The Effects of Locational Factors on the Performance of Innovation Networks in the German Energy Sector
Abstract
:1. Introduction
2. Theoretical Background and Research Hypotheses
2.1. Collaborative Energy Innovation Projects within the Regional Concept
2.2. Locational Factors Fostering Collaborative Energy Innovation Projects
2.2.1. Skilled Labour
2.2.2. Demand Conditions
2.2.3. Competitive Environment
2.2.4. Related and Supporting Industries
2.2.5. Political Support (Government)
3. Data and Measurement
3.1. Database and Sample Characteristics
3.2. Operationalization and Measure Validation
3.2.1. Locational Factors
3.2.2. Performance
3.2.3. Assessing the Measures
4. Results and Discussion
4.1. Results
4.2. Discussion
5. Conclusions and Implications
Appendix A
Appendix A.1. Item List (Translated from German)
Appendix A.1.1. Skilled Labour
- (1)
- ... enough personnel for research and development available.
- (2)
- ... enough university and applied science university graduates available.
- (3)
- ... enough other professionals, such as technicians, available.
- (4)
- ... enough universities with relevant fields of study available.
- (5)
- ... enough research institutes with relevant research priorities available.
Appendix A.1.2. Demand Conditions
- (1)
- ... are there in sufficient numbers (dropped).
- (2)
- ... are there with sufficient financial strength.
- (3)
- ... are very demanding.
- (4)
- ... are very open towards new products and processes.
- (5)
- ... are often trend leaders (lead users, innovators).
Appendix A.1.3. Competitive Environment
- (1)
- ... are there in large numbers.
- (2)
- ... are similarly high-performing.
- (3)
- ... are similarly innovative.
- (4)
- ... are similar in size.
Appendix A.1.4. Related and Supporting Industries
- (1)
- ... many service providers (maintenance, construction, IT services, etc.) available.
- (2)
- ... many suppliers available.
- (3)
- ... many companies that have access to similar technologies available.
- (4)
- ... many companies that are similarly innovative and technology oriented available.
Appendix A.1.5. Political Support (R&D Subsidies)
- (1)
- ... regional economic promotion (regional R&D subsidies).
- (2)
- ... local politics (regional R&D subsidies).
- (3)
- ... suitable R&D funding programmes of the German federal states (regional R&D subsidies).
- (4)
- ... suitable R&D funding programmes of the German government (national R&D subsidies).
- (5)
- ... suitable R&D funding programmes of the European Union (EU R&D subsidies).
Appendix A.1.6. Collaborative Project Performance
- (1)
- ... has greatly increased the reputation in the industry for all partners (effectiveness).
- (2)
- ... provides all partners with a competitive advantage (effectiveness).
- (3)
- ... is of excellent (technical) quality (effectiveness).
- (4)
- ... fills all partners with pride concerning the results so far (effectiveness).
- (5)
- ... meets pre-established goals (effectiveness).
References
- Gerstlberger, W. Regional Innovation Systems and Sustainability—Selected Examples of International Discussion. Technovation 2004, 24, 749–758. [Google Scholar] [CrossRef]
- Von Malmborg, F. Stimulating Learning and Innovation in Networks for Regional Sustainable Development: The Role of Local Authorities. J. Clean. Prod. 2007, 15, 1730–1741. [Google Scholar] [CrossRef]
- Schwerdtner, W.; Siebert, R.; Busse, M.; Freisinger, U.B. Regional Open Innovation Roadmapping: A New Framework for Innovation-Based Regional Development. Sustainability 2015, 7, 2301–2321. [Google Scholar] [CrossRef]
- Cooke, M.; Uranga, G.; Etxebarria, G. Regional Systems of Innovation: An Evolutionary Perspective. Environ. Plan. A 1998, 30, 1563–1584. [Google Scholar] [CrossRef]
- Doloreux, D. What we should Know about Regional Systems of Innovation. Technol. Soc. 2002, 24, 243–263. [Google Scholar] [CrossRef]
- Porter, M.E. Locations, clusters and company strategy. In The Oxford Handbook of Economic Geography; Clark, G.L., Feldman, M.P., Gertler, M.S., Eds.; Oxford University Press: Oxford, UK, 2000; pp. 253–274. [Google Scholar]
- Asheim, B.T.; Isaksen, A. Location, Agglomeration and Innovation: Towards Regional Innovation Systems in Norway? Eur. Plan. Stud. 1997, 5, 299–330. [Google Scholar] [CrossRef]
- Halbert, L. Collaborative and Collective: Reflexive Co-ordination and the Dynamics of Open Innovation in the Digital Industry Clusters of the Paris Region. Urban Stud. 2012, 49, 2357–2376. [Google Scholar] [CrossRef]
- Asheim, B.T.; Coenen, L. Knowledge Bases and Regional Innovation Systems: Comparing Nordic Clusters. Res. Policy 2005, 34, 1173–1190. [Google Scholar] [CrossRef]
- Chesbrough, H. Open Innovation: The New Imperative for Creating and Profiting from Technology; Harvard Business School Press: Boston, MA, USA, 2003. [Google Scholar]
- Gassmann, O.; Enkel, E. Towards a Theory of Open Innovation: Three Core Process Archetypes. In Proceedings of the R&D Management Conference, Lisbon, Portugal, 6–9 July 2004; pp. 1–18.
- Enkel, E.; Gassmann, O.; Chesbrough, H. Open R&D and Open Innovation: Exploring the Phenomenon. R&D Manag. 2009, 39, 311–316. [Google Scholar]
- Bathelt, H.; Henn, S. The Geographies of Knowledge Transfers over Distance: Toward a Typology. Environ. Plan. A 2014, 46, 1403–1424. [Google Scholar] [CrossRef]
- Grabher, G.; Ibert, O. Distance as Asset? Knowledge Collaboration in Hybrid Virtual Communities. J. Econ. Geogr. 2013, 14, 97–123. [Google Scholar] [CrossRef]
- Müller, F.C.; Brinks, V.; Ibert, O.; Schmidt, S. Open Region: Leitbild für Eine Regionale Innovationspolitik; Working Paper; Leibnitz-Institut für Regionalentwicklung und Strukturplanung: Erkner, Germany, 2015; Available online: http://www.irs-net.de/download/wp_open-region.pdf (accessed on 18 August 2016). (In German)
- Porter, M.E. Clusters and the New Economics of Competition. Harv. Bus. Rev. 1998, 76, 77–90. [Google Scholar] [PubMed]
- Isaksen, A.; Onsager, K. Regions, Networks and Innovative Performance: The Case of Knowledge-intensive Industries in Norway. Eur. Urban Reg. Stud. 2010, 17, 227–243. [Google Scholar] [CrossRef]
- Asheim, B.T.; Boschma, R.; Cooke, P. Constructing Regional Advantage: Platform Policies Based on Related Variety and Differentiated Knowledge Bases. Reg. Stud. 2011, 45, 893–904. [Google Scholar] [CrossRef]
- Knoben, J. Localized Inter-organizational Linkages, Agglomeration Effects, and the Innovative Performance of Firms. Ann. Reg. Sci. 2009, 43, 757–779. [Google Scholar] [CrossRef] [Green Version]
- Baptista, R.; Swann, P. Do Firms in Clusters Innovate More? Res. Policy 1998, 27, 525–540. [Google Scholar] [CrossRef]
- Geroski, P.A. Innovation, Technological Opportunity, and Market Structure. Oxf. Econ. Pap. 1990, 42, 586–602. [Google Scholar]
- Smith, A.; Voß, J.P.; Grin, J. Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges. Res. Policy 2010, 39, 435–448. [Google Scholar] [CrossRef]
- Markard, J.; Raven, R.; Truffer, B. Sustainability Transitions: An Emerging Field of Research and its Prospects. Res. Policy 2012, 41, 955–967. [Google Scholar] [CrossRef]
- Coenen, L.; Truffer, B. Places and Spaces of Sustainability Transitions: Geographical Contributions to an Emerging Research and Policy Field. Eur. Plan. Stud. 2012, 20, 367–374. [Google Scholar] [CrossRef]
- Patanakul, P.; Pinto, J. Examining the Roles of Government Policy on Innovation. J. High Technol. Manag. Res. 2014, 25, 97–107. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of Renewable Energy Sources in Environmental Protection: A Review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Csereklyei, Z. Measuring the Impact of Nuclear Accidents on Energy Policy. Ecol. Econ. 2014, 99, 121–129. [Google Scholar] [CrossRef]
- Manzano-Agugliaro, F.; Alcayde, A.; Montoya, F.G.; Zapata-Sierra, A.; Gil, C. Scientific Production of Renewable Energies Worldwide: An Overview. Renew. Sustain. Energy Rev. 2013, 18, 134–143. [Google Scholar] [CrossRef]
- Pegels, A.; Lütkenhorst, W. Is Germany’s Energy Transition a Case of Successful Green Industrial Policy? Contrasting Wind and Solar PV. Energy Policy 2014, 74, 522–534. [Google Scholar] [CrossRef]
- Buchan, D. The Energiewende—Germany’s Gamble. The Oxford Institute for Energy Studies SP 26. Available online: https://www.oxfordenergy.org/wpcms/wp-content/uploads/2012/06/SP-261.pdf (accessed on 18 August 2016).
- BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit). Erneuerbare Energien in Zahlen—Nationale und internationale Entwicklung (status July 2012). Available online: http://www.iee.uni-rostock.de/uploads/media/broschuere_ee_zahlen_bf.pdf (accessed on 18 August 2016). (In German)
- Ohlhorst, D. Germany’s Energy Transition Policy between National Targets and Decentralized Responsibilities. J. Integr. Environ. Sci. 2015, 12, 303–322. [Google Scholar] [CrossRef]
- Diekmann, J.; Schill, W.P.; Vogel-Sperl, A.; Püttner, A.; Schmidt, J.; Kirrmann, S. Vergleich der Bundesländer: Analyse der Erfolgsfaktoren für den Ausbau der Erneuerbaren Energien 2014; Indikatoren und Ranking; Deutsches Institut für Wirtschaftsforschung: Berlin, Germany, 2014; Available online: https://www.zsw-bw.de/uploads/media/Bundeslaendervergleich_2014.pdf (accessed on 18 August 2016). (In German)
- Porter, M.E. The Competitive Advantage of Nations. Harv. Bus. Rev. 1990, 68, 73–93. [Google Scholar]
- Ganesan, S.; Malter, A.J.; Rindfleisch, A. Does Distance Still Matter? Geographic Proximity and New Product Development. J. Mark. 2005, 69, 44–60. [Google Scholar] [CrossRef]
- Jacobsson, S.; Bergek, A. Transforming Energy Sector: The Evolution of Technological Systems in Renewable Energy Technology. Ind. Corp. Chang. 2004, 13, 815–849. [Google Scholar] [CrossRef]
- Carlsson, B.; Stankiewicz, R. On the Nature, Function and Composition of Technological Systems. J. Evol. Econ. 1991, 1, 93–118. [Google Scholar] [CrossRef]
- Sherwood, A.L.; Covin, J.G. Knowledge Acquisition in University-Industry Alliances: An Empirical Investigation from a Learning Theory Perspective. J. Prod. Innov. Manag. 2008, 25, 162–179. [Google Scholar] [CrossRef]
- Letaifa, S.B.; Rabeau, Y. Too close to collaborate? How geographic proximity could impede entrepreneurship and innovation. J. Bus. Res. 2013, 66, 2071–2078. [Google Scholar] [CrossRef]
- Porter, M.E. The Competitive Advantage of Nations, 2nd ed.; McMillan: London, UK, 1998. [Google Scholar]
- Porter, M.E.; Stern, S. Innovation: Locations Matters. Sloan Manag. Rev. 2001, 42, 28–36. [Google Scholar]
- Chen, Y.G.; Hsieh, P.-F. A Service-based View of Porter's Model of Competitive Advantage. Int. J. Manag. 2008, 25, 38–53. [Google Scholar]
- Jaffe, A.B.; Trajtenberg, M.; Henderson, R. Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations. Q. J. Econ. 1993, 108, 577–598. [Google Scholar] [CrossRef]
- Bönte, W. Innovation and Employment Growth in Industrial Clusters: Evidence from Aeronautical Firms in Germany. Int. J. Econ. Bus. 2004, 11, 259–278. [Google Scholar] [CrossRef]
- Audretsch, D.B.; Lehmann, E.E.; Warning, S. University Spillovers: Does the Kind of Science Matter? Ind. Innov. 2004, 11, 193–205. [Google Scholar] [CrossRef]
- Ponds, R.; Oort, F.; van Frenken, K. Innovation, Spillovers and University–Industry Collaboration: An Extended Knowledge Production Function Approach. J. Econ. Geogr. 2010, 10, 231–255. [Google Scholar] [CrossRef]
- Ellison, G.; Glaeser, E.L. The Geographic Concentration of Industry: Does Natural Advantage Explain Agglomeration? Am. Econ. Rev. 1999, 89, 311–316. [Google Scholar] [CrossRef]
- Minerva, G.A. Natural Advantage Effect, Location and Trade Patterns in Increasing Returns to Scale Industries. Rev. Urban Reg. Dev. Stud. 2007, 19, 21–48. [Google Scholar] [CrossRef]
- Lejpras, A.; Stephan, A. Locational Conditions, Cooperation, and Innovativeness: Evidence from Research and Company Spin-offs. Ann. Reg. Sci. 2011, 46, 543–575. [Google Scholar] [CrossRef]
- Lejpras, A.; Eickelpasch, A.; Stephan, A. Locational and Internal Sources of Firm Competitive Advantage: Applying Porter’s Diamond Model at the Firm Level. J. Strateg. Manag. Educ. 2011, 7, 1–25. [Google Scholar]
- Audretsch, D.B.; Feldman, M.P. R&D Spillovers and the Geography of Innovation and Production. Am. Econ. Rev. 1996, 86, 630–640. [Google Scholar]
- Beise, M.; Stahl, H. Public Research and Industrial Innovations in Germany. Res. Policy 1999, 28, 397–422. [Google Scholar] [CrossRef]
- Audretsch, D.B.; Stephan, P.E. Company-Scientist Locational Links: The Case of Biotechnology. Am. Econ. Rev. 1996, 86, 641–652. [Google Scholar]
- Anselin, L.; Varga, A.; Acs, Z.J. Local Geographic Spillovers Between University Research and High Technology Innovations. J. Urban Econ. 1997, 42, 422–448. [Google Scholar] [CrossRef]
- Un, C.A.; Cuervo-Cazurra, A.; Asakawa, K. R&D Collaborations and Product Innovation. J. Prod. Innov. Manag. 2010, 27, 673–689. [Google Scholar]
- Victor, P.A. Indicators of Sustainable Development: Some Lessons from Capital Theory. Ecol. Econ. 1991, 4, 191–213. [Google Scholar] [CrossRef]
- Brenner, T.; Mühlig, A. Factors and Mechanisms Causing the Emergence of Local Industrial Clusters: A Summary of 159 Cases. Reg. Stud. 2013, 47, 480–507. [Google Scholar] [CrossRef]
- Tellis, G.J.; Prabhu, J.C.; Chandy, R.K. Radical Innovation across Nations: The Preeminence of Corporate Culture. J. Mark. 2009, 73, 3–23. [Google Scholar] [CrossRef]
- Bar-El, R.; Felsenstein, D. Technological Profile and Industrial Structure: Implications for the Development of Sophisticated Industry in Peripheral Areas. Reg. Stud. 1989, 23, 253–266. [Google Scholar] [CrossRef]
- Malecki, E.J.; Bradbury, S.L. R&D Facilities and Professional Labour: Labour Force Dynamics in High Technology. Reg. Stud. 1992, 26, 123–136. [Google Scholar]
- Blasio, G.D.; Addario, S.D. Do Workers Benefit from Industrial Agglomeration? J. Reg. Sci. 2005, 45, 797–827. [Google Scholar] [CrossRef]
- Whittington, K.B.; Owen-Smith, J.; Powell, W.W. Networks, Propinquity, and Innovation in Knowledge-intensive Industries. Adm. Sci. Q. 2009, 54, 90–122. [Google Scholar] [CrossRef]
- Evanschitzky, H.; Eisend, M.; Calantone, R.J.; Jiang, Y. Success Factors of Product Innovation: An Updated Meta-analysis. J. Prod. Innov. Manag. 2012, 29, 21–37. [Google Scholar] [CrossRef]
- Jacobsson, S.; Lauber, V. The Politics and Policy of Energy System Transformation—Explaining the German Diffusion of Renewable Energy Technology. Energy Policy 2006, 34, 256–276. [Google Scholar] [CrossRef]
- Fabrizio, K.R.; Thomas, L.G. The Impact of Local Demand on Innovation in a Global Industry. Strateg. Manag. J. 2012, 33, 42–64. [Google Scholar] [CrossRef]
- Lüthje, C.; Herstatt, C.; von Hippel, E. User-innovators and “Local” Information: The Case of Mountain Biking. Res. Policy 2005, 34, 951–965. [Google Scholar] [CrossRef]
- Justman, M. The Effect of Local Demand on Industry Location. Rev. Econ. Stat. 1994, 76, 742–753. [Google Scholar] [CrossRef]
- Kim, Y.; Song, K.; Lee, J. Determinants of Technological Innovation in the Small Firms of Korea. R&D Manag. 1993, 23, 215–226. [Google Scholar]
- Huang, K.-F. Technology Competencies in Competitive Environment. J. Bus. Res. 2011, 64, 172–179. [Google Scholar] [CrossRef]
- Toke, D.; Lauber, V. Anglo-Saxon and German Approaches to Neoliberalism and Environmental Policy: The Case of Financing Renewable Energy. Geoforum 2007, 38, 677–687. [Google Scholar] [CrossRef]
- Rexhäuser, S.; Rammer, C. Environmental Innovations and Firm Profitability: Unmasking the Porter Hypothesis. Environ. Resour. Econ. 2014, 57, 145–167. [Google Scholar] [CrossRef]
- Lutz, E.; Bender, M.; Achleitner, A.-K.; Kaserer, C. Importance of Spatial Proximity between Venture Capital Investors and Investees in Germany. J. Bus. Res. 2013, 66, 2346–2354. [Google Scholar] [CrossRef]
- Dögl, C.; Holtbrügge, D.; Schuster, T. Competitive Advantage of German Renewable Energy Firms in India and China: An Empirical Study Based on Porter's Diamond. Int. J. Emerg. Mark. 2012, 7, 191–214. [Google Scholar] [CrossRef]
- Boasson, V.; MacPherson, A. The Role of Geographic Location in the Financial and Innovation Performance of Publicly Traded Pharmaceutical Companies: Empirical Evidence from the United States. Environ. Plan. A 2001, 33, 1431–1444. [Google Scholar] [CrossRef]
- Nemet, G. Demand-pull, Technology-push, and Government-led Incentives for Non-incremental Technical Change. Res. Policy 2009, 38, 700–709. [Google Scholar] [CrossRef]
- Oltra, V.; Saint Jean, M. Sectoral Systems of Environmental Innovation: An Application to the French Automotive Industry. Technol. Forecast. Soc. Chang. 2009, 76, 567–583. [Google Scholar] [CrossRef]
- Rese, A.; Kutschke, A.; Baier, D. Analyzing the Relative Influence of Supply Side, Demand Side and Regulatory Factors on the Success of Collaborative Energy Innovation Projects. Int. J. Innov. Manag. 2016, 20, 1650029. [Google Scholar] [CrossRef]
- Peters, M.; Schneider, M.; Griesshaber, T.; Hoffmann, V. The Impact of Technology-push and Demand-pull Policies on Technical Change—Does the Locus of policies matter? Res. Policy 2012, 41, 1296–1308. [Google Scholar] [CrossRef]
- Wüstenhagen, R.; Menichetti, E. Strategic Choices for Renewable Energy Investment: Conceptual Framework and Opportunities for Further Research. Energy Policy 2012, 40, 1–10. [Google Scholar] [CrossRef]
- Horbach, J. Determinants of Environmental Innovation—New Evidence from German Panel Data Sources. Res. Policy 2008, 37, 163–173. [Google Scholar] [CrossRef]
- Porter, M.E.; van der Linde, C. Toward a New Conception of the Environment-Competitiveness Relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Frondel, M.; Horbach, J.; Rennings, K. What Triggers Environmental Management and Innovation? Empirical Evidence for Germany. Res. Policy 2008, 66, 153–160. [Google Scholar] [CrossRef]
- Kesidou, E.; Demirel, P. On the Drivers of Eco-Innovations: Empirical Evidence from the UK. Res. Policy 2012, 41, 862–870. [Google Scholar] [CrossRef]
- Del Río, P.; Peñasco, C.; Romero-Jordán, D. Distinct Features of Environmental Innovators: An Econometric Analysis. Bus. Strategy Environ. 2015, 24, 361–385. [Google Scholar] [CrossRef]
- Rese, A.; Baier, D. Success Factors for Innovation Management in Networks of Small and Medium Enterprises. R&D Manag. 2011, 41, 138–155. [Google Scholar]
- Rese, A.; Gemünden, H.-G.; Baier, D. “Too Many Cooks Spoil the Broth”: Key Persons and Their Roles in Inter-organizational Innovations. Creat. Innov. Manag. 2013, 22, 390–407. [Google Scholar] [CrossRef]
- Kutschke, A.; Rese, A.; Baier, D. Kristallisationspunkte in Clustern: Universitäten als Ausgangspunkte von Netzwerken im Bereich innovativer Energietechnologien. In Wertschöpfungskompetenz und Unternehmertum; Pechlaner, H., Doepfer, B.C., Eds.; Springer-Gabler: Wiesbaden, Germany, 2014; pp. 145–163. (In German) [Google Scholar]
- Armstrong, J.S.; Overton, T.S. Estimating Nonresponse Bias in Mail Surveys. J. Mark. Res. 1977, 14, 396–402. [Google Scholar] [CrossRef]
- Kutschke, A. Erfolgsfaktoren Innovativer Energietechnologien—Eine Produkt-, Kooperations-und Standortbezogene Betrachtung; Kovac: Hamburg, Germany, 2015. (In German) [Google Scholar]
- Hemmert, M. The Influence of Institutional Factors on the Technology Acquisition Performance of High-tech Firms: Survey Results from Germany and Japan. Res. Policy 2004, 33, 1019–1039. [Google Scholar] [CrossRef]
- Lai, H.C.; Shyu, J.Z. A Comparison of Innovation Capacity at Science Parks across the Taiwan Strait: The Case of Zhangjiang High-Tech Park and Hsinchu Science-based Industrial Park. Technovation 2005, 25, 805–813. [Google Scholar] [CrossRef]
- Dess, G.G.; Robinson, R.B. Measuring Organizational Performance in the Absence of Objective Measures: The Case of the Privately-held Firm and Conglomerate Business Unit. Strateg. Manag. J. 1984, 5, 265–273. [Google Scholar] [CrossRef]
- Leiponen, A.; Helfat, C.E. Innovation Objectives, Knowledge Sources, and the Benefits of Breadth. Strateg. Manag. J. 2010, 31, 224–236. [Google Scholar] [CrossRef]
- Blindenbach-Driessen, F.; van Dalen, J.; van Den Ende, J. Subjective Performance Assessment of Innovation Projects. J. Prod. Innov. Manag. 2010, 27, 572–592. [Google Scholar] [CrossRef]
- Hoegl, M.; Gemuenden, H.G. Teamwork Quality and the Success of Innovative Projects: A Theoretical Concept and Empirical Evidence. Organ. Sci. 2001, 12, 435–449. [Google Scholar] [CrossRef]
- Hultink, E.J.; Robben, H.S. Measuring New Product Success: The Difference that Time Perspective Makes. J. Prod. Innov. Manag. 1995, 12, 392–405. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory, 2nd ed. McGraw Hill: New York, NY, USA, 1978.
- Fornell, C.; Larcker, D. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Bagozzi, R.; Yi, Y. On the Evaluation of Structural Equation Models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Jöreskog, K.D.; Sörbom, D. Recent Developments in Structural Equation Modeling. J. Mark. Res. 1982, 19, 404–416. [Google Scholar] [CrossRef]
- Rehfeld, K.-M.; Rennings, K.; Ziegler, A. Integrated Product Policy and Environmental Product Innovations: An Empirical Analysis. Ecol. Econ. 2007, 61, 91–100. [Google Scholar] [CrossRef]
- Wu, J. Technological Collaboration in Product Innovation: The Role of Market Competition and Sectoral Technological Intensity. Res. Policy 2012, 41, 489–496. [Google Scholar] [CrossRef]
- Das, T.K.; Teng, B.-S. Instabilities of Strategic Alliances: An Internal Tensions Perspective. Organ. Sci. 2000, 11, 77–101. [Google Scholar] [CrossRef]
- Cuerva, M.C.; Triguero-Cano, Á.; Córcoles, D. Drivers of Green and Non-green Innovation: Empirical Evidence in Low-Tech SMEs. J. Clean. Prod. 2014, 68, 104–113. [Google Scholar] [CrossRef]
- Hashi, I.; Stojčić, N. The Impact of Innovation Activities on Firm Performance Using a Multi-stage Model: Evidence from the Community Innovation Survey 4. Res. Policy 2013, 42, 353–366. [Google Scholar] [CrossRef]
- REN21. Renewables 2012—Global Status Report. Available online: http://www.ren21.net/Portals/0/documents/Resources/GSR2012_low%20res_FINAL.pdf (accessed on 18 August 2016).
- Van Looy, B.; Debackere, K.; Andries, P. Policies to Stimulate Regional Innovation Capabilities via University-Industry Collaboration: An Analysis and an Assessment. R&D Manag. 2003, 33, 209–229. [Google Scholar]
- Klarmann, M. Methodische Problemfelder der Erfolgsfaktorenforschung: Bestandsaufnahme und Empirische Analysen; Gabler: Wiesbaden, Germany, 2008. (In German) [Google Scholar]
- Fichter, K.; Beucker, S. (Eds.) Teamworking of Key Persons—A Success Factor in Radical Innovation; Springer: Berlin/Heidelberg, Germany, 2012.
Type of Innovation 1 | |||
System | Process | Product | Service |
34.7 (n =46) | 29.0 (n =38) | 25.8 (n =32) | 10.5 (n =14) |
Energy Field 2 | |||
Energy conversion | Energy storage | Energy distribution | Others |
82.8 (n = 106) | 33.6 (n = 43) | 17.2 (n = 22) | 18.0 (n = 23) |
Energy Conversion 2 | |||
Wind energy | Bioenergy | Solar energy | Fuel cell |
13.3 (n = 17) | 22.7 (n = 29) | 30.5 (n = 39) | 5.5 (n = 7) |
Geothermal energy | Hydro power | Conventional power plant | |
10.2 (n = 13) | 4.7 (n = 6) | 14.8 (n = 19) | |
Energy Storage 2 | |||
Thermal | Chemical | Electric | Mechanic |
46.5 (n = 23) | 39.5 (n = 17) | 14.0 (n = 6) | 9.3 (n = 4) |
Stage of the Innovation Project * | |||
Building a business case | Development stage | Testing & validating | Launch |
17.3 (n = 22) | 36.2 (n = 46) | 28.3 (n = 36) | 18.1 (n = 23) |
Factor | Number of Items (Initial) | Mean (std.) | Cronbach’s α | Explained Variance | AVE | Composite Reliability |
---|---|---|---|---|---|---|
Skilled labour | 5 | 5.06 (1.33) | 0.897 | 70.98% | 0.640 | 0.898 |
Demand conditions | 4 (5) | 4.35 (1.33) | 0.868 | 65.99% | 0.548 | 0.828 |
Competitive environment | 4 | 3.06 (1.58) | 0.911 | 79.32% | 0.735 | 0.916 |
Related and supporting industries | 4 | 4.41 (1.56) | 0.926 | 81.87% | 0.763 | 0.928 |
Political support (R&D subsidies) | 3 (5) | 3.48 (1.76) | 0.851 | 77.34% | 0.660 | 0.853 |
Performance (effectiveness) | 5 | 5.69 (0.96) | 0.882 | 68.29% | 0.602 | 0.883 |
Locational Factor | Project Performance (Effectiveness) | |
---|---|---|
Regression Coefficients | VIF | |
Skilled labour | 0.283 ** | 1.346 |
Demand conditions | 0.193 * | 1.306 |
Competitive environment | −0.306 ** | 1.262 |
Related and supporting sectors | −0.143 | 1.436 |
Regional political support | 0.119 | 1.142 |
Condition index | 13.340 | |
R2 (adjusted R2) | 0.176 (0.142) | |
F | 5.195 *** |
Factor | Group A Local/Regional (n = 33) | Group B National/International (n = 94) | T-Value |
---|---|---|---|
Mean (Stand. Deviation) | |||
Skilled labour | 5.34 (1.16) | 4.95 (1.39) | 1.440 |
Demand conditions | 4.52 (0.99) | 4.28 (1.44) | 1.038 |
Competitive environment | 3.58 (1.19) | 2.85 (1.66) | 2.724 * |
Related and supporting industries | 4.76 (1.56) | 4.29 (1.56) | 1.487 |
Regional R&D subsidies | 4.12 (1.41) | 3.29 (1.82) | 2.705 * |
National R&D subsidies | 4.94 (1.58) | 5.17 (2.00) | −0.599 |
EU R&D subsidies | 3.85 (1.73) | 3.56 (2.07) | 0.770 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutschke, A.; Rese, A.; Baier, D. The Effects of Locational Factors on the Performance of Innovation Networks in the German Energy Sector. Sustainability 2016, 8, 1281. https://doi.org/10.3390/su8121281
Kutschke A, Rese A, Baier D. The Effects of Locational Factors on the Performance of Innovation Networks in the German Energy Sector. Sustainability. 2016; 8(12):1281. https://doi.org/10.3390/su8121281
Chicago/Turabian StyleKutschke, Anke, Alexandra Rese, and Daniel Baier. 2016. "The Effects of Locational Factors on the Performance of Innovation Networks in the German Energy Sector" Sustainability 8, no. 12: 1281. https://doi.org/10.3390/su8121281
APA StyleKutschke, A., Rese, A., & Baier, D. (2016). The Effects of Locational Factors on the Performance of Innovation Networks in the German Energy Sector. Sustainability, 8(12), 1281. https://doi.org/10.3390/su8121281