Green Economy Performance and Green Productivity Growth in China’s Cities: Measures and Policy Implication
Abstract
:1. Background and Motivation
- ●
- First, green economy performance (GEP) and green productivity growth indicator (GPGI) are constructed by incorporating economic expansion, resource conservation, and environmental protection simultaneously, all of which are the essentials in China’s green economy.
- ●
- Second, the GPGI in each city is decomposed into three components, thus the driving forces in achieving green economy can be further analyzed, and the disparities across different regions could be compared in that the regional heterogeneities have been incorporated in the decomposition.
- ●
- Third, the city panel data are compared to the empirical research, which could provide a much more detailed perspective than the widely used provincial dataset. To the best of our knowledge, few studies have employed a dataset on China’s cities in assessing energy and environmental performance as well as measuring green productivity growth. There are several studies employing China’s dataset at city level, for example, Au & Henderson [8,9], Ke [10]. However, studies using dataset at city level for empirically investigating China’s environmental economics are still rare. Dhakal [11] and Shi et al. [12] might be two exceptions, but only 35 largest cities are included in the former study and only 15 cities in the latter. In our paper, all cities except a few are included in the estimation.
2. Methodology
2.1. Literature Review
2.2. Methods
2.2.1. Green Production Technology
2.2.2. Non-Radial Directional Distance Function
2.2.3. Green Economy Performance and Green Productivity Growth Indicator
- (a)
- (b)
- (c)
3. Empirical Analysis
3.1. Data
3.2. Empirical Results
3.2.1. Green Economy Performance
3.2.2. Green Productivity Growth Indicators (GPGI)
4. Conclusions and Policy Implications
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shao, S.; Luan, R.; Yang, Z.; Li, C. Does directed technological change get greener: Empirical evidence from Shanghai’s industrial green development transformation. Ecol. Indic. 2016, 69, 758–770. [Google Scholar] [CrossRef]
- Krugman, P. The Myth of Asia’s Miracle. Available online: http://econ.sciences-po.fr/sites/default/files/file/myth_of_asias-miracle.pdf (assessed on 13 September 2016).
- Young, A. The Tyranny of Numbers: Confronting the Statistical Realities of the East Asian Growth Experience. Q. J. Econ. 1995, 110, 641–680. [Google Scholar] [CrossRef]
- Chen, S.; Golley, J. ‘Green’ productivity growth in China’s industrial economy. Energy Econ. 2014, 44, 89–98. [Google Scholar] [CrossRef]
- Lin, B.; Xie, C. Estimation on oil demand and oil saving potential of China’s road transport sector. Energy Policy 2013, 61, 472–482. [Google Scholar] [CrossRef]
- Panayotou, T.; Sachs, J.D.; Zwane, A.P. Compensation for “Meaningful Participation” in Climate Change Control: A Modest Proposal and Empirical Analysis. J. Environ. Econ. Manag. 2002, 43, 437–454. [Google Scholar] [CrossRef]
- Auffhammer, M.; Carson, R.T. Forecasting the path of China’s CO2 emissions using province level information. J. Environ. Econ. Manag. 2007, 55, 229–247. [Google Scholar] [CrossRef]
- Au, C.-C.; Henderson, J.V. Are Chinese cities too small? Rev. Econ. Stud. 2006, 73, 549–576. [Google Scholar] [CrossRef]
- Au, C.-C.; Henderson, J.V. How migration restrictions limit agglomeration and productivity in China. J. Dev. Econ. 2006, 80, 350–388. [Google Scholar] [CrossRef]
- Ke, S. Agglomeration, productivity, and spatial spillovers across Chinese cities. Ann. Reg. Sci. 2010, 45, 157–179. [Google Scholar] [CrossRef]
- Dhakal, S. Urban energy use and carbon emissions from cities in China and policy implications. Energy Policy 2009, 37, 4208–4219. [Google Scholar] [CrossRef]
- Shi, B.; Yang, H.; Wang, J.; Zhao, J. City Green Economy Evaluation: Empirical Evidence from 15 Sub-Provincial Cities in China. Sustainability 2016, 8, 551. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Han, J.Y. Total factor carbon emission performance: A Malmquist index analysis. Energy Econ. 2010, 32, 194–201. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea. Energy Policy 2013, 62, 324–332. [Google Scholar] [CrossRef]
- Li, K.; Lin, B. Heterogeneity analysis of the effects of technology progress on carbon intensity in China. Int. J. Clim. Chang. Strateg. Manag. 2016, 8, 129–152. [Google Scholar] [CrossRef]
- Seiford, L.M.; Zhu, J. Modeling undesirable factors in efficiency evaluation. Eur. J. Oper. Res. 2002, 142, 16–20. [Google Scholar] [CrossRef]
- Sözen, A.; İhsan, A.; Özdemir, A. Assessment of operational and environmental performance of the thermal power plants in Turkey by using data envelopment analysis. Energy Policy 2010, 38, 6194–6203. [Google Scholar] [CrossRef]
- Wei, C.; Ni, J.; Du, L. Regional allocation of carbon dioxide abatement in China. China Econ. Rev. 2012, 23, 552–565. [Google Scholar] [CrossRef]
- Zhang, N.; Kong, F.; Choi, Y.; Zhou, P. The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants. Energy Policy 2014, 70, 193–200. [Google Scholar] [CrossRef]
- Honma, S.; Hu, J.L. A panel data parametric frontier technique for measuring total-factor energy efficiency: An application to Japanese regions. Energy 2014, 78, 732–739. [Google Scholar] [CrossRef]
- Yang, Q.; Wan, X.; Ma, H. Assessing green development efficiency of municipalities and provinces in China integrating models of super-efficiency DEA and malmquist index. Sustainability 2015, 7, 4492–4510. [Google Scholar] [CrossRef]
- Chen, S. The evaluation indicator of ecological development transition in China’s regional economy. Ecol. Indic. 2015, 51, 42–52. [Google Scholar] [CrossRef]
- Chen, C.; Han, J.; Fan, P. Measuring the Level of Industrial Green Development and Exploring Its Influencing Factors: Empirical Evidence from China’s 30 Provinces. Sustainability 2016, 8, 153. [Google Scholar] [CrossRef]
- Fei, R.; Lin, B. Energy efficiency and production technology heterogeneity in China’s agricultural sector: A meta-frontier approach. Technol. Forecast. Soc. Chang. 2016, 109, 25–34. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis. Energy Econ. 2013, 40, 549–559. [Google Scholar] [CrossRef]
- Lin, B.; Du, K. Energy and CO2 emissions performance in China’s regional economies: Do market-oriented reforms matter? Energy Policy 2015, 78, 113–124. [Google Scholar] [CrossRef]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and Undesirable Outputs: A Directional Distance Function Approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Watanabe, M.; Tanaka, K. Efficiency analysis of Chinese industry: A directional distance function approach. Energy Policy 2007, 35, 6323–6331. [Google Scholar] [CrossRef]
- Macpherson, A.J.; Principe, P.P.; Smith, E.R. A directional distance function approach to regional environmental-economic assessments. Ecol. Econ. 2010, 69, 1918–1925. [Google Scholar] [CrossRef]
- Halkos, G.E.; Tzeremes, N.G. A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions. Eur. J. Oper. Res. 2013, 227, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Ramli, N.A.; Munisamy, S.; Arabi, B. Scale directional distance function and its application to the measurement of eco-efficiency in the manufacturing sector. Ann. Oper. Res. 2013, 211, 381–398. [Google Scholar] [CrossRef]
- Njuki, E.; Bravo-Ureta, B.E. The Economic Costs of Environmental Regulation in U.S. Dairy Farming: A Directional Distance Function Approach. Am. J. Agric. Econ. 2015, 97, 1087–1106. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. A note on the evolution of directional distance function and its development in energy and environmental studies 1997–2013. Renew. &Sustain. Energy Rev. 2014, 33, 50–59. [Google Scholar]
- Chang, T.P.; Hu, J.L. Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China. Appl. Energy 2010, 87, 3262–3270. [Google Scholar] [CrossRef]
- Li, K.; Song, M. Green Development Performance in China: A Metafrontier Non-Radial Approach. Sustainability 2016, 8, 219. [Google Scholar] [CrossRef]
- Oh, D.H.; Lee, J.D. A metafrontier approach for measuring Malmquist productivity index. Empir. Econ. 2010, 38, 47–64. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, P.; Kung, C.C. Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis. Renew. Sustain. Energy Rev. 2015, 41, 584–593. [Google Scholar] [CrossRef]
- Battese, G.; Rao, D.; O’Donnell, C. A meta-frontier production function forestimation of technical efficiencies and technology gaps for firms operating under different technologies. J. Product. Anal. 2004, 21, 91–103. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lovell, K.; Pasurka, C. Multilateral productivity comparisons whensome outputs are undesirable: A nonparametric approach. Rev. Econ. Stat. 1989, 71, 90–98. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. New Directions: Efficiency and Productivity; Springer: Berlin, Germany, 2005. [Google Scholar]
- Oh, D.H. A metafrontier approach for measuring an environmentally sensitive productivity growth index. Energy Econ. 2010, 32, 146–157. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.L. A survey of data envelopment analysis in energy and environmental studies. Eur. J. Oper. Res. 2008, 189, 1–18. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Wang, H. Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach. Eur. J. Oper. Res. 2012, 221, 625–635. [Google Scholar] [CrossRef]
- O’Donnell, C.; Rao, D.; Battese, G. Metafrontier frameworks for the study offirm-level efficiencies and technology ratios. Empir. Econ. 2008, 34, 231–255. [Google Scholar] [CrossRef]
- Lin, B.; Du, K. Measuring energy efficiency under heterogeneous technologies using a latent class stochastic frontier approach: An application to Chinese energy economy. Energy 2014, 76, 884–890. [Google Scholar] [CrossRef]
- National Bureau of Statistics of the People’s Republic of China. The China Statistical Yearbook; National Bureau of Statistics of the People’s Republic of China: Beijing, China, 2015.
- Qin, B. Energy efficiency in China’s regional economies: perspectives from city. World Econ. Papers 2014, 1, 95–104. (In Chinese) [Google Scholar]
- Xiang, J. The estimation of the Chinese cities’ fixed capital stock. Master’s Thesis, Hunan University, Changsha, Hunan, China, 23 November 2011. [Google Scholar]
- National Bureau of Statistics of the People’s Republic of China. The China City Statistical Yearbook 2004-2013; National Bureau of Statistics of the People’s Republic of China: Beijing, China, 2004–2013.
- Lin, B.; Liu, H. CO2 mitigation potential in China’s building construction industry: A comparison of energy performance. Build. Environ. 2015, 94, 239–251. [Google Scholar] [CrossRef]
- Lv, B.; Yu, D. Improving Economic Efficiency within the Framework of China’s Tiered Development Model: An Analysis from a Spatial Perspective. Soc. Sci. China 2009, 6, 60–72. (In Chinese) [Google Scholar]
- Porter, M.E.; Linde, C.V.D. Toward a New Conception of the Environment-Competitiveness Relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Feng, F.; Lu, Z.; Jiang, W. An analysis on the trends, features and causes of industrial transfer among China’s eastern, central and western regions. Mod. Econ. Sci. 2010, 32, 1–10. (In Chinese) [Google Scholar]
- Li, J.; Lin, B. Inter-factor/inter-fuel substitution, carbon intensity, and energy-related CO2 reduction: Empirical evidence from China. Energy Econ. 2016, 56, 483–494. [Google Scholar] [CrossRef]
Input/Output | Variable | Unit | N | Mean | St. Dev | Min | Max |
---|---|---|---|---|---|---|---|
The Whole Sample | |||||||
Inputs | 109 RMB | 2750 | 186.1 | 229.3 | 4.7 | 1989.2 | |
103 person | 2750 | 536.3 | 811.8 | 40.5 | 7767.4 | ||
109 kWh | 2750 | 6.0 | 8.5 | 0.02 | 71.4 | ||
Desirable output | 109 RMB | 2750 | 85.4 | 105.4 | 3.2 | 1057.9 | |
Undesirable output | 103 ton | 2750 | 61.3 | 56.7 | 0.43 | 1057.3 | |
103 ton | 2750 | 23.5 | 25.6 | 0.05 | 451.6 | ||
Eastern Region | |||||||
Inputs | 109 RMB | 930 | 287.5 | 286.0 | 23.2 | 1867.2 | |
103 person | 930 | 981.9 | 1205.2 | 101.5 | 7767.4 | ||
109 kWh | 930 | 10.2 | 11.6 | 0.36 | 71.4 | ||
Desirable output | 109 RMB | 930 | 142.6 | 144.2 | 10.3 | 1057.9 | |
Undesirable output | 103 ton | 930 | 69.7 | 52.9 | 0.74 | 496.4 | |
103 ton | 930 | 21.7 | 22.5 | 0.05 | 290.4 | ||
Central Region | |||||||
Inputs | 109 RMB | 1000 | 144.9 | 172.0 | 7.8 | 1574.6 | |
103 person | 1000 | 358.3 | 352.9 | 63.8 | 7190.0 | ||
109 kWh | 1000 | 4.1 | 5.4 | 0.13 | 51.5 | ||
Desirable output | 109 RMB | 1000 | 64.1 | 63.6 | 7.6 | 587.1 | |
Undesirable output | 103 ton | 1000 | 52.6 | 52.1 | 0.43 | 1057.3 | |
103 ton | 1000 | 27.4 | 27.2 | 0.97 | 451.6 | ||
Western Region | |||||||
Inputs | 109 RMB | 820 | 121.5 | 172.5 | 4.7 | 1989.2 | |
103 person | 820 | 247.9 | 254.3 | 40.5 | 2299.9 | ||
109 kWh | 820 | 3.7 | 4.4 | 0.02 | 34.1 | ||
Desirable output | 109 RMB | 820 | 46.7 | 54.7 | 3.2 | 596.6 | |
Undesirable output | 103 ton | 820 | 62.6 | 64.3 | 0.48 | 629.3 | |
103 ton | 820 | 20.9 | 26.5 | 0.14 | 213.7 |
Year | Actual Economic Output | Target Economic Output | Expand Proportion | ||||||
---|---|---|---|---|---|---|---|---|---|
East | Central | West | East | Central | West | East | Central | West | |
2003 | 6922.5 | 3253.3 | 1820.5 | 9443.9 | 6024.9 | 4318.4 | 26.7% | 46.0% | 57.8% |
2004 | 8034.0 | 3741.0 | 2104.9 | 10474.1 | 6716.4 | 4747.3 | 23.3% | 44.3% | 55.7% |
2005 | 9177.2 | 4267.4 | 2478.4 | 12118.3 | 7561.1 | 5263.7 | 24.3% | 43.6% | 52.9% |
2006 | 10651.3 | 4853.0 | 2848.7 | 13320.2 | 8148.9 | 5182.5 | 20.0% | 40.4% | 45.0% |
2007 | 12166.7 | 5537.7 | 3307.2 | 14586.1 | 8497.1 | 5543.1 | 16.6% | 34.8% | 40.3% |
2008 | 13645.2 | 6390.7 | 3790.0 | 16149.6 | 8951.5 | 5810.3 | 15.5% | 28.6% | 34.8% |
2009 | 15001.0 | 7162.8 | 4350.4 | 17574.6 | 9666.7 | 6406.9 | 14.6% | 25.9% | 32.1% |
2010 | 17197.7 | 8439.4 | 5081.4 | 20198.4 | 11001.5 | 6928.7 | 14.9% | 23.3% | 26.7% |
2011 | 19178.9 | 9753.5 | 5893.5 | 22190.3 | 12156.2 | 7835.3 | 13.6% | 19.8% | 24.8% |
2012 | 20655.9 | 10653.4 | 6597.0 | 24514.7 | 14048.3 | 8654.3 | 15.7% | 24.2% | 23.8% |
Year | Rate of | ||||||||
---|---|---|---|---|---|---|---|---|---|
East | Central | West | East | Central | West | East | Central | West | |
2003 | 40 | 44 | 32 | 53 | 56 | 50 | 43.0% | 44.0% | 39.0% |
2004 | 37 | 38 | 29 | 56 | 62 | 53 | 39.8% | 38.0% | 35.4% |
2005 | 36 | 36 | 33 | 57 | 64 | 49 | 38.7% | 36.0% | 40.2% |
2006 | 36 | 37 | 29 | 57 | 63 | 53 | 38.7% | 37.0% | 35.4% |
2007 | 38 | 29 | 30 | 55 | 71 | 52 | 40.9% | 29.0% | 36.6% |
2008 | 32 | 24 | 26 | 61 | 76 | 56 | 34.4% | 24.0% | 31.7% |
2009 | 27 | 21 | 28 | 66 | 79 | 54 | 29.0% | 21.0% | 34.1% |
2010 | 40 | 15 | 21 | 53 | 85 | 61 | 43.0% | 15.0% | 25.6% |
2011 | 35 | 15 | 19 | 58 | 85 | 63 | 37.6% | 15.0% | 23.2% |
2012 | 38 | 34 | 22 | 55 | 66 | 60 | 40.9% | 34.0% | 26.8% |
Year | Number of Group Innovators | Meta Innovators | ||
---|---|---|---|---|
East | Central | West | ||
2003–2004 | 1 | 8 | 3 | No. |
2004–2005 | 2 | 3 | 5 | No. |
2005–2006 | 6 | 5 | 4 | No. |
2006–2007 | 5 | 9 | 6 | No. |
2007–2008 | 4 | 9 | 7 | No. |
2008–2009 | 11 | 7 | 7 | Longnan (W), Qingyang (W), Yulin (W) |
2009–2010 | 5 | 7 | 6 | Changsha (C), Daqing (C), Wuzhou (W) |
2010–2011 | 4 | 7 | 6 | Changsha (C), Dongying (E), Ziyang (W) |
2011–2012 | 0 | 0 | 0 | No. |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Lin, B. Green Economy Performance and Green Productivity Growth in China’s Cities: Measures and Policy Implication. Sustainability 2016, 8, 947. https://doi.org/10.3390/su8090947
Li J, Lin B. Green Economy Performance and Green Productivity Growth in China’s Cities: Measures and Policy Implication. Sustainability. 2016; 8(9):947. https://doi.org/10.3390/su8090947
Chicago/Turabian StyleLi, Jianglong, and Boqiang Lin. 2016. "Green Economy Performance and Green Productivity Growth in China’s Cities: Measures and Policy Implication" Sustainability 8, no. 9: 947. https://doi.org/10.3390/su8090947
APA StyleLi, J., & Lin, B. (2016). Green Economy Performance and Green Productivity Growth in China’s Cities: Measures and Policy Implication. Sustainability, 8(9), 947. https://doi.org/10.3390/su8090947