Effects of the Post-Olympics Driving Restrictions on Air Quality in Beijing
Abstract
:1. Introduction
2. The 20% Driving Restriction Schemes and Empirical Hypotheses
2.1. The 20% Driving Restrictions in Beijing
2.2. Empirical Hypotheses
3. Data and Methods
3.1. Data Collection
3.1.1. Time Window
3.1.2. API Values and PM10 Concentrations
3.1.3. Meteorological Data
3.2. Evaluation Method
4. Results and Analysis
4.1. Air Pollution during the Studied Time Window
4.2. Rapid Growth of the Motor Vehicle Fleet in Beijing
4.3. Temporal Impacts of the 20% Driving Restrictions
4.4. Robustness Test
5. Conclusions and Policy Implications
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Variables | 4–Year (October 2006–October 2010) | 3–Year (April 2007–April 2010) | 2–Year (October 2007–October 2009) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OLS | (1) | (2) | (3) | OLS | (1) | (2) | (3) | OLS | (1) | (2) | (3) | |
20% restriction | 0.149 ** (0.073) | 0.277 *** (0.082) | 0.324 *** (0.100) | 0.347 *** (0.111) | 0.227 *** (0.076) | 0.308 *** (0.092) | 0.362 ** (0.172) | 0.255 (0.159) | 0.295 (0.205) | 0.548 ** (0.217) | 0.653 ** (0.230) | 0.795 *** (0.253) |
20% restriction adjustment | –0.148 ** (0.072) | –0.149 ** (0.072) | –0.149 ** (0.072) | –0.149 ** (0.083) | –0.148 ** (0.073) | –0.149 ** (0.073) | –0.149 ** (0.073) | –0.149 ** (0.073) | –0.158 ** (0.071) | –0.160 ** (0.071) | –0.160 ** (0.071) | –0.160 ** (0.071) |
MONTH 1 | –0.168 * (0.090) | –0.241 *** (0.092) | –0.287 *** (0.108) | –0.303 *** (0.113) | –0.188 * (0.096) | –0.242 ** (0.102) | –0.290 * (0.166) | –0.193 (0.158) | –0.298 (0.214) | –0.387 * (0.213) | –0.492 ** (0.220) | –0.635 *** (0.235) |
MONTH 2 | –0.232 *** (0.084) | –0.286 *** (0.086) | –0.324 *** (0.097) | –0.338 *** (0.101) | –0.273 *** (0.088) | –0.316 *** (0.091) | –0.355 ** (0.141) | –0.275 ** (0.136) | –0.365 * (0.212) | –0.367 * (0.210) | –0.460 ** (0.212) | –0.589 *** (0.221) |
MONTH 3 | –0.150 * (0.084) | –0.207 ** (0.085) | –0.243 ** (0.096) | –0.256 ** (0.099) | –0.206 ** (0.087) | –0.251 *** (0.091) | –0.291 ** (0.142) | –0.209 (0.137) | –0.276 (0.211) | –0.276 (0.209) | –0.355 * (0.211) | –0.470 ** (0.217) |
MONTH 4 | –0.120 (0.088) | –0.166 * (0.089) | –0.196 ** (0.096) | –0.205 ** (0.098) | –0.110 (0.091) | –0.142 (0.093) | –0.180 (0.140) | –0.101 (0.135) | –0.182 (0.213) | –0.186 (0.211) | –0.253 (0.212) | –0.352 (0.217) |
MONTH 5 | –0.191 ** (0.085) | –0.238 *** (0.086) | –0.268 *** (0.093) | –0.275 *** (0.094) | –0.175 ** (0.088) | –0.209 ** (0.090) | –0.248 * (0.137) | –0.169 (0.134) | –0.269 (0.212) | –0.273 (0.210) | –0.326 (0.211) | –0.408 * (0.214) |
MONTH 6 | –0.207 ** (0.084) | –0.251 *** (0.085) | –0.279 *** (0.091) | –0.285 *** (0.092) | –0.238 *** (0.086) | –0.270 *** (0.089) | –0.308 ** (0.136) | –0.229 * (0.134) | –0.326 (0.211) | –0.328 (0.209) | –0.368 * (0.210) | –0.431 ** (0.212) |
MONTH 7 | –0.169 *** (0.053) | –0.212 *** (0.054) | –0.240 *** (0.064) | –0.244 *** (0.064) | –0.198 *** (0.056) | –0.218 *** (0.058) | –0.254 ** (0.114) | –0.180 (0.110) | –0.260 (0.201) | –0.262 (0.199) | –0.288 (0.199) | –0.332 * (0.200) |
MONTH 8 | –0.157 *** (0.042) | –0.201 *** (0.044) | –0.228 *** (0.055) | –0.231 *** (0.055) | –0.241 *** (0.048) | –0.258 *** (0.049) | –0.290 *** (0.099) | –0.225 ** (0.095) | –0.361 * (0.193) | –0.363 * (0.191) | –0.376 * (0.192) | –0.399 ** (0.192) |
MONTH 9 | –0.053 (0.041) | –0.099 ** (0.043) | –0.126 ** (0.055) | –0.128 ** (0.055) | –0.150 *** (0.048) | –0.168 *** (0.049) | –0.196 ** (0.091) | –0.138 (0.089) | –0.147 (0.187) | –0.147 (0.185) | –0.147 (0.185) | –0.147 (0.185) |
MONTH 10 | –0.047 (0.043) | –0.093 ** (0.044) | –0.121 ** (0.056) | –0.121 ** (0.056) | –0.127 ** (0.050) | –0.143 *** (0.051) | –0.169 * (0.087) | –0.114 (0.086) | –0.128 (0.200) | –0.129 (0.199) | –0.116 (0.199) | –0.092 (0.199) |
MONTH 11 | –0.020 (0.043) | –0.057 (0.044) | –0.085 (0.055) | –0.081 (0.056) | –0.114 ** (0.052) | –0.119 ** (0.052) | –0.141 * (0.079) | –0.094 (0.079) | 0.133 (0.209) | 0.134 (0.207) | 0.107 (0.207) | –0.058 (0.208) |
MONTH 12 | 0.102 ** (0.044) | 0.065 (0.045) | 0.040 (0.054) | 0.043 (0.055) | 0.033 (0.052) | 0.027 (0.052) | 0.008 (0.072) | 0.048 (0.072) | 0.078 (0.205) | 0.078 (0.203) | 0.118 (0.203) | 0.194 (0.206) |
MONTH 13 | 0.010 (0.046) | –0.005 (0.046) | –0.025 (0.052) | –0.025 (0.052) | 0.013 (0.055) | 0.006 (0.055) | –0.009 (0.074) | 0.022 (0.068) | –0.224 (0.207) | –0.062 (0.211) | –0.010 (0.215) | 0.094 (0.227) |
Adj. R2 | 0.270 | 0.276 | 0.276 | 0.275 | 0.278 | 0.279 | 0.278 | 0.278 | 0.321 | 0.332 | 0.332 | 0.332 |
Observations | 1290 | 1290 | 1290 | 1290 | 972 | 972 | 972 | 972 | 646 | 646 | 646 | 646 |
References
- Button, K.J. Environmental externalities and transport policy. Oxf. Rev. Econ. Policy 1990, 6, 61–75. [Google Scholar] [CrossRef]
- Davis, L.W. The effect of driving restrictions on air quality in Mexico City. J. Political Econ. 2008, 116, 38–81. [Google Scholar] [CrossRef]
- Eskeland, G.S.; Feyzioglu, T. Rationing can backfire: The “day without a car” in Mexico City. World Bank Econ. Rev. 1997, 11, 383–408. [Google Scholar] [CrossRef]
- Gallego, F.; Montero, J.P.; Salas, C. The effect of transport policies on car use: Evidence from Latin American cities. J. Public Econ. 2013, 107, 47–62. [Google Scholar] [CrossRef]
- Wolff, H.; Perry, L. Trends in clean air legislation in Europe: Particulate matter and low emission zones. Rev. Environ. Econ. Pol. 2010, 4, 293–308. [Google Scholar] [CrossRef]
- Cartalis, C.; Deligiorgi, D. Measurement needs in support of emissions management practices and policy planning: The case for Athens, Greece. Paper OT9-I. In Proceedings of the Regional Photochemical Measurement and Modeling Studies Conference of the Air & Waste Management Association, San Diego, CA, USA, 8–12 November 1993; pp. 7–12.
- Cheng, S.Y.; Lang, J.L.; Zhou, Y.; Han, L.H.; Wang, G.; Chen, D.S. A new monitoring-simulation-source apportionment approach for investigating the vehicular emission contribution to the PM2.5 pollution in Beijing, China. Atmos. Environ. 2013, 79, 308–316. [Google Scholar] [CrossRef]
- Viard, B.; Fu, S.H.; Wang, Y.N. The Effect of Beijing’s Driving Restrictions on Pollution and Economic Activity. Available online: http://mpra.ub.uni-muenchen.de/33009/edu.cn/personalsites/brianviard/papers.html (assessed on 29 August 2016).
- Chen, Y.Y.; Jin, G.Z.; Kumar, N.; Shi, G. The promise of Beijing: Evaluating the impact of the 2008 Olympic Games on air quality. J. Environ. Econ. Manag. 2013, 66, 424–443. [Google Scholar] [CrossRef]
- Lin, C.Y.; Zhang, W.; Umanskaya, V.I. The Effects of Driving Restrictions on Air Quality: São Paulo, Bogotá, Beijing, and Tianjin. In Proceedings of the Agricultural & Applied Economics Association’s 2011 AAEA & NAREA Joint Annual Meeting, Pittsburgh, PA, USA, 24–27 July 2011; pp. 24–26.
- Schleicher, N.; Norra, S.; Chen, Y.; Chai, F.; Wang, S. Efficiency of mitigation measures to reduce particulate air pollution: A case study during the Olympic Summer Games 2008 in Beijing, China. Sci. Total Environ. 2012, 427, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hao, J.; McElroy, M.B.; Munger, J.W.; Ma, H.; Chen, D.; Nielsen, C.P. Ozone air quality during the 2008 Olympics: Effectiveness of emission restrictions. Atmos. Chem. Phys. Discuss. 2009, 9, 9927–9959. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, Y.; Yang, L.; Fu, L.X.; He, K.B.; Wang, S.X.; Hao, J.M.; Chen, J.C.; Li, C.Y. The impact of transportation control measures on emission reductions during the 2008 Olympic Games in Beijing, China. Atmos. Environ. 2010, 44, 285–293. [Google Scholar] [CrossRef]
- Wang, R. Shaping urban transport policies in China: Will copying foreign policies work? Transp. Policy 2010, 17, 147–152. [Google Scholar] [CrossRef]
- Wang, L.L.; Xu, J.T.; Qin, P. Will a driving restriction policy reduce car trips? The case study of Beijing, China. Transp. Res. A Policy Pract. 2014, 67, 279–290. [Google Scholar] [CrossRef]
- Zhao, X.G.; Xu, Z.C.; Wang, X.; Wang, J.N. Analysis of Beijing cars with license plates allowed on the streets on air quality impact. J. Saf. Environ. 2010, 10, 82–88. (In Chinese) [Google Scholar]
- Lin, C.Y.; Zhang, W.; Umanskaya, V.I. On the Design of Driving Restrictions: Theory and Empirical Evidence; University of California: Davis, CA, USA, 2014; in press. [Google Scholar]
- Salas, C.H. Evaluating Public Policies with High Frequency Data: Evidence for Driving Restrictions in Mexico City Revisited; Catholic University of Chile: Santiago, Chile, 2010; in press. [Google Scholar]
- Huang, R.J.; Zhang, Y.l.; Bozzetti, C.; Ho, K.F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [PubMed]
- Andrews, S.Q. Inconsistencies in air quality metrics: “Blue Sky” days and PM10 concentrations in Beijing. Environ. Res. Lett. 2008, 3, 034009. [Google Scholar] [CrossRef]
- Song, Y.; Xie, S.D.; Zhang, Y.H.; Zeng, L.M.; Salmon, L.G.; Zheng, M. Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Sci. Total Environ. 2006, 372, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Zhuang, Y.H.; Wang, Y.; Sun, Y.L.; Yuan, H.; Zhuang, G.S.; Hao, Z.P. Long-term monitoring and source apportionment of PM2.5/PM10 in Beijing, China. J. Environ. Sci. 2008, 20, 1323–1327. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, J.H.; Sun, Y.L.; Yuan, H.; Zhuang, G.S.; Zhuang, Y.H.; Hao, Z.P. Source apportionment for urban PM10 and PM2.5 in the Beijing area. Chin. Sci. Bull. 2007, 52, 608–615. [Google Scholar] [CrossRef]
- Beijing Municipal Environmental Monitoring Center. API. Available online: http://www.bjmemc.com.cn/g327/s968/t1261.aspx (accessed on 1 July 2016).
API Values | Concentrations of Pollutants (μg/m3, Daily Average) | Air Pollution Level | ||
---|---|---|---|---|
PM10 | SO2 | NO2 | ||
50 | 50 | 50 | 80 | Excellent |
100 | 150 | 150 | 120 | Good |
200 | 350 | 800 | 280 | Slightly polluted |
300 | 420 | 1600 | 565 | Moderately polluted |
400 | 500 | 2100 | 750 | Heavily Polluted |
500 | 600 | 2620 | 940 | Heavily Polluted |
API | Air Pollution Level | 2007 | 2008 | 2009 | 2010 | Total | Health Effects [9] |
---|---|---|---|---|---|---|---|
0–50 | I | 8.8% | 15.8% | 12.6% | 13.2% | 12.6% | Daily activity will not be affected. |
51–100 | II | 58.6% | 56.8% | 59.5% | 61.1% | 59.0% | Daily activity will not be affected. |
101–200 | III | 29.6% | 24.9% | 25.5% | 23.0% | 25.7% | The symptoms of the susceptible are slightly aggravated, while healthy people will have stimulated symptoms. |
201–300 | IV | 2.2% | 1.1% | 1.6% | 2.2% | 1.8% | Symptoms of the patients with cardiac and lung diseases will be aggravated remarkably. Healthy people will experience a drop in endurance and increased symptoms. |
>300 | V | 0.8% | 1.4% | 0.8% | 0.5% | 0.9% | Exercise endurance of healthy people decreases. Some will have strong symptoms. Some diseases will appear. |
Variables | (0) | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20% restriction | –0.007 (0.029) | –0.006 (0.031) | 0.006 (0.034) | 0.003 (0.039) | 0.000 (0.042) | 0.011 (0.049) | 0.028 (0.075) | 0.170 * (0.091) | 0.210 ** (0.091) | 0.238 *** (0.092) | 0.267 *** (0.092) | 0.275 *** (0.093) | 0.265 *** (0.094) | 0.258 *** (0.094) |
20% restriction adjustment | 0.040 * (0.024) | 0.039 (0.025) | 0.030 (0.027) | 0.032 (0.030) | 0.036 (0.034) | 0.025 (0.042) | 0.008 (0.069) | –0.117 (0.083) | –0.117 (0.083) | –0.116 (0.083) | –0.116 (0.083) | –0.116 (0.083) | –0.116 (0.083) | –0.117 (0.083) |
MONTH 1 | –0.001 (0.058) | –0.013 (0.060) | –0.011 (0.063) | –0.007 (0.065) | –0.018 (0.069) | –0.035 (0.089) | –0.166 (0.101) | –0.185 * (0.101) | –0.199 ** (0.101) | –0.215 ** (0.101) | –0.219 ** (0.101) | –0.214 ** (0.101) | –0.200 * (0.103) | |
MONTH 2 | –0.050 (0.054) | –0.048 (0.057) | –0.044 (0.059) | –0.055 (0.064) | –0.072 (0.084) | –0.202 ** (0.097) | –0.219 ** (0.097) | –0.232 ** (0.097) | –0.245 ** (0.097) | –0.249 ** (0.097) | –0.244 ** (0.097) | –0.242 ** (0.097) | ||
MONTH 3 | 0.007 (0.057) | 0.010 (0.059) | 0.000 (0.064) | –0.018 (0.085) | –0.147 (0.097) | –0.162 * (0.097) | –0.174 * (0.096) | –0.188 * (0.097) | –0.191 ** (0.097) | –0.187 * (0.097) | –0.185 * (0.097) | |||
MONTH 4 | 0.013 (0.055) | –0.003 (0.060) | –0.014 (0.082) | –0.155 (0.097) | –0.179* (0.097) | –0.193 ** (0.097) | –0.206 ** (0.097) | –0.209 ** (0.097) | –0.204 ** (0.097) | –0.198 ** (0.098) | ||||
MONTH 5 | –0.028 (0.062) | –0.045 (0.084) | –0.184 * (0.098) | –0.207 ** (0.098) | –0.220 ** (0.098) | –0.233 ** (0.098) | –0.237 ** (0.098) | –0.231 ** (0.098) | –0.226 ** (0.098) | |||||
MONTH 6 | –0.025 (0.082) | –0.165 * (0.097) | –0.189 * (0.097) | –0.204 ** (0.097) | –0.217 ** (0.097) | –0.221 ** (0.097) | –0.215 ** (0.097) | –0.209 ** (0.097) | ||||||
MONTH 7 | –0.164 *** (0.060) | –0.188 *** (0.060) | –0.203 *** (0.061) | –0.215 *** (0.061) | –0.219 *** (0.061) | –0.213 *** (0.061) | –0.207 *** (0.062) | |||||||
MONTH 8 | –0.191 *** (0.049) | −0.201 *** (0.049) | –0.213 *** (0.049) | –0.217 *** (0.049) | –0.211 *** (0.050) | –0.206 *** (0.050) | ||||||||
MONTH 9 | –0.122 ** (0.049) | –0.134 *** (0.049) | –0.138 *** (0.049) | –0.133 *** (0.049) | –0.128 ** (0.050) | |||||||||
MONTH 10 | –0.110 ** (0.049) | –0.114 ** (0.049) | –0.108 ** (0.049) | –0.105 ** (0.050) | ||||||||||
MONTH 11 | –0.038 (0.049) | –0.032 (0.050) | –0.029 (0.050) | |||||||||||
MONTH 12 | 0.040 (0.050) | 0.044 (0.051) | ||||||||||||
MONTH 13 | 0.039 (0.051) | |||||||||||||
Adj. R2 | 0.316 | 0.316 | 0.316 | 0.315 | 0.315 | 0.314 | 0.314 | 0.317 | 0.324 | 0.326 | 0.328 | 0.328 | 0.328 | 0.328 |
Observations | 1461 | 1461 | 1461 | 1461 | 1461 | 1461 | 1461 | 1461 | 1461 | 1461 | 1461 | 1461 | 1461 | 1461 |
Variables | 4–year (October 2006–October 2010) | 3–Year (April 2007–April 2010) | 2–Year (October 2007–October 2009) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OLS | (1) | (2) | (3) | OLS | (1) | (2) | (3) | OLS | (1) | (2) | (3) | |
20% restriction | 0.112 (0.084) | 0.258 *** (0.094) | 0.265 ** (0.114) | 0.291 ** (0.124) | 0.176 ** (0.087) | 0.355 *** (0.094) | 0.313 (0.193) | 0.521 ** (0.124) | 0.223 (0.242) | 0.475 * (0.255) | 0.581 ** (0.269) | 0.722 ** (0.293) |
20% restriction adjustment | –0.116 (0.083) | –0.117 (0.083) | –0.117 (0.083) | –0.117 (0.083) | –0.115 (0.084) | –0.115 (0.083) | –0.115 (0.083) | –0.116 (0.083) | –0.131 (0.082) | –0.132 (0.081) | –0.132 (0.081) | –0.132 (0.081) |
MONTH 1 | –0.114 (0.100) | –0.200 * (0.103) | –0.206 * (0.120) | –0.223 * (0.125) | –0.117 (0.106) | –0.219 * (0.112) | –0.199 (0.184) | –0.312 * (0.186) | –0.251 (0.250) | –0.334 (0.250) | –0.439 * (0.256) | –0.581 ** (0.272) |
MONTH 2 | –0.180 * (0.096) | –0.242 ** (0.097) | –0.246 ** (0.109) | –0.262 ** (0.113) | –0.209 ** (0.099) | –0.292 *** (0.103) | –0.276 * (0.159) | –0.357 ** (0.160) | –0.262 (0.249) | –0.264 (0.247) | –0.356 (0.249) | –0.484 * (0.258) |
MONTH 3 | –0.121 (0.095) | –0.185 * (0.097) | –0.190 * (0.109) | –0.204 * (0.112) | –0.166 * (0.098) | –0.254 ** (0.103) | –0.237 (0.159) | –0.292 * (0.159) | –0.224 (0.248) | –0.224 (0.247) | –0.303 (0.248) | –0.417 (0.255) |
MONTH 4 | –0.147 (0.097) | –0.198 ** (0.098) | –0.202 * (0.106) | –0.212 ** (0.107) | –0.135 (0.100) | –0.196 * (0.102) | –0.180 (0.154) | –0.234 (0.154) | –0.181 (0.249) | –0.184 (0.247) | –0.250 (0.249) | –0.349 (0.254) |
MONTH 5 | –0.173 * (0.098) | –0.226 ** (0.098) | –0.230 ** (0.106) | –0.238 ** (0.107) | –0.149 (0.101) | –0.216 ** (0.103) | –0.200 (0.156) | –0.227 (0.155) | –0.230 (0.249) | –0.235 (0.248) | –0.288 (0.249) | –0.369 (0.252) |
MONTH 6 | –0.159 (0.097) | –0.209 ** (0.097) | –0.212 ** (0.105) | –0.218 ** (0.105) | –0.194 * (0.099) | –0.257 ** (0.102) | –0.241 (0.154) | –0.246 (0.153) | –0.237 (0.249) | –0.240 (0.247) | –0.279 (0.248) | –0.342 (0.250) |
MONTH 7 | –0.157 *** (0.060) | –0.207 *** (0.062) | –0.211 *** (0.072) | –0.215 *** (0.073) | –0.186 *** (0.065) | –0.226 *** (0.066) | –0.211 (0.129) | –0.249 * (0.128) | –0.161 (0.237) | –0.162 (0.236) | –0.188 (0.236) | –0.232 (0.237) |
MONTH 8 | –0.155 *** (0.048) | –0.206 *** (0.050) | –0.210 *** (0.062) | –0.213 *** (0.063) | –0.240 *** (0.055) | –0.275 *** (0.056) | –0.262 ** (0.112) | –0.299 *** (0.111) | –0.277 (0.228) | –0.279 (0.227) | –0.292 (0.227) | –0.315 (0.227) |
MONTH 9 | –0.076 (0.047) | –0.128 ** (0.050) | –0.132 ** (0.062) | –0.133 ** (0.062) | –0.150 *** (0.055) | –0.185 *** (0.056) | –0.173 * (0.103) | –0.191 * (0.102) | –0.099 (0.221) | –0.098 (0.220) | –0.098 (0.220) | –0.098 (0.220) |
MONTH 10 | –0.052 (0.047) | –0.105 ** (0.050) | –0.108 * (0.062) | –0.108 * (0.062) | –0.111 ** (0.056) | –0.140 ** (0.057) | –0.130 (0.098) | –0.124 (0.097) | –0.061 (0.236) | –0.062 (0.235) | –0.049 (0.235) | –0.025 (0.235) |
MONTH 11 | 0.014 (0.048) | –0.029 (0.050) | –0.033 (0.062) | –0.029 (0.063) | –0.044 (0.059) | –0.053 (0.059) | –0.044 (0.089) | –0.014 (0.089) | 0.130 (0.242) | 0.127 (0.241) | 0.154 (0.241) | 0.203 (0.242) |
MONTH 12 | 0.090* (0.049) | 0.044 (0.051) | 0.041 (0.061) | 0.045 (0.061) | 0.049 (0.057) | 0.032 (0.057) | 0.040 (0.081) | 0.052 (0.081) | 0.194 (0.238) | 0.192 (0.237) | 0.232 (0.237) | 0.307 (0.240) |
MONTH 13 | 0.059 (0.051) | 0.039 (0.051) | 0.036 (0.058) | 0.037 (0.058) | 0.086 (0.060) | 0.075 (0.059) | 0.081 (0.074) | 0.096 (0.074) | –0.204 (0.242) | –0.037 (0.247) | 0.015 (0.252) | 0.118 (0.264) |
Adj. R2 | 0.323 | 0.328 | 0.327 | 0.327 | 0.327 | 0.331 | 0.330 | 0.337 | 0.361 | 0.368 | 0.368 | 0.368 |
Observations | 1461 | 1461 | 1461 | 1461 | 1096 | 1096 | 1096 | 1096 | 731 | 731 | 731 | 731 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; He, G. Effects of the Post-Olympics Driving Restrictions on Air Quality in Beijing. Sustainability 2016, 8, 902. https://doi.org/10.3390/su8090902
Ma H, He G. Effects of the Post-Olympics Driving Restrictions on Air Quality in Beijing. Sustainability. 2016; 8(9):902. https://doi.org/10.3390/su8090902
Chicago/Turabian StyleMa, Hua, and Guizhen He. 2016. "Effects of the Post-Olympics Driving Restrictions on Air Quality in Beijing" Sustainability 8, no. 9: 902. https://doi.org/10.3390/su8090902
APA StyleMa, H., & He, G. (2016). Effects of the Post-Olympics Driving Restrictions on Air Quality in Beijing. Sustainability, 8(9), 902. https://doi.org/10.3390/su8090902