Nutrient Status in Composts and Changes in Radioactive Cesium Following the Fukushima Daiichi Nuclear Power Plant Accident
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compost Materials and Procedure
2.2. Evaluation of Compost Amendment on Soil Properties and Crop Growth
2.3. Measurements of Physical and Chemical Properties
2.4. Statistical Analysis
3. Results
3.1. Composting from Raw Materials with the Addition of Sub-Materials
3.1.1. Variation in Radioactive Cs Concentration
3.1.2. Changes in pH, EC and CEC
3.1.3. Changes in TOC, TN and C/N Ratio
3.1.4. Changes in Nutrient Content
3.2. Changes in Soil Properties through Compost and Compost-Raw Material Amendment
3.3. Influence of Compost Amendment on Crop Growth
4. Discussion
4.1. Influence of Sub-Materials on Radiocesium Levels and Chemical Properties of Bamboo and Woody Composts
4.2. Changes in Soil Properties through Compost Amendment
4.3. Compost Amendment Influence in Crop Growth
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; John Wiley & Sons: San Francisco, CA, USA, 1994. [Google Scholar]
- Reeves, D.W. The list of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res. 1997, 43, 131–167. [Google Scholar] [CrossRef]
- Oades, J.M. Soil organic matter and structural stability: Mechanisms and implications for management. Plant Soil 1984, 76, 319–337. [Google Scholar] [CrossRef]
- Etana, A.; Hakansson, I.; Swain, E.; Bucas, S. Effects of tillage depth on organic coal content and physical properties in five Swedish soils. Soil Tillage Res. 1999, 52, 129–139. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Palm, C.A.; Szott, L.T.; Cuevas, E.; Lal, R. Organic input management in tropical agroecosystems. Dyn. Soil Org. Matter Trop. Ecosyst. 1989, 25, 152. [Google Scholar]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Giusquiani, P.L.; Patumi, M.; Businelli, M. Chemical composition of fresh and composted urban waste. Plant Soil 1989, 116, 278–282. [Google Scholar] [CrossRef]
- Garcia, C.; Herna’ndez, T.; Costa, F. The influence of composting on the fertilizing value of aerobic sewage sludge. Plant Soil 1991, 139, 269–272. [Google Scholar] [CrossRef]
- Whalen, J.K.; Hu, Q.; Liu, A. Compost applications increase water-stable aggregates in conventional and no-tillage systems. Soil Sci. Soc. Am. J. 2003, 67, 1842–1847. [Google Scholar] [CrossRef]
- Larney, F.J.; Olson, A.F.; Miller, J.J.; DeMaere, P.R.; Zvomuya, F.; McAllister, T.A. Physical and chemical changes during composting of wood chip–bedded and straw-bedded beef cattle feedlot manure. J. Environ. Qual. 2008, 37, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Wagh, S.P.; Gangurde, S.V. Effect of Cow-Dung Slurry and Trichoderma spp. on Quality and Decomposition of Teak and Bamboo Leaf Compost. Res. J. Agric. For. Sci. 2015, 3, 1–4. [Google Scholar]
- Hashimoto, S.; Matsuura, T.; Nanko, K.; Linkov, I.; Shaw, G.; Kaneko, S. Predicted spatio-temporal dynamics of radiocesium deposited onto forests following the Fukushima nuclear accident. Sci. Rep. 2014. [Google Scholar] [CrossRef] [PubMed]
- Airborne Monitoring Results on 28 December 2012; The “Extension Site of Distribution Map of Radiation Dose, etc., /Digital Japan” as the Source of the Map. Available online: http://ramap.jmc.or.jp/map/eng/ (accessed on 26 October 2015).
- Cooper, J.A. Factors determining the ultimate detection sensitivity of Ge (Li) gamma-ray spectrometers. Nucl. Instrum. Methods 1970, 82, 273–277. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare. Japan Manual of Radioactivity Measurement for Food in Emergencies. Available online: http://www.mhlw.go.jp/stf/houdou/2r9852000001558eimg/2r98520000015cfn.pdf (accessed on 26 October 2015). (In Japanese)
- USCC (United States Composting Council); Thompson, W.H.; Millner, P.D.; Watson, M.E.; Leege, P.B. (Eds.) Test Methods for the Examination of Composting and Compost (TMECC); US Composting Council: Holbrook, NY, USA, 2002.
- Yamaki, A. A rapid UV absorption method for determination of nitrate in soil extracts. Jpn. J. Soil Sci. Plant Nutr. 2003, 74, 195–197. [Google Scholar]
- Editorial Committee of Soil Environmental Analysis. Soil Environmental Analysis, 4th ed.; Hakuyu Press: Tokyo, Japan, 2008. [Google Scholar]
- Thomas, G.W. Exchangeable Cations. In Methods of Soil Analysis: Part 2, Chemical and Microbiological Properties; Page, A.L., Ed.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1982; pp. 159–165. [Google Scholar]
- Byrne, E. Chemical Analysis of Agricultural Materials; An Foras Taluntais: Dublin, Ireland, 1979; pp. 1–194. [Google Scholar]
- Belyaeva, O.N.; Haynes, R.J. Chemical, microbial and physical properties of manufactured soils produced by co-composting municipal green waste with coal fly ash. Bioresour. Technol. 2009, 100, 5203–5209. [Google Scholar] [CrossRef] [PubMed]
- Culley, J.L.B. Density and compressibility. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 529–539. [Google Scholar]
- Blake, G.R.; Hartage, K.H. Particle density. In Methods of Soil Analysis Part 1, 2nd ed.; Agronomy Monograph No. 9; Klute, A., Ed.; American Society of Agronomics and Soil Science Society of America: Madison, WI, USA, 1986; pp. 377–382. [Google Scholar]
- Hendershot, W.H.; Lalande, H.; Duquette, M. Soil reaction and exchangeable acidity. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 141–146. [Google Scholar]
- Bower, C.A.; Wilcox, L.V. Soluble salts. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1965; pp. 933–951. [Google Scholar]
- Harada, H.; Amaha, K.; Abe, Y.; Kojima, Y.; Sunaga, Y.; Kawachi, T. Transfer factor of radioactive cesium to forage corn (Zea mays L.) from soil to which contaminated farmyard manure had been applied. Soil Sci. Plant Nutr. 2014, 60, 782–789. [Google Scholar] [CrossRef]
- Alexakhin, R.M. Countermeasures in agricultural production as an effective means of mitigating the radiological consequences of the Chernobyl accident. Sci. Total Environ. 1993, 137, 9–20. [Google Scholar] [CrossRef]
- Entry, J.A.; Watrud, L.S.; Reeves, M. Influence of organic amendments on the accumulation of 137Cs and 90Sr from contaminated soil by three grass species. Water Air Soil Pollut. 2001, 126, 385–398. [Google Scholar] [CrossRef]
- Verdonck, O. Compost specifications. In Proceedings of the International Symposium on Composting & Use of Composted Material in Horticulture, Scotland, UK, 5–11 April 1997; Volume 469, pp. 169–178.
- Neklyudov, A.D.; Fedotov, G.N.; Ivankin, A.N. Aerobic processing of organic waste into composts. Appl. Biochem. Microbiol. 2006, 42, 341–353. [Google Scholar] [CrossRef]
- Soumare, M.; Tack, F.M.G.; Verloo, M.G. Effects of a municipal solid waste compost and mineral fertilization on plant growth in two tropical agricultural soils of Mali. Bioresour. Technol. 2003, 86, 15–20. [Google Scholar] [CrossRef]
- Makan, A.; Assobhei, O.; Mountadar, M. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of Municipal solid waste in Morocco. Iran. J. Environ. Health 2013, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, C.N. Environmental applications for bio surfactants. Environ. Pollut. 2005, 133, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Simandi, P.; Takayanagi, M.; Inubushi, K. Changes in the pH of two different composts are dependent on the production of organic acids. Soil Sci. Plant Nutr. 2005, 51, 771–774. [Google Scholar] [CrossRef]
- Li, R.; Wang, J.J.; Zhang, Z.; Shen, F.; Zhang, G.; Li, X.; Xiao, R. Nutrients transformation during composting of pig manure with bentonite. Bioresour. Technol. 2012, 121, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Price, G.W. Evaluation of three composting systems for the management of spent coffee grounds. Bioresour. Technol. 2011, 102, 7966–7974. [Google Scholar] [CrossRef] [PubMed]
- Villar, M.C.; Beloso, M.C.; Acea, M.J.; Cabaneiro, A.; González-Prieto, S.J.; Díaz-Ravina, M.; Carballas, T. Physical and chemical characterization of four composted urban refuses. Bioresour. Technol. 1993, 45, 105–113. [Google Scholar] [CrossRef]
- Huang, G.F.; Wong, J.W.C.; Wu, Q.T.; Nagar, B.B. Effect of C/N on composting of pig manure with sawdust. Waste Manag. 2004, 24, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Changa, C.M.; Watson, M.E.; Dick, W.A.; Chen, Y.; Hoitink, H.A.J. Maturity indices for composted dairy and pig manures. Soil Biol. Biochem. 2004, 36, 767–776. [Google Scholar] [CrossRef]
- Harada, Y.; Inoko, A. The measurement of the cation-exchange capacity of composts for the estimation of the degree of maturity. Soil Sci. Plant Nutr. 1980, 26, 127–134. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X. Effects of rhamnolipid and initial compost particle size on the two-stage composting of green waste. Bioresour. Technol. 2014, 163, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Wong, J.; Ma, K.K.; Wong, M.H. Co-composting of sewage sludge and coal fly ash: Nutrient transformations. Bioresour. Technol. 1999, 67, 19–24. [Google Scholar] [CrossRef]
- Rodriguez-Kabana, R.; Morgan-Jones, G.; Chet, I. Biological control of nematodes: Soil amendments and microbial antagonists. Plant Soil 1987, 100, 237–247. [Google Scholar] [CrossRef]
- Mendonça Costa, M.S.S.; Cestonaro, T.; de Mendonça Costa, L.A.; Rozatti, M.A.T.; Carneiro, L.J.; Pereira, D.C.; Lorin, H.E.F. Improving the nutrient content of sheep bedding compost by adding cattle manure. J. Clean. Prod. 2015, 86, 9–14. [Google Scholar] [CrossRef]
- Nishanth, D.; Biswas, D.R. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum estivum). Bioresour. Technol. 2008, 99, 3342–3353. [Google Scholar] [CrossRef] [PubMed]
- Ros, M.; Garcia, A.; Herandez, T. A full-scale study of treatment of pig slurry by composting: Kinetic changes in chemical and microbial properties. Waste Manag. 2006, 26, 1108–1118. [Google Scholar] [CrossRef] [PubMed]
- Brito, L.M.; Coutinho, J.; Smith, S.R. Methods to improve the composting process of the solid fraction of dairy cattle slurry. Bioresour. Technol. 2008, 99, 8955–8960. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Uppal, H.S.; Singh, R.; Beri, S.; Mohan, K.S.; Gupta, V.C.; Adholeya, A. Co-composting of physic nut (Jatropha curcas) deoiled cake with rice straw and different animal dung. Bioresour. Technol. 2011, 102, 6541–6546. [Google Scholar] [CrossRef] [PubMed]
- Chaoui, H.I.; Zibilske, L.M.; Ohno, T. Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biol. Biochem. 2003, 35, 295–302. [Google Scholar] [CrossRef]
- Mylavarapu, R.S.; Zinati, G.M. Improvement of soil properties using compost for optimum parsley production in sandy soils. Sci. Hortic. 2009, 120, 426–430. [Google Scholar] [CrossRef]
- Courtney, R.G.; Mullen, G.J. Soil quality and barley growth as influenced by the land application of two compost types. Bioresour. Technol. 2008, 99, 2913–2918. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, Y.; Higashi, T.; Ito, T.; Komatsuzaki, M. Tillage can reduce the radiocesium contamination of soybean after the Fukushima Dai-ichi nuclear power plant accident. Soil Tillage Res. 2015, 153, 76–85. [Google Scholar] [CrossRef]
- Epstein, E.; Taylor, J.M.; Chaney, R.L. Effects of sewage sludge and sludge compost applied to soil on some soil physical and chemical properties. Environ. Qual. 1976, 5, 422–426. [Google Scholar] [CrossRef]
- Alvarez, M.A.B.; Gagne, S.; Antoun, H. Effect of compost on rhizosphere micro flora of the tomato and on the incident of plant-growth promoting rhizobacteria. Appl. Eniron. Microbiol. 1995, 61, 194–199. [Google Scholar]
- Cherif, H.; Ayari, F.; Ouzari, H.; Marzorati, M.; Brusetti, L.; Jedidi, N.; Hassen, A.; Daffonchio, D. Effects of municipal solid waste compost, farmyard manure and chemical fertilizers on wheat growth, soil composition and soil bacterial characteristics under Tunisian arid climate. Eur. J Soil Biol. 2009, 45, 138–145. [Google Scholar] [CrossRef]
- Keeling, A.; McCallum, R.; Beckwitn, C. Mature green waste compost enhances growth and nitrogen uptake in wheat (Triticum aestivum L.) and oilseed rape (Brassica napus L.) through the action of water-extractable factors. Bioresour. Technol. 2003, 90, 127–132. [Google Scholar] [CrossRef]
Materials | 134Cs | Error | 137Cs | Error | Total Cs | Error | Moisture % | |
---|---|---|---|---|---|---|---|---|
Bq·kg−1 | ||||||||
Initial materials | Wood chip (WC) | 129.9 d | 5.5 | 372.4 e | 9.5 | 502.3 e | 15.0 | 13.0 |
Bamboo leaf (BL) | 16.3 b | 2.0 | 49.8 c | 3.4 | 66.1 c | 5.4 | 14.0 | |
Bamboo powder (BP) | 8.2 a | 2.6 | 31.9 b | 3.0 | 40.1 b | 5.6 | 11.0 | |
Final composts | Wood chip (WCC) | 54.6 c | 3.3 | 172.2 d | 6.2 | 226.8 d | 9.5 | 42.0 |
Bamboo leaf (BLC) | 6.2 a | 0.9 | 23.2 b | 1.7 | 29.4 b | 2.6 | 52.0 | |
Bamboo powder (BPC) | 3.0 a | 0.6 | 8.9 a | 0.9 | 11.9 a | 1.5 | 59.0 |
Material | C | N | P | K | Mg | Ca | C/N | CEC | pH | EC | Bd | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
% | cmol·kg−1 | ms·cm−1 | g·cm−3 | |||||||||
Initial materials | WC | 49.1 b | 0.25 a | 0.05 a | 0.18 a | 0.033 a | 0.06 d | 199.5 c | 57.8 b | 5.2 a | 0.55 a | 0.24 c |
BL | 49.4 b,c | 0.84 b | 0.09 a | 1.28 b | 0.038 b | 0.03 a | 59.2 b | 51.1 b | 7.4 d | 4.63 c | 0.11 a | |
BP | 50.1 c | 0.16 a | 0.07 a | 0.34 a | 0.032 a | 0.04 b | 321 d | 28.4 a | 5.4 b | 1.86 b | 0.19 b | |
Final composts | WCC | 45.8 a | 2.65 c,d | 1.65 b | 1.48 b | 0.073 d | 0.07 e | 17.5 a | 111.3 e | 6.7 c | 7 d | 0.32 d |
BLC | 45.2 a | 2.98 d | 1.83 b | 1.90 c | 0.077 e | 0.04 b | 15.2 a | 69.8 c | 6.7 c | 7.97 e | 0.2 b | |
BPC | 45.9 a | 2.52 c | 1.68 b | 1.79 c | 0.068 c | 0.05 c | 18.2 a | 99.8 d | 6.7 c | 8.17 e | 0.25 c |
Factor | df | NH4-N | P2O5 | K2O | CaO | N | C | Porosity | C/N | pH | Bd |
---|---|---|---|---|---|---|---|---|---|---|---|
mg·kg−1 | % | g·cm−3 | |||||||||
Material (M) | 2 | <0.0001 | 0.0774 | <0.0001 | 0.028 | 0.0118 | <0.0001 | 0.1174 | <0.0001 | <0.0001 | 0.1174 |
Type (T ) | 1 | <0.0001 | <0.0001 | <0.0001 | 0.128 | <0.0001 | <0.0001 | 0.0043 | <0.0001 | <0.0001 | 0.0043 |
Input level (L) | 2 | <0.0001 | <0.0001 | <0.0001 | 0.942 | <0.0001 | <0.0001 | 0.0003 | <0.0001 | 0.0094 | 0.0003 |
M × T | 2 | 0.0016 | <0.0001 | 0.0002 | 0.394 | 0.9451 | <0.0001 | 0.1844 | <0.0001 | <0.0001 | 0.1844 |
M × L | 4 | <0.0001 | 0.0132 | <0.0001 | 0.843 | 0.3153 | 0.0008 | 0.0798 | 0.0001 | 0.001 | 0.0798 |
T × L | 2 | <0.0001 | <0.0001 | <0.0001 | 0.023 | <0.0001 | 0.0003 | 0.7238 | <0.0001 | <0.0001 | 0.7238 |
M × T × L | 4 | 0.017 | 0.3673 | 0.1668 | 0.349 | 0.973 | 0.0008 | 0.8572 | <0.0001 | 0.1926 | 0.8572 |
Factor | df | Plant Height (cm) | Fresh Weight (g) | Dry Weight (g) | N% | C% | C/N | Root Weight (g) |
---|---|---|---|---|---|---|---|---|
Material (M) | 2 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.007 | 0.0027 | 0.3671 |
Type (T) | 1 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Input level (L) | 2 | 0.1304 | 0.3476 | 0.0054 | <0.0001 | 0.1118 | 0.0004 | <0.0001 |
M × T | 2 | 0.018 | <0.0001 | <0.0001 | <0.0001 | 0.0782 | 0.0006 | 0.1348 |
M × L | 4 | 0.2144 | 0.4803 | 0.3935 | 0.0012 | 0.6545 | 0.0001 | 0.2971 |
T× L | 2 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0439 | 0.0022 | <0.0001 |
M × T × L | 4 | 0.1635 | 0.5984 | 0.8124 | 0.0089 | 0.46 | 0.0014 | 0.0187 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayasanka, D.J.; Komatsuzaki, M.; Hoshino, Y.; Seki, H.; Moqbal, M.I. Nutrient Status in Composts and Changes in Radioactive Cesium Following the Fukushima Daiichi Nuclear Power Plant Accident. Sustainability 2016, 8, 1332. https://doi.org/10.3390/su8121332
Jayasanka DJ, Komatsuzaki M, Hoshino Y, Seki H, Moqbal MI. Nutrient Status in Composts and Changes in Radioactive Cesium Following the Fukushima Daiichi Nuclear Power Plant Accident. Sustainability. 2016; 8(12):1332. https://doi.org/10.3390/su8121332
Chicago/Turabian StyleJayasanka, Dikkumburage Jasintha, Masakazu Komatsuzaki, Yuta Hoshino, Hiroichi Seki, and Mohammad Ismail Moqbal. 2016. "Nutrient Status in Composts and Changes in Radioactive Cesium Following the Fukushima Daiichi Nuclear Power Plant Accident" Sustainability 8, no. 12: 1332. https://doi.org/10.3390/su8121332
APA StyleJayasanka, D. J., Komatsuzaki, M., Hoshino, Y., Seki, H., & Moqbal, M. I. (2016). Nutrient Status in Composts and Changes in Radioactive Cesium Following the Fukushima Daiichi Nuclear Power Plant Accident. Sustainability, 8(12), 1332. https://doi.org/10.3390/su8121332