cent. Univ. Financ. Econ. 2006, 10, 38–43. (In Chinese) [Google Scholar]
- Dong, L. An Empirical Study on Financial Development and Volatility of Chinese Economic Growth Rates. Econ. Manag. 2006, 11, 84–87. (In Chinese) [Google Scholar]
- Christiano, L.J.; Fitzgerald, T.J. The Band Pass Filter. Int. Econ. Rev. 2003, 44, 435–465. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
- Huang, L.; Xu, L.; Ran, M. The Financial Development, FDI and Technical Progress: An Threshold Model Analysis Based on the Inter-Province Panel Data in China. J. Ind. Eng. Manag. 2009, 3, 16–22. (In Chinese) [Google Scholar]
- Zhang, J.; Wan, G.H.; Jin, Y. The Financial Deepening-Productivity Nexus in China: 1987–2001. J. Chin. Econ. Bus. Stud. 2007, 5, 37–49. [Google Scholar]
- Levine, R. Bank-Based or Market-Based Financial Systems: Which Is Better? J. Financ. Intermed. 2002, 11, 398–428. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econ. 1998, 87, 115–143. [Google Scholar] [CrossRef]
- Bond, S.; Bowsher, C.; Windmeijer, F. Criterion-based inference for GMM in autoregressive panel data models. Econ. Lett. 2001, 73, 379–388. [Google Scholar] [CrossRef]
- Arellano, M.; Bover, O. Another look at the instrumental variables estimation of error components models. J. Econ. 1995, 68, 29–51. [Google Scholar] [CrossRef]
- Hayashi, F. Econometrics, 1st ed.; Princeton University Press: Princeton, NJ, USA, 2000. [Google Scholar]
- Windmeijer, F.A. Finite Sample Correction for the Variance of Linear Efficient Two-step GMM Estimators. J. Econ. 2005, 126, 25–51. [Google Scholar] [CrossRef]
- Roodman, D. How to do xtabond2: An Introduction to Difference and System GMM in Stata. Stata J. 2009, 9, 86–136. [Google Scholar] [CrossRef]
- Allen, F.; Qian, J.; Qian, M.J. Law, finance, and economic growth in China. J. Financ. Econ. 2005, 77, 57–116. [Google Scholar] [CrossRef]
Variable | Name | Definition |
---|---|---|
lnrpgdp | Natural logarithm of real capital GDP | Ln(real per capital GDP) |
cpi | inflation | Consumer price index |
tlnrpgdp | Trended term of lnrpgdp | See Section 3.1 |
clnrpgdp | Cyclical term of lnrpgdp | See Section 3.1 |
tcpi | Trended term of inflation | See Section 3.1 |
ccpi | Cyclical term of inflation | See Section 3.1 |
open | Trade openness | Total import–export volume/GDP |
gov | Government scale | Local fiscal expenditure/GDP |
human | Human capital | Number of college students/total population |
ggdp | Economic growth | Growth rate of real per capita GDP |
loan | Scale expansion of the financial system | Loan balance of financial institutions/GDP |
nloan | Efficiency improvement of the financial system | Private sector credit/GDP |
trade | Stock market capitalization | Stock market capitalization of listed companies (average at the beginning and end of the stock market capitalization) in provinces, municipalities and autonomous regions/GDP |
lcsm | Market capitalization of tradable shares | Stock market tradable shares capitalization of listed companies (average at the beginning and end of the stock market tradable shares capitalization) in provinces, municipalities, and autonomous regions/GDP |
tcsm | Total market capitalization | Total market capitalization of listed companies (average at the beginning and end of the total market capitalization) in provinces municipalities, and autonomous regions/GDP |
tradenloan | Relative activity | Stock turnover/private sector credit |
lcsmnloan | Scale of the banking system and the stock market tradable shares | Stock market tradable shares capitalization/private sector credit |
tcsmnloan | Scale of the banking system and the total stock market | Total market capitalization/private sector credit |
Variable | Obs | Mean | Std. Dev. | Min. | Max. |
---|---|---|---|---|---|
lnrpgdp | 450 | 9.7249 | 0.703 | 7.9347 | 11.2714 |
cpi | 450 | 2.3975 | 2.1957 | −3.300 | 10.100 |
tlnrgdp | 450 | 0.0180 | 0.0088 | 0.0019 | 0.0612 |
clnrgdp | 450 | 0.0003 | 0.0004 | 0.0000 | 0.0030 |
tcpi | 450 | 0.3134 | 0.3774 | 0.0001 | 1.8049 |
ccpi | 450 | 3.1643 | 2.5596 | 0.1264 | 14.6017 |
open | 450 | 0.3243 | 0.4026 | 0.0357 | 1.7214 |
gov | 450 | 0.1855 | 0.0846 | 0.0691 | 0.6121 |
human | 450 | 0.0138 | 0.0072 | 0.0021 | 0.0356 |
ggdp | 450 | 0.1162 | 0.0246 | 0.0490 | 0.2380 |
loan | 450 | 1.0946 | 0.3577 | 0.5372 | 2.5847 |
nloan | 450 | 0.6713 | 0.2488 | 0.3105 | 1.6827 |
trade | 450 | 0.0032 | 0.0072 | 0.0002 | 0.1327 |
lcsm | 450 | 0.2315 | 0.6162 | 0.0207 | 9.4521 |
tcsm | 450 | 0.4649 | 1.1695 | 0.0576 | 16.8294 |
tradenloan | 450 | 0.0044 | 0.0103 | 0.0003 | 0.2084 |
lcsmnloan | 450 | 0.2999 | 0.7478 | 0.0345 | 14.8373 |
tcsmnloan | 450 | 0.6118 | 1.3848 | 0.0922 | 26.4179 |
Variable | tlnrpgdp1 | clnrpgdp1 | tcpi | ccpi | open | gov | human | ggdp | loan1 | nloan1 | trade1 | lcsm1 | tcsm1 | tradenloan1 | lcsmnloan1 | tcsmnloan1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
tlnrpgdp1 | 1.0000 | |||||||||||||||
clnrpgdp1 | 0.0408 | 1.0000 | ||||||||||||||
tcpi | −0.0797 | −0.1213 | 1.0000 | |||||||||||||
ccpi | 0.2985 | 0.3235 | −0.3353 | 1.0000 | ||||||||||||
open | −0.1972 | −0.1918 | −0.1292 | −0.1098 | 1.0000 | |||||||||||
gov | 0.1200 | 0.3362 | −0.0985 | 0.2540 | −0.3032 | 1.0000 | ||||||||||
human | 0.2034 | −0.0804 | −0.3271 | 0.0848 | 0.4706 | −0.0840 | 1.0000 | |||||||||
ggdp | 0.6732 | 0.0037 | 0.1020 | 0.1245 | −0.0131 | −0.0733 | 0.0836 | 1.0000 | ||||||||
loan1 | −0.2573 | 0.0331 | −0.0178 | −0.0555 | 0.5576 | 0.2288 | 0.3586 | −0.1625 | 1.0000 | |||||||
nloan1 | −0.1652 | −0.1178 | −0.1557 | −0.0295 | 0.6816 | 0.0317 | 0.5671 | −0.1657 | 0.8511 | 1.0000 | ||||||
trade1 | −0.0814 | 0.1000 | −0.1378 | 0.1121 | 0.2285 | 0.1140 | 0.1639 | −0.0616 | 0.2162 | 0.2105 | 1.0000 | |||||
lcsm1 | −0.1777 | 0.0466 | −0.1216 | 0.0652 | 0.3114 | 0.0723 | 0.1958 | −0.1550 | 0.3870 | 0.3687 | 0.8633 | 1.0000 | ||||
tcsm1 | −0.1768 | 0.0838 | −0.0847 | 0.0412 | 0.3855 | 0.0389 | 0.2412 | −0.1272 | 0.4354 | 0.3981 | 0.8651 | 0.8680 | 1.0000 | |||
tradenloan1 | −0.0311 | 0.1122 | −0.1279 | 0.1210 | 0.0989 | 0.1187 | 0.0678 | −0.0199 | 0.0581 | 0.0392 | 0.9726 | 0.7925 | 0.7542 | 1.0000 | ||
lcsmnloan1 | −0.1206 | 0.0834 | −0.1062 | 0.0605 | 0.1621 | 0.0784 | 0.0725 | −0.0905 | 0.1829 | 0.1452 | 0.9528 | 0.9203 | 0.8150 | 0.9517 | 1.0000 | |
tcsmnloan1 | −0.1462 | 0.0935 | −0.0719 | 0.0334 | 0.2192 | 0.0496 | 0.0807 | −0.0851 | 0.2291 | 0.1637 | 0.9590 | 0.8602 | 0.9183 | 0.9299 | 0.9460 | 1.0000 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
tlnrpgdp | tlnrpgdp | clnrpgdp | clnrpgdp | tlnrpgdp | tlnrpgdp | clnrpgdp | clnrpgdp | |
L.tlnrpgdp | 0.899 *** (13.88) | 0.884 *** (17.68) | 0.922 *** (15.58) | 0.874 *** (18.20) | ||||
L.clnrpgdp | 0.472 *** (5.17) | 0.445 *** (9.02) | 0.404 *** (3.61) | 0.403 *** (7.14) | ||||
loan1 | −0.0005 (−0.43) | 0.0005 (0.46) | −0.0005 *** (−3.60) | −0.0003 *** (−2.62) | ||||
loan1tcpi1 | 0.0010 (1.55) | 0.0001 (0.91) | ||||||
loan1ccpi1 | −0.0002 ** (−2.38) | −0.00002 ** (−2.27) | ||||||
nloan1 | 0.0004 (0.17) | 0.0007 (0.42) | −0.0005 ** (−2.38) | −0.0002 (−1.41) | ||||
nloan1tcpi1 | 0.0013 (1.17) | 0.0001 (0.79) | ||||||
nloan1ccpi1 | −0.0002 *** (−2.68) | −0.00004 *** (−3.28) | ||||||
open | −0.0025 (−0.89) | −0.0039 (−1.19) | −0.0002 (−1.21) | 0.0002 (1.05) | −0.0045 * (−1.71) | −0.0036 (−1.19) | −0.0001 (−0.87) | 0.0001 (0.44) |
gov | −0.0059 (−0.75) | −0.0056 (−0.63) | 0.0005 (0.51) | 0.0022 * (1.91) | −0.0084 (−1.14) | −0.0079 (−1.10) | 0.0009 (1.03) | 0.0010 (1.49) |
human | −0.615 *** (−6.07) | −0.602 *** (−7.04) | −0.0109 (−1.17) | −0.0253 *** (−2.78) | −0.608 *** (−5.41) | −0.538 *** (−5.41) | −0.0075 (−0.89) | −0.0129 (−1.58) |
ggdp | 0.0700 *** (3.69) | 0.0692 *** (3.81) | 0.0007 (0.53) | 0.0002 (0.14) | 0.0675 *** (3.42) | 0.0703 *** (4.03) | 0.0009 (0.80) | −0.0006 (−0.57) |
tcpi | −0.0016 ** (−2.56) | −0.0002 * (−1.90) | −0.0014 ** (−2.25) | −0.0002 * (−1.79) | ||||
ccpi | 0.0003 *** (2.64) | 0.0001 *** (6.29) | 0.0002 *** (2.81) | 0.0001 *** (6.66) | ||||
N | 360 | 360 | 360 | 360 | 360 | 360 | 360 | 360 |
Number of groups | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Number of instruments | 340 | 340 | 340 | 340 | 340 | 340 | 340 | 340 |
Wald chi2 | 1622.38 (0.000) | 2185.75 (0.000) | 334.76 (0.000) | 344.38 (0.000) | 1796.19 (0.000) | 2140.18 (0.000) | 240.28 (0.000) | 311.75 (0.000) |
Arellano-Bond test for AR(1) | 1.54 (0.123) | 1.16 (0.248) | −2.29 (0.022) | −2.34 (0.019) | 1.58 (0.114) | 1.31 (0.191) | −2.10 (0.035) | −2.18 (0.030) |
Arellano-Bond test for AR(2) | −1.48 (0.138) | −0.32 (0.746) | −2.28 (0.022) | −1.89 (0.059) | −1.25 (0.211) | −0.56 (0.572) | −2.28 (0.022) | −2.15 (0.032) |
Hansen test of overidentifying restrictions | 27.53 (1.000) | 25.69 (1.000) | 25.01 (1.000) | 23.92 (1.000) | 27.42 (1.000) | 24.76 (1.000) | 25.56 (1.000) | 22.17 (1.000) |
Variable | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
tlnrpgdp | tlnrpgdp | clnrpgdp | clnrpgdp | tlnrpgdp | tlnrpgdp | clnrpgdp | clnrpgdp | tlnrpgdp | tlnrpgdp | clnrpgdp | clnrpgdp | |
L.tlnrpgdp | 0.918 *** (20.76) | 0.859 *** (20.99) | 0.893 *** (18.66) | 0.864 *** (20.85) | 0.881 *** (20.34) | 0.867 *** (21.01) | ||||||
L.clnrpgdp | 0.402 *** (4.78) | 0.410 *** (6.76) | 0.412 *** (4.88) | 0.400 *** (7.14) | 0.412 *** (5.50) | 0.375 *** (6.55) | ||||||
trade1 | 0.0376 (0.44) | 0.0112 (0.13) | 0.0194 (1.56) | 0.0113 (1.13) | ||||||||
trade1tcpi1 | 0.126 (0.65) | 0.0064 (0.23) | ||||||||||
trade1ccpi1 | −0.0164 (−1.25) | −0.0028 (−0.90) | ||||||||||
lcsm1 | −0.0002 (−0.48) | −0.0002 (−0.22) | −0.0001 ** (−2.37) | −0.0002 (−0.81) | ||||||||
lcsm1tcpi1 | 0.0020 (1.38) | 0.0005 (1.09) | ||||||||||
lcsm1ccpi1 | −0.00006 (−0.68) | −0.00002 * (−1.76) | ||||||||||
tcsm1 | −0.0003 (−0.78) | −0.0003 (−0.97) | 0.00001 (0.21) | 0.0001 ** (2.35) | ||||||||
tcsm1tcpi1 | 0.0008 (0.77) | 0.0002 * (1.77) | ||||||||||
tcsm1ccpi1 | −0.00006 ** (−2.05) | −0.00002 *** (−3.62) | ||||||||||
open | −0.0042 * (−1.94) | −0.0029 (−0.84) | −0.0002 * (−1.65) | 0.0001 (0.32) | −0.0036 (−1.60) | −0.0029 (−1.10) | −0.0002 (−1.45) | 0.0004 (1.06) | −0.0032 (−1.35) | −0.0026 (−1.01) | −0.0002 (−1.35) | 0.0002 (0.72) |
gov | −0.0083 (−1.03) | −0.0078 (−1.15) | 0.0002 (0.28) | 0.0004 (0.34) | −0.0089 (−0.89) | −0.0085 (−1.08) | 0.0008 (1.06) | 0.0011 (0.86) | −0.0054 (−0.80) | −0.0074 (−1.00) | 0.0002 (0.25) | 0.0005 (0.91) |
human | −0.580 *** (−9.76) | −0.551 *** (−7.20) | −0.0126 (−1.61) | −0.0158 * (−1.69) | −0.565 *** (−6.24) | −0.555 *** (−5.40) | −0.0143 ** (−2.05) | −0.0229 ** (−2.11) | −0.583 *** (−10.96) | −0.582 *** (−6.09) | −0.00963 (−1.50) | −0.0183 *** (−2.84) |
ggdp | 0.0706 *** (4.05) | 0.0745 *** (4.23) | 0.0019 ** (2.41) | −0.0006 (−0.40) | 0.0727 *** (3.95) | 0.0741 *** (4.22) | 0.0016 ** (1.99) | −0.0015 (−1.28) | 0.0764 *** (4.34) | 0.0722 *** (3.79) | 0.0016 ** (2.00) | −0.0010 (−1.14) |
tcpi | −0.0008 ** (−2.11) | −0.0002 *** (−2.82) | −0.0009 * (−1.89) | −0.0002 *** (−3.04) | −0.0009 ** (−2.09) | −0.0002 *** (−3.14) | ||||||
ccpi | 0.0002 ** (2.10) | 0.0001 *** (5.08) | 0.0002 ** (2.04) | 0.0001 *** (5.62) | 0.0002 ** (2.33) | 0.0001 *** (6.18) | ||||||
N | 360 | 360 | 360 | 360 | 360 | 360 | 360 | 360 | 360 | 360 | 360 | 360 |
Number of groups | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Number of instruments | 340 | 340 | 340 | 340 | 340 | 340 | 340 | 340 | 340 | 340 | 340 | 340 |
Wald chi2 | 2487.71 (0.000) | 1945.13 (0.000) | 441.65 (0.000) | 397.02 (0.000) | 2077.34 (0.000) | 2181.12 (0.000) | 282.97 (0.000) | 380.31 (0.000) | 2711.67 (0.000) | 3155.85 (0.000) | 282.77 (0.000) | 737.42 (0.000) |
Arellano-Bond test for AR(1) | 1.51 (0.130) | 1.24 (0.214) | −2.29 (0.022) | −2.24 (0.025) | 1.31 (0.189) | 1.32 (0.186) | −2.21 (0.027) | −2.24 (0.025) | 1.03 (0.303) | 1.31 (0.190) | −2.32 (0.020) | −2.20 (0.028) |
Arellano-Bond test for AR(2) | −1.28 (0.199) | −0.91 (0.363) | −2.34 (0.019) | −2.07 (0.039) | −1.32 (0.188) | −1.26 (0.207) | −2.32 (0.021) | −2.07 (0.039) | −1.54 (0.123) | −1.22 (0.222) | −2.25 (0.025) | −2.27 (0.023) |
Hansen test of overidentifying restrictions | 26.26 (1.000) | 27.49 (1.000) | 27.12 (1.000) | 27.83 (1.000) | 26.52 (1.000) | 28.46 (1.000) | 25.53 (1.000) | 25.71 (1.000) | 28.26 (1.000) | 28.77 (1.000) | 24.22 (1.000) | 21.34 (1.000) |
Variable | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
tlnrpgdp | tlnrpgdp | clnrpgdp | clnrpgdp | tlnrpgdp | tlnrpgdp | clnrpgdp | clnrpgdp | tlnrpgdp | tlnrpgdp | clnrpgdp | clnrpgdp | |
L.tlnrpgdp | 0.901 *** (17.71) | 0.875 *** (22.67) | 0.885 *** (17.57) | 0.870 *** (21.87) | 0.895 *** (22.92) | 0.871 *** (19.41) | ||||||
L.clnrpgdp | 0.386 *** (5.78) | 0.364 *** (6.41) | 0.444 *** (6.16) | 0.388 *** (6.24) | 0.426 *** (5.65) | 0.370*** (7.23) | ||||||
tradenloan1 | 0.0843 (1.26) | 0.0283 (0.49) | 0.0269 *** (3.23) | 0.0124 ** (1.98) | ||||||||
lcsmnloan1 | –0.0002 (–0.40) | –0.0012 (–1.42) | –0.0001 (–0.45) | –0.0001 (–0.72) | ||||||||
tcsmnloan1 | –0.00001 (–0.07) | –0.0002 (–0.90) | 0.0001 * (1.83) | 0.00007 (1.45) | ||||||||
open | –0.0039 * (–1.77) | –0.0033 (−1.31) | –0.0002 (–1.34) | –0.00005 (–0.25) | –0.0035 (–1.59) | –0.0032 (–1.02) | –0.0002 (–1.32) | 0.0001 (0.31) | –0.0036 (–1.53) | –0.0027 (–1.12) | –0.0002 (–1.56) | 0.0001 (0.47) |
gov | –0.0103 (–1.48) | –0.0115 (–1.56) | –0.00002 (-0.03) | –0.000003 (–0.00) | –0.0072 (–1.15) | –0.0057 (–0.75) | 0.0002 (0.20) | 0.0006 (0.76) | –0.0064 (-0.96) | –0.0079 (–0.97) | 0.0001 (0.17) | 0.0005 (1.07) |
human | –0.576 *** (–9.78) | –0.557 *** (–7.60) | –0.0128 * (–1.76) | –0.0140 * (–1.80) | –0.567 *** (–9.48) | –0.597 *** (–7.47) | –0.00938 (–1.10) | 0.0198 ** (–2.03) | –0.595 *** (–9.63) | –0.583 *** (–6.38) | –0.00705 (–1.19) | –0.0137 * (–1.88) |
ggdp | 0.0708 *** (3.58) | 0.0696 *** (4.26) | 0.0015 * (1.84) | 0.0001 (0.13) | 0.0749 *** (4.25) | 0.0701 *** (3.72) | 0.0017 ** (2.48) | –0.0008 (–0.60) | 0.0756 *** (4.56) | 0.0712 *** (4.07) | 0.0019 ** (2.34) | 0.0004 (0.36) |
tcpi | –0.0006 (–1.53) | –0.0001 ** (–2.10) | –0.0008 * (–1.84) | –0.0002 *** (–2.89) | –0.0008 ** (–2.33) | –0.0001 ** (–2.53) | ||||||
ccpi | 0.0002* (1.69) | 0.00005 *** (3.38) | 0.0002 ** (2.11) | 0.00006 *** (4.08) | 0.0002 ** (1.98) | 0.00005 *** (3.86) | ||||||
N | 360 | 360 | 360 | 360 | 360 | 360 | 360 | 360 | 360 | 360 | 360 | 360 |
Number of groups | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Number of instruments | 330 | 330 | 330 | 330 | 330 | 330 | 330 | 330 | 330 | 330 | 330 | 330 |
Wald chi2 | 1469.45 (0.000) | 2368.14 (0.000) | 362.01 (0.000) | 445.11 (0.000) | 1815.12 (0.000) | 1977.96 (0.000) | 256.86 (0.000) | 207.14 (0.000) | 3608.52 (0.000) | 1752.10 (0.000) | 254.39 (0.000) | 387.77 (0.000) |
Arellano-Bond test for AR(1) | 1.54 (0.125) | 1.65 (0.098) | –2.30 (0.021) | –2.18 (0.029) | 1.24 (0.216) | 1.41 (0.158) | –2.30 (0.022) | –2.21 (0.027) | 1.24 (0.215) | 1.42 (0.156) | –2.40 (0.016) | –2.23 (0.026) |
Arellano-Bond test for AR(2) | –1.21 (0.228) | –1.07 (0.284) | –2.39 (0.017) | –2.19 (0.029) | –1.42 (0.155) | –1.03 (0.303) | –2.18 (0.029) | –1.99 (0.047) | –1.53 (0.126) | –1.28 (0.199) | –2.15 (0.032) | –2.05 (0.040) |
Hansen test of overidentifying restrictions | 28.04 (1.000) | 26.79 (1.000) | 26.77 (1.000) | 25.44 (1.000) | 28.20 (1.000) | 28.60 (1.000) | 28.51 (1.000) | 27.45 (1.000) | 28.13 (1.000) | 28.43 (1.000) | 27.34 (1.000) | 27.33 (1.000) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, F.; Kong, Y. Financial Development, Financial Structure, and Macroeconomic Volatility: Evidence from China. Sustainability 2016, 8, 1116. https://doi.org/10.3390/su8111116
Wei F, Kong Y. Financial Development, Financial Structure, and Macroeconomic Volatility: Evidence from China. Sustainability. 2016; 8(11):1116. https://doi.org/10.3390/su8111116
Chicago/Turabian StyleWei, Feng, and Yu Kong. 2016. "Financial Development, Financial Structure, and Macroeconomic Volatility: Evidence from China" Sustainability 8, no. 11: 1116. https://doi.org/10.3390/su8111116
APA StyleWei, F., & Kong, Y. (2016). Financial Development, Financial Structure, and Macroeconomic Volatility: Evidence from China. Sustainability, 8(11), 1116. https://doi.org/10.3390/su8111116