Underground Potential for Urban Sustainability: Mapping Resources and Their Interactions with the Deep City Method
Abstract
:1. Introduction: Mapping the Urban Underground
2. Deep City: Resources to Needs
3. San Antonio, Texas: Extractions, Constructions and Transformations
3.1. Conditions: Geology, Aquifers, Geothermal Energy, Urban Structure
3.2. Analysis: Data Sources, Transformation and Conversion to Relative Scales
3.3. Synthesis: Mapping of Aggregate Criteria and Potentials
3.4 Local Potentiality: The Underground Potential of a Future Transit Hub
4. Conclusions: The Map as a Compass
Author Contributions
Conflicts of Interest
References
- Shane, D.G. Recombinant Urbanism: Conceptual Modeling in Architecture, Urban Design, and City Theory, Kindle Edition ed; Wiley-Academy: Chichester, UK, 2005. [Google Scholar]
- Williams, R.H. Notes on the Underground an Essay on Technology, Society, and the Imagination; MIT Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Hénard, E. Etudes sur les Transformations de Paris, et Autres Écrits sur L’urbanisme; Collection “Formes Urbaines”; L’Equerre: Paris, France, 1982. [Google Scholar]
- Webster, G.S. Subterranean street planning. Ann. Am. Acad. Polit. Soc. Sci. 1914, 51, 200–207. [Google Scholar] [CrossRef]
- Barles, S.; Guillerme, A. L’urbanisme Souterrain; Presses universitaires de France: Paris, France, 1995. [Google Scholar]
- McHarg, I.L. Design with Nature; Published for the American Museum of Natural History; The Natural History Press: Garden City, NY, USA, 1969. [Google Scholar]
- Kuitert, W. Urban landscape systems understood by geo-history map overlay. J. Landsc. Archit. 2013, 8, 54–63. [Google Scholar] [CrossRef]
- Diener, R. Switzerland: An Urban Portrait; ETH Studio Base-Institut Stadt der Gegenwart, Eidgenössische Technische Hochschule Zürich, Ed.; Birkhäuser: Basel, Switzerland, 2006. [Google Scholar]
- Viganò, P. Les Territoires de L’urbanisme. Le Projet Comme Producteur de Connaissance; MetisPresses: Genève, Switzerland, 2012. [Google Scholar]
- Bélanger, P. Altitudes of urbanization. Tunn. Undergr. Space Technol. 2016, 55, 5–7. [Google Scholar] [CrossRef]
- Ortiz-Zamora, D.; Ortega-Guerrero, A. Evolution of long-term land subsidence near Mexico City: Review, field investigations, and predictive simulations: Long-term Land Subsidence. Water Resour. Res. 2010. [Google Scholar] [CrossRef]
- Blunier, P. Méthodologie de Gestion Durable des Ressources du Sous-Sol Urbain. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 2009. [Google Scholar]
- Feyt, G. Les visages et usages de l’information géographique dans le processus de décision territoriale. In Les SIG au Service du Développement Territorial; Walser, O., Thévoz, L., Joerin, F., Schuler, M., Joost, S., Debarbieux, B., Dao, H., Eds.; Presses Polytechniques et Universitaires Romandes: Lausanne, Switzerland, 2011. [Google Scholar]
- Parriaux, A.; Blunier, P.; Maire, P.; Dekkil, G.; Tacher, L. Projet Deep City : Ressources du Sous-Sol et Développement Durable des Espaces Urbains; Vdf Hochschulverlag AG an der ETH Zürich: Lausanne, Switzerland, 2010. [Google Scholar]
- Corner, J. The Agency of Mapping: Speculation, Critique and Invention. In Mappings; Cosgrove, D.E., Ed.; Reaktion Books: London, UK, 2002; pp. 214–300. [Google Scholar]
- Moffatt, S.; Kohler, N. Conceptualizing the built environment as a social–ecological system. Build. Res. Inf. 2008, 36, 248–268. [Google Scholar] [CrossRef]
- Baccini, P. Designing urban systems: Ecological strategies with stocks and flows of energy and material. In Applied Urban Ecology: A Global Framework; Richter, M., Weiland, U., Eds.; Wiley-Blackwell: Chichester, UK; Hoboken, NJ, USA, 2012; pp. 54–65. [Google Scholar]
- Brillouin, L. Science and Information Theory, Kindle Edition (orig. 1962) ed; Academic Press: Cambridge, UK, 2013. [Google Scholar]
- Serres, M. The Parasite; Johns Hopkins University Press: Baltimore, MD, USA, 1982. [Google Scholar]
- Vähäaho, I. An introduction to the development for urban underground space in Helsinki. Tunn. Undergr. Space Technol. 2016, 55, 324–328. [Google Scholar] [CrossRef]
- Wallace, M.I.; Ng, K.C. Development and application of underground space use in Hong Kong. Tunn. Undergr. Space Technol. 2016, 55, 257–279. [Google Scholar] [CrossRef]
- Delmastro, C.; Lavagno, E.; Schranz, L. Underground urbanism: Master Plans and Sectorial Plans. Tunn. Undergr. Space Technol. 2016, 55, 103–111. [Google Scholar] [CrossRef]
- El-Geneidy, A.; Kastelberger, L.; Abdelhamid, H.T. Montréal’s roots: Exploring the growth of montréal’s indoor city. J. Trans. Land Use 2011, 4, 33–46. [Google Scholar] [CrossRef]
- Boisvert, M.A. Montréal et Toronto: Villes Intérieures; Presses de l’Université de Montréal: Montréal, QC, Canada, 2011. [Google Scholar]
- Bélanger, P. Underground landscape: The urbanism and infrastructure of Toronto’s downtown pedestrian network. Tunn. Undergr. Space Technol. 2007, 22, 272–292. [Google Scholar] [CrossRef]
- Zhao, J.-W.; Peng, F.-L.; Wang, T.-Q.; Zhang, X.-Y.; Jiang, B.-N. Advances in master planning of urban underground space (UUS) in China. Tunn. Undergr. Space Technol. 2016, 55, 290–307. [Google Scholar] [CrossRef]
- Bobylev, N. Mainstreaming sustainable development into a city’s Master plan: A case of Urban Underground Space use. Land Use Policy 2009, 26, 1128–1137. [Google Scholar] [CrossRef]
- Parriaux, A.; Tacher, L.; Joliquin, P. The hidden side of cities—Towards three-dimensional land planning. Energy Build. 2004, 36, 335–341. [Google Scholar] [CrossRef]
- Lu, Z.; Wu, L.; Zhuang, X.; Rabczuk, T. Quantitative assessment of engineering geological suitability for multilayer Urban Underground Space. Tunn. Undergr. Space Technol. 2016, 59, 65–76. [Google Scholar] [CrossRef]
- Hillier, B. Space Is the Machine: A Configurational Theory of Architecture, Electronic Edition (orig. 1996) ed; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Hillier, B.; Hanson, J. The Social Logic of Space; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Easterling, K. Extrastatecraft: The Power of Infrastructure Space, Kindle Edition ed; Verso: Brooklyn, NY, USA, 2014. [Google Scholar]
- Wall, A. Programming the urban surface. In Recovering Landscape: Essays in Contemporary Landscape Architecture; Corner, J., Ed.; Princeton Architectural Press: New York, NY, USA, 1999; pp. 232–249. [Google Scholar]
- Parriaux, A.; Turberg, P. Les géotypes, pour une représentation géologique du territoire. Tracés 2007, 133, 11–17. [Google Scholar]
- Saaty, T.L.; Vargas, L.G. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process, 2nd ed.; International Series in Operations Research & Management Science; Springer: New York, NY, USA, 2012. [Google Scholar]
- Yager, R.R.; Kelman, A. An extension of the Analytical Hierarchy Process using OWA operators. J. Intell. Fuzzy Syst. 1999, 7, 401–417. [Google Scholar]
- Li, H.; Li, X.; Parriaux, A.; Thalmann, P. An integrated planning concept for the emerging underground urbanism: Deep City Method Part 2 case study for resource supply and project valuation. Tunn. Undergr. Space Technol. 2013, 38, 569–580. [Google Scholar] [CrossRef]
- Doyle, M.R. Potentialities of the Urban Volume: Mapping Underground Resource Potential and Deciphering Spatial Economies and Configurations of Multi-Level Urban Spaces. Ph.D. Thesis, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- Maire, P. Étude Multidisciplinaire D’un Développement Durable du Sous-Sol Urbain: Aspects Socio-Économiques, Juridiques et de Politique Urbaine. Ph.D. Thesis, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland, 2011. [Google Scholar]
- Hillier, B. Spatial sustainability in cities: Organic patterns and sustainable forms. In Proceedings of the Seventh International Space Syntax Symposium, Stockholm, Sweden, 8–11 June 2009; Koch, D., Marcus, L., Steen, J., Eds.; Royal Institute or Technology: Stockholm, Sweden, 2009; pp. K01.1–K01.20. [Google Scholar]
- Brown, G. Design and Value: Spatial Form and the Economic Failure of a Mall. J. Real Estate Res. 1999, 17, 189–225. [Google Scholar]
- Kärrholm, M.; Nylund, K.; Prieto de la Fuente, P. Spatial resilience and urban planning: Addressing the interdependence of urban retail areas. Cities 2014, 36, 121–130. [Google Scholar] [CrossRef]
- Doyle, M.R. From hydro/geology to the streetscape: Evaluating urban underground resource potential. Tunn. Undergr. Space Technol. 2016, 55, 83–95. [Google Scholar] [CrossRef]
- Demographia. Demographia World Urban Areas: 12th Annual Edition; Demographia: Belleville, IL, USA, 2016. [Google Scholar]
- Jacobs Engineering. 2035 Long Range Comprehensive Transportation Plan; VIA Metropolitan Transit: San Antonio, TX, USA, 2011. [Google Scholar]
- United Nations Human Settlements Programme. State of the World’s Cities, 2012/2013: Prosperity of Cities; Routledge for and on behalf of UN-Habitat: New York, NY, USA, 2013. [Google Scholar]
- U.S. Census Bureau. 2014 American Community Survey 1-Year Estimates: Means of Transport to Work by Selected Characteristics; U.S. Census Bureau: Suitland, MD, USA, 2014.
- San Antonio City Design Center Downtown Design Guide. Available online: https://www.sanantonio.gov/Portals/0/Files/CityDesignCenter/DowntownDesignGuide.pdf (accessed on 7 January 2014).
- San Antonio Water System. Semiannual Water Management Report: January–June 2015; San Antonio Water System: San Antonio, TX, USA, 2015. [Google Scholar]
- Struckmeier, W.; Richts, A. Groundwater Resources of the World; UNESCO: Paris, France, 2008. [Google Scholar]
- Thomas, J.V.; Stanton, G.P.; Lambert, R.B. Borehole Geophysical, Fluid, and Hydraulic Properties within and Surrounding the Freshwater/Saline-Water Transition Zone, San Antonio Segment of the Edwards Aquiferr, South-Central Texas, 2010–2011; Texas Water Science Center: Austin, TX, USA, 2012.
- Ewing, T.E. Landscapes, Water and Man: Geology and History in the San Antonio Area of Texas; South Texas Geological Society: San Antonio, TX, USA, 2008. [Google Scholar]
- United States Geological Survey Mineral Resources on Line Spatial Data 2014. Available online: http://mrdata.usgs.gov/mrds/ (accessed on 16 December 2015).
- Texas State Historical Association Texas Almanac: Nonpetroleum Materials Internet. Available online: http://www.tshaonline.org/home/ (accessed on 2 June 2016).
- Taylor, L.Y. San Antonio’s Quarries Help Keep Costs of Area Construction Projects in Line. Available online: http://www.bizjournals.com/sanantonio/stories/2002/05/20/focus1.html (accessed on 14 February 2014).
- Lindgren, R.J.; Dutton, A.R.; Hovorka, S.D.; Worthington, S.R.H.; Painter, S. Conceptualization and Simulation of the Edwards Aquifer, San Antonio Region, Texas; U.S. Geological Survey Scientific Investigations Report 2004–5277; USGS: Reston, VA, USA, 2004; p. 143. [Google Scholar]
- Regulatory History of the Edwards Aquifer. Available online: https://www.tceq.texas.gov/field/eapp/history.html (accessed on 1 July 2015).
- Texas Secretary of State. Environmental Quality: Edwards Aquifer. Available online: http://www.tceq.state.tx.us/field/eapp/program.html (accessed on 1 December 2015).
- Frontier Associates. Texas Renewable Energy Resource Assessment; Texas State Energy Conservation Office: Austin, TX, USA, 2008. [Google Scholar]
- Arnow, T. Ground-Water Geology of Bexar County, Texas; US Government Printing Office: Washington, DC, USA, 1963.
Data | Source | Format | Initial Transformations |
---|---|---|---|
Superficial Geology | USGS | Polygon shapefile | None |
Substrata (without alluvium) | [60] | Raster TIF | Vectorized in ArcGIS |
Local well data (n = 1529) | Texas Water Development Board | Point shapefile | Interpolation of groundwater saturation at 15- and 30-m depths |
Edwards Aquifer Zones | Edwards Aquifer Authority | Polygon shapefile | None |
100-Year flood zones | Bexar County Open Data Portal | Polygon shapefile | None |
Bexar County parcels in 2010 (n = 420,339) | Bexar County Appraisal District (BCAD) | Polygon shapefile | Conversion to address points using the street network as a geolocator |
Bexar County roads | BCAD | Line shapefile | None |
Resident population per census tract | U.S. 2010 Census Data | Polygon shapefile | Distribution of population counts by relative surface area to BCAD residential parcels located in the census tract |
Geotype Potential | Urban Centralities | 100-Year Flood Zones | Aquifer Prot. Zones | % of Gw at Depth | Priority Vector (%) | |
---|---|---|---|---|---|---|
Geotype potential | 1.00 | 3.00 | 4.00 | 6.00 | 8.00 | 49 |
Urban centralities | 0.33 | 1.00 | 2.00 | 3.00 | 4.00 | 21 |
100-year flood zones | 0.25 | 0.50 | 1.00 | 5.00 | 5.00 | 19 |
Aquifer protection zones | 0.17 | 0.33 | 0.20 | 1.00 | 3.00 | 8 |
% Groundwater at depth | 0.13 | 0.25 | 0.20 | 0.33 | 1.00 | 4 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doyle, M.R.; Thalmann, P.; Parriaux, A. Underground Potential for Urban Sustainability: Mapping Resources and Their Interactions with the Deep City Method. Sustainability 2016, 8, 830. https://doi.org/10.3390/su8090830
Doyle MR, Thalmann P, Parriaux A. Underground Potential for Urban Sustainability: Mapping Resources and Their Interactions with the Deep City Method. Sustainability. 2016; 8(9):830. https://doi.org/10.3390/su8090830
Chicago/Turabian StyleDoyle, Michael R., Philippe Thalmann, and Aurèle Parriaux. 2016. "Underground Potential for Urban Sustainability: Mapping Resources and Their Interactions with the Deep City Method" Sustainability 8, no. 9: 830. https://doi.org/10.3390/su8090830
APA StyleDoyle, M. R., Thalmann, P., & Parriaux, A. (2016). Underground Potential for Urban Sustainability: Mapping Resources and Their Interactions with the Deep City Method. Sustainability, 8(9), 830. https://doi.org/10.3390/su8090830