Integrating Economic and Ecological Benchmarking for a Sustainable Development of Hydropower
Abstract
:1. Introduction
1.1. Hydropower in the Context of the Sustainable Development Goals
1.2. Ecological Benchmarks within the Reservoir: The Ecological Effect of Water Level Fluctuations
1.3. Expected Changes in the Energy Market and Hydropower Developments in Large and Small Reservoirs in Switzerland
1.4. Major Aims and Research Approach
2. Materials and Methods
2.1. Experimental Design
2.2. Chlorophyll a Determination: Quantifying Losses to Ecosystem Function via Periphyton Biomass
2.3. Seasonal Water Levels in Large and Small Alpine Reservoirs
Price Modelling
2.4. Model Design
2.4.1. Economic Hydropower Operation
2.4.2. Quantification of WLF
2.4.3. Translating WLF into Effects on the Ecosystem Function
2.5. Statistics
3. Results
3.1. Experimental Results
3.2. Modeling Results
3.2.1. Large Reservoirs
3.2.2. Small Reservoirs
4. Discussion
4.1. Economic Changes Translate into Ecological Changes
4.2. Implications and Context of Experimental Results
4.3. Implications and Context of Modeling Results
4.4. Transferability and Future Advancements Based on Experimental Results
4.5. Transferability and Future Advancements Based on Modeling Results
4.6. Relevance for the Context of sustainable development and the Achievement of SDG #7
5. Conclusions and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development—Outcome Document of Summit for Adoption of the Post-2015 Development Agenda; United Nations: New York, NY, USA, 1996; Volume A/RES/70/1. [Google Scholar]
- Clark, W.C.; van Kerkhoff, L.; Lebel, L.; Gallopin, G.C. Crafting usable knowledge for sustainable development. Proc. Natl. Acad. Sci. USA 2016, 113, 4570–4578. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Schei, T.; Ahenkorah, A.; Caceres Rodriguez, R.; Devernay, J.-M.; Freitas, M.; Hall, D.; Killingtveit, Å.; Liu, Z. Hydropower; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Friedl, G.; Wüest, J. Fresh Water Volume III—Human-Made Lakes and Reservoirs: The Impact of Physical Alterations. Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO; Eolss Publishers: Paris, France, 2016. [Google Scholar]
- Hirsch, P.E.; Schillinger, S.; Weigt, H.; Burkhardt-Holm, P. A hydro-economic model for water level fluctuations: Combining limnology with economics for sustainable development of hydropower. PLoS ONE 2014, 9, e114889. [Google Scholar] [CrossRef] [PubMed]
- Collen, B.; Whitton, F.; Dyer, E.E.; Baillie, J.E.M.; Cumberlidge, N.; Darwall, W.R.T.; Pollock, C.; Richman, N.I.; Soulsby, A.-M.; Böhm, M. Global patterns of freshwater species diversity, threat and endemism. Glob. Ecol. Biogeogr. 2014, 23, 40–51. [Google Scholar] [CrossRef] [PubMed]
- García Molinos, J.; Viana, M.; Brennan, M.; Donohue, I. Importance of long-term cycles for predicting water level dynamics in natural lakes. PLoS ONE 2015, 10, e0119253. [Google Scholar] [CrossRef] [PubMed]
- Poff, N.L.; Matthews, J.H. Environmental flows in the anthropocence: Past progress and future prospects. Curr. Opin. Environ. Sustain. 2013, 5, 1–9. [Google Scholar] [CrossRef]
- Duan, W.X.; Guo, S.L.; Wang, J.; Liu, D.D. Impact of cascaded reservoirs group on flow regime in the middle and lower reaches of the yangtze river. Water 2016, 8, 218. [Google Scholar] [CrossRef]
- Hirsch, P.; Eloranta, A.; Amundsen, P.-A.; Brabrand, Å.; Charmasson, J.; Helland, I.; Power, M.; Sánchez-Hernández, J.; Sandlund, O.; Sauterleute, J.; et al. Effects of anthropogenic water level fluctuations in reservoirs—An ecosystem approach with a special emphasis on fish. Hydrobiologia 2016. submitted. [Google Scholar]
- Evtimova, V.; Donohue, I. Quantifying ecological responses to amplified water level fluctuations in standing waters: An experimental approach. J. Appl. Ecol. 2014, 51, 1282–1291. [Google Scholar] [CrossRef]
- Moss, B. The kingdom of the shore: Achievement of good ecological potential in reservoirs. Freshw. Rev. 2008, 1, 29–42. [Google Scholar] [CrossRef]
- Dieter, D.; Herzog, C.; Hupfer, M. Effects of drying on phosphorus uptake in re-flooded lake sediments. Environ. Sci. Pollut. Res. 2015, 22, 17065–17081. [Google Scholar] [CrossRef] [PubMed]
- Weise, L.; Ulrich, A.; Moreano, M.; Gessler, A.; Kayler, Z.E.; Steger, K.; Zeller, B.; Rudolph, K.; Knezevic-Jaric, J.; Premke, K. Water level changes affect carbon turnover and microbial community composition in lake sediments. FEMS Microbiol. Ecol. 2016, 92, fiw035. [Google Scholar] [CrossRef] [PubMed]
- Vadeboncoeur, Y.; Vander Zanden, M.J.; Lodge, D.M. Putting the lake back together: Reintegrating benthic pathways into lake food web models. Bioscience 2002, 52, 44–54. [Google Scholar] [CrossRef]
- Hampton, S.E.; Fradkin, S.C.; Leavitt, P.R.; Rosenberger, E.E. Disproportionate importance of nearshore habitat for the food web of a deep oligotrophic lake. Mar. Freshw. Res. 2011, 62, 350–358. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, X.A.; Chen, H.; Yang, Z.F. Determining water level management strategies for lake protection at the ecosystem level. Hydrobiologia 2014, 738, 111–127. [Google Scholar] [CrossRef]
- Yang, N.; Mei, Y.; Zhou, C. An optimal reservoir operation model based on ecological requirement and its effect on electricity generation. Water Resour. Manag. 2012, 26, 4019–4028. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Jia, Y.F.; Guan, L.; Lu, C.; Lei, G.C.; Wen, L.; Liu, G.H. Optimising hydrological conditions to sustain wintering waterbird populations in poyang lake national natural reserve: Implications for dam operations. Freshw. Biol. 2013, 58, 2366–2379. [Google Scholar] [CrossRef]
- Barry, M.; Baur, P.; Gaudard, L.; Giuliani, G.; Hediger, W.; Romerio, F.; Schillinger, M.; Schumann, R.; Voegeli, G.; Weigt, H. The Future of Swiss Hydropower—A Review on Drivers and Uncertainties; FoNEW Discussion Paper 2015/01; Social Science Research Network (SSRN): Rochester, NY, USA, 2015. [Google Scholar]
- N’Guyen, A.; Hirsch, P.E.; Adrian-Kalchhauser, I.; Burkhardt-Holm, P. Improving invasive species management by integrating priorities and contributions of scientists and decision makers. Ambio 2016, 45, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, P.E.; Adrian-Kalchhauser, I.; Flaemig, S.; N’Guyen, A.; Defila, R.; di Giulio, A.; Burkhardt-Holm, P. A tough egg to crack: Recreational boats as vectors for invasive goby eggs and transdisciplinary management approaches. Ecol. Evol. 2016, 6, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Vander Zanden, M.J.; Vadeboncoeur, Y.; Chandra, S. Fish reliance on littoral-benthic resources and the distribution of primary production in lakes. Ecosystems 2011, 14, 894–903. [Google Scholar] [CrossRef]
- Coops, H.; Beklioglu, M.; Crisman, T.L. The role of water-level fluctuations in shallow lake ecosystems—Workshop conclusions. Hydrobiologia 2003, 506, 23–27. [Google Scholar] [CrossRef]
- Zohary, T.; Ostrovsky, I. Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters 2011, 1, 47–59. [Google Scholar] [CrossRef]
- Peters, L.; Wetzel, M.A.; Traunspurger, W.; Rothhaupt, K.-O. Epilithic communities in a lake littoral zone: The role of water-column transport and habitat development for dispersal and colonization of meiofauna. J. N. Am. Benthol. Soc. 2007, 26, 232–243. [Google Scholar] [CrossRef]
- Azim, M.E.; Verdegem, M.C.J.; van Dam, A.A.; Beveridge, M.C.M. Periphyton: Ecology, Exploitation, and Management; CABI Publishing: Wallingford, UK; Cambridge, MA, USA, 2005. [Google Scholar]
- Peters, L.; Scheifhacken, N.; Kahlert, M.; Rothhaupt, K.O. An efficient in situ method for sampling periphyton in lakes and streams. Arch. Hydrobiol. 2005, 163, 133–141. [Google Scholar] [CrossRef]
- Wetzel, R.G.; Likens, G.E. Limnological Analyses; Springer: Berlin, Germany, 1991; p. 391. [Google Scholar]
- Balmer, M. Nachhaltigkeitsbezogene Typologisierung der Schweizerischen Wasserkraftanlagen. Gis-Basierte Clusteranalyse und Anwendung in Einem Erfahrungskurvenmodell. Ph.D. Thesis, Department of Mechanical and Process Engineering ETH Zürich, Zürich, Switzerland, 2012. [Google Scholar]
- James, G.D.; Graynoth, E. Influence of fluctuating lake levels and water clarity on trout populations in littoral zones of new zealand alpine lakes. N. Z. J. Mar. Freshw. Res. 2002, 36, 39–52. [Google Scholar] [CrossRef]
- Hutter, K.; Chubarenko, I.P.; Wang, Y. Physics of Lakes: Volume 3: Methods of Understanding Lakes as Components of the Geophysical Environment; Springer: Berlin, Germany, 2014. [Google Scholar]
- EPEXSPOT. Marktdaten Day-Ahead-Auktion. Available online: https://www.Epexspot.Com/de/marktdaten (accessed on 25 May 2016).
- Schlecht, I.; Weigt, H. Linking europe—The role of the swiss electricity transmission grid until 2050. Swiss J. Econ. Stat. 2015, 151, 39–79. [Google Scholar] [CrossRef]
- Schlecht, I.; Weigt, H. Swissmod—A Model of the Swiss Electricity Market; WWZ Discussion Paper 2014/04; IDEAS: Ottawa, ON, Canada, 2014. [Google Scholar]
- EEX. Phelix Power Futures—EEX Power Derivatives. Available online: https://www.Eex.Com/en/market-data/power/futures/phelix-futures#!/2016/06/02 (accessed on 25 May 2016).
- Finger, D.; Heinrich, G.; Gobiet, A.; Bauder, A. Projections of future water resources and their uncertainty in a glacierized catchment in the swiss alps and the subsequent effects on hydropower production during the 21st Century. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Liebe, J.; van de Giesen, N.; Andreini, M. Estimation of small reservoir storage capacities in a semi-arid environment—A case study in the upper east region of Ghana. Phys. Chem. Earth 2005, 30, 448–454. [Google Scholar] [CrossRef]
- Shang, S. Lake surface area method to define minimum ecological lake level from level-area-storage curves. J. Arid Land 2013, 5, 133–142. [Google Scholar] [CrossRef]
- Kühne, A. Charakteristische Kenngrössen schweizer Speicherseen. Geogr. Helv. 1978, 33, 191–199. [Google Scholar] [CrossRef]
- Rodrigues, L.; Liebe, J. Small reservoirs depth-area-volume relationships in savannah regions of Brazil and Ghana. Water Resour. Irrig. Manag. 2013, 1, 1–10. [Google Scholar]
- Opricovic, S. A compromise solution in water resources planning. Water Resour. Manag. 2008, 23, 1549–1561. [Google Scholar] [CrossRef]
- Stevovic, S.; Milovanovic, Z.; Stamatovic, M. Sustainable model of hydro power development—Drina river case study. Renew. Sustain. Energy Rev. 2015, 50, 363–371. [Google Scholar] [CrossRef]
- Jager, H.I.; Smith, B.T. Sustainable reservoir operation: Can we generate hydropower and preserve ecosystem values? River Res. Appl. 2008, 24, 340–352. [Google Scholar] [CrossRef]
- Shiau, J.-T.; Chou, H.-Y. Basin-scale optimal trade-off between human and environmental water requirements in hsintien creek basin, taiwan. Environ. Earth Sci. 2016, 75, 644. [Google Scholar] [CrossRef]
- Omar, W.M.W. Perspectives on the use of algae as biological indicators for monitoring and protecting aquatic environments, with special reference to malaysian freshwater ecosystems. Trop. Life Sci. Res. 2010, 21, 51–67. [Google Scholar] [PubMed]
- DeNicola, D.M.; Kelly, M. Role of periphyton in ecological assessment of lakes. Freshw. Sci. 2014, 33, 619–638. [Google Scholar] [CrossRef]
- Karlsson, J.; Byström, P.; Ask, J.; Ask, P.; Persson, L.; Jansson, M. Light limitation of nutrient-poor lake ecosystems. Nature 2009, 460, U506–U580. [Google Scholar] [CrossRef] [PubMed]
- Stoll, S. Complex interactions between pre-spawning water level increase, trophic state and spawning stock biomass determine year-class strength in a shallow-water-spawning fish. J. Appl. Ichthyol. 2013, 29, 617–622. [Google Scholar] [CrossRef]
- Swiss Federal Office of the Environment. Swiss Electricity Statistic; SFOE: Bern, Switzerland, 2014.
- Swiss Federal Office of the Environment. Swiss Electricity Statistic; SFOE: Bern, Switzerland, 2010.
- Nieminen, E.; Hyytiäinen, K.; Lindroos, M. Economic and policy considerations regarding hydropower and migratory fish. Fish Fish. 2016. [Google Scholar] [CrossRef]
- Schramm, M.P.; Bevelhimer, M.S.; DeRolph, C.R. A synthesis of environmental and recreational mitigation requirements at hydropower projects in the United States. Environ. Sci. Policy 2016, 61, 87–96. [Google Scholar] [CrossRef]
- López, P.; López-Tarazón, J.A.; Casas-Ruiz, J.P.; Pompeo, M.; Ordoñez, J.; Muñoz, I. Sediment size distribution and composition in a reservoir affected by severe water level fluctuations. Sci. Total Environ. 2016, 540, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Gudasz, C.; Bastviken, D.; Steger, K.; Premke, K.; Sobek, S.; Tranvik, L.J. Temperature-controlled organic carbon mineralization in lake sediments. Nature 2010, 466, 478–481. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Brand, F.S.; Stauffacher, M.; Kruetli, P.; Le, Q.B.; Spoerri, A.; Meylan, G.; Moser, C.; Gonzalez, M.B.; Scholz, R.W. Science with society in the Anthropocene. Ambio 2013, 42, 5–12. [Google Scholar] [CrossRef] [PubMed]
Large | Small | |
---|---|---|
Ratio inflows to storage capacity | 2 | 3098 |
Full load hours reservoir (hours) | 1348 | 4 |
Generation capacity (MW) | 133 | 21 |
Storage Capacity (million m3) | 85 | 0.1 |
Time Dry Fallen (Hours) | Loss of Chlorophyll a Compared to Wet Fallen Control (%) |
---|---|
20 | 99.7 |
18 | 97.8 |
14 | 95.9 |
12 | 92.6 |
Time Wet Fallen (Days) | Growth of Chlorophyll a Compared to Final Value (%) |
---|---|
7 | 12 |
14 | 19 |
21 | 34 |
28 | 80 |
33 | 100 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirsch, P.E.; Schillinger, M.; Appoloni, K.; Burkhardt-Holm, P.; Weigt, H. Integrating Economic and Ecological Benchmarking for a Sustainable Development of Hydropower. Sustainability 2016, 8, 875. https://doi.org/10.3390/su8090875
Hirsch PE, Schillinger M, Appoloni K, Burkhardt-Holm P, Weigt H. Integrating Economic and Ecological Benchmarking for a Sustainable Development of Hydropower. Sustainability. 2016; 8(9):875. https://doi.org/10.3390/su8090875
Chicago/Turabian StyleHirsch, Philipp Emanuel, Moritz Schillinger, Katharina Appoloni, Patricia Burkhardt-Holm, and Hannes Weigt. 2016. "Integrating Economic and Ecological Benchmarking for a Sustainable Development of Hydropower" Sustainability 8, no. 9: 875. https://doi.org/10.3390/su8090875
APA StyleHirsch, P. E., Schillinger, M., Appoloni, K., Burkhardt-Holm, P., & Weigt, H. (2016). Integrating Economic and Ecological Benchmarking for a Sustainable Development of Hydropower. Sustainability, 8(9), 875. https://doi.org/10.3390/su8090875