Agroecology and Ecological Intensification. A Discussion from a Metabolic Point of View
Abstract
:1. Introduction
2. Ecological Intensification from an Agroecological Perspective
2.1. Sustainability in Agroecosystems
2.2. Sustainability and Its Land Cost
3. Methodology
3.1. Data Collection
- The organic farms had full certification for the sale of organic products, a prerequisite based on the argument that during their conversion period, these growers will have acquired expertise and will therefore have refined their organic practices to achieve a certain degree of stability.
- The organic and conventional farms compared were close to each other (preferably adjoining), thus avoiding possible differences in factors such as soil type, aspect and topography.
- The pairs of organic and conventional crops to be compared were the same or similar in terms of the varieties used, production cycles (planting and harvesting calendar), production system (i.e., open air, greenhouse, tunnel, irrigation systems), training systems (i.e., same plant stocks, trellises, free-form) and type of end product (i.e., fresh, canned, juice).
3.2. Scenarios for the Evaluation of the Land Cost of Organic and Conventional Farming
Scenario 1. Land cost of conversion of Spanish farming to extensive Organic Farming
Scenario 2. Land cost of conversion of Spanish farming to intensive Organic Farming
3.3. Assessment of Land Cost
4. Results
4.1. Scenario 1. Land Cost of Conversion of the Spanish Agriculture to Extensive Organic Farming
4.2. Scenario 2. Land Cost of the Conversion of Spanish Agriculture to Intensive Organic Farming Based on Low-Entropy Internal Loops
5. Discussion
5.1. Discussion of the Different Strategies for the Conversion of Spanish Agriculture to Organic Farming (OF) with Respect to Land Cost
5.2. Limits to the Intensification of Organic Farming under Agroecological Criteria
6. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). Global Agriculture towards 2050. Report from the High-Level Expert Forum ‘How to Feed the World 2050’. 2009. Available online: http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf (accessed on 4 May 2014).
- Northwest Area Foundation. A Better Row to Hoe: The Economic, Environmental and Social Impact of Sustainable Agriculture; Northwest Area Foundation: St. Paul, MN, USA, 1994. [Google Scholar]
- Hewitt, T.; Smith, K. Intensive Agriculture and Environmental Quality: Examining the Newest Agricultural Myth; Henry Wallace Institute for Alternative Agriculture: Greenbelt, MD, USA, 1995. [Google Scholar]
- Reardon, T.; Crawford, E.; Kelly, V.; Diagana, B. Promoting Farm Investment for Sustainable Intensification of African Agriculture; Technical Paper No. 26; Michigan State University: East Lansing, MI, USA, 1995. Available online: http://pdf.usaid.gov/pdf_docs/pnaec391.pdf (accessed on 10 January 2014).
- Pretty, J. The sustainable intensification of agriculture. Nat. Resour. Forum 1997, 21, 247–256. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Pretty, J.; Bharucha, Z.P. Sustainable intensification in agricultural systems. Ann. Bot. 2014, 114, 1571–1596. [Google Scholar] [CrossRef] [PubMed]
- The Royal Society. Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture; The Royal Society: London, UK, 2009; pp. 1–72. [Google Scholar]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable intensification in agriculture: Premises and policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foundation for Rural Investment Support for Europe (RISE). Available online: http://www.risefoundation.eu/projects/sustainable-intensification) (accessed on 7 June 2016).
- Garnett, T.; Godfray, C. Sustainable Intensification in Agriculture. Navigating a Course through Competing Food System Priorities; Food Climate Research Network and the Oxford Martin Programme on the Future of Food, University of Oxford: Oxford, UK, 2012; Available online: http://www.fcrn.org.uk/sites/default/files/SI_report_final.pdf (accessed on 12 January 2014).
- Buckwell, A.; Nordang Uhre, A.; Williams, A.; Jana Poláková, J.; Blum, W.E.; Schiefer, J.; Lair, G.J.; Heissenhuber, A.; Schieβl, P.; Krämer, C.; et al. The Sustainable Intensification of European Agriculture; RISE Foundation: Brussels, Belgium, 2014; Available online: http://www.risefoundation.eu/images/files/2014/2014_SI_Brief.pdf (accessed on 30 October 2015).
- Lang, T.; Barling, D. Food security and food sustainability: Reformulating the debate. Geogr. J. 2012, 178, 313–326. [Google Scholar] [CrossRef]
- Loos, J.; Abson, D.J.; Chappell, M.J.; Hanspach, J.; Mikulcak, F.; Tichit, M.; Fischer, J. Putting meaning back into “sustainable intensification”. Front. Ecol. Environ. 2014, 12, 356–361. [Google Scholar] [CrossRef]
- Rudel, T.K.; Schneider, L.; Uriarte, M.; Turner, B.L., II; DeFries, R.; Lawrence, D.; Geoghegan, J.; Hecht, S.; Ickowitz, A.; Lambin, E.F.; et al. Agricultural intensification and changes in cultivated areas, 1970–2005. Proc. Natl. Acad. Sci. USA 2009, 106, 20675–20680. [Google Scholar] [CrossRef] [PubMed]
- Borlaug, N. Feeding a hungry world. Science 2007, 318, 359. [Google Scholar] [CrossRef] [PubMed]
- Cassman, K.G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. USA 1999, 96, 5952–5959. [Google Scholar] [CrossRef] [PubMed]
- Chevassus-au-Louis, B.; Griffon, M. La Nouvelle Modernité: Une Agriculture Productive à Haute Valeur Ecologique. 2008. Available online: http://clubdemeter.com/pdf/ledemeter/2008/la_nouvelle_modernite_une_agriculture_productive_a_haute_valeur_ecologique.pdf (accessed on 1 September 2016).
- Garbach, K.; Milder, J.C.; DeClerck, F.A.; de Wit, M.A.; Driscoll, L.; Gemmill-Herren, B. Examining multi-functionality for crop yield and ecosystem services in five systems of agroecological intensification. Int. J. Agric. Sustain. 2016, 22. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). State of Land and Water; FAO: Roma, Italy, 2011. [Google Scholar]
- UK Government Office for Science. Foresight. The Future of Global Food and Farming; Final Project Report; Government Office for Science London: London, UK, 2011.
- Titonell, P. Farming Systems Ecology. Towards Ecological Intensification of World Agriculture; Inaugural Lecture upon Taking up the Position of Chair in Farming Systems Ecology at Wageningen University on 16 May 2013; Wageningen University: Wageningen, The Netherlands, 2013; Available online: http://www.wur.nl/upload_mm/8/3/e/8b4f46f7-4656-4f68-bb11-905534c6946c_Inaugural%20lecture%20Pablo%20Tittonell.pdf (accessed on 20 March 2014).
- Gliessman, S.R. Agroecology. Ecological Processes in Sustainable Agriculture, 1st ed.; Ann Arbor Press: Chelsea, MA, USA, 1998. [Google Scholar]
- De Schüter, O. Report submitted by the Special Rapporteur on the right to food. In Human Rights Council. Sixteenth Session; United Nations, General Assembley: New York, NY, USA, 2010. [Google Scholar]
- Nicholls, C.I.; Altieri, M.A.; Vazquez, L. Agroecology: Principles for the Conversion and Redesign of Farming Systems. J. Ecosyst. Ecogr. 2016. [Google Scholar] [CrossRef]
- Georgescu-Roegen, N. The Entropy Law and the Economic Process, 1st ed.; Harvard University Press: Cambridge, UK, 1971. [Google Scholar]
- Ho, M.W. Are sustainable economic systems like organisms? In Sociobiology and Bioeconomics, 1st ed.; Koslowski, P., Ed.; Springer: Berlin, Germany, 1998; pp. 237–258. [Google Scholar]
- Ho, M.W.; Ulanowicz, R. Sustainable systems as organisms? BioSystems 2005, 82, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.W. Circular Thermodynamics of Organisms and Sustainable Systems. Systems 2013, 1, 30–49. [Google Scholar] [CrossRef]
- Guzmán, G.I.; de Molina, M.G. Energy in Agroecosystems. A Tool for Assessing Sustainability, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017; p. 399. [Google Scholar]
- Adriaensen, F.; Chardon, J.P.; De Blust, G.; Swinnen, E.; Villalba, S.; Gulinck, H.; Matthysen, E. The application of “least-cost” modelling as a functional landscape model. Landsc. Urban Plan. 2003, 64, 233–247. [Google Scholar] [CrossRef]
- Murphy, H.T.; Lovett-Doust, J. Context and connectivity in plant metapopulations and landscape mosaics: Does the matrix matter? Oikos 2004, 105, 3–14. [Google Scholar] [CrossRef]
- Poiani, K.A.; Richter, B.D.; Anderson, M.G.; Richter, H.E. Biodiversity conservation at multiple scales: Functional sites, landscapes, and networks. BioScience 2000, 50, 133–146. [Google Scholar] [CrossRef]
- Guzmán, G.I.; González de Molina, M. Preindustrial agriculture versus organic agriculture. The land cost of sustainability. Land Use Policy 2009, 26, 502–510. [Google Scholar] [CrossRef]
- Guzmán, G.I.; de Molina, M.G.; Alonso, A.M. The land cost of agrarian sustainability. An assessment. Land Use Policy 2011, 28, 825–835. [Google Scholar] [CrossRef]
- De Molina, M.G.; Toledo, V.M. Metabolismos, Naturaleza e Historia, 1st ed.; Icaria Editorial: Barcelona, Spain, 2011. [Google Scholar]
- De Molina, M.G.; Toledo, V.M. Social Metabolisms: A Theory on Socio-Ecological Transformations, 1st ed.; Springer: New York, NY, USA, 2014. [Google Scholar]
- Vandermeer, J.H. Intercropping. In Agroecology, 1st ed.; Carroll, C.R., Vandermeer, J.H., Rosset, P., Eds.; McGraw Hill: New York, NY, USA, 1990; pp. 481–516. [Google Scholar]
- MAGRAMA (Ministerio de Agricultura, Alimentación y Medio Ambiente). Anuario de Estadística. 2008. Available online: http://www.magrama.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica (accessed on 4 February 2016).
- Alonso, A.M.; Guzmán, G.I.; Foraster Pulido, L.; González Lera, R. Impacto socioeconómico y ambiental de la agricultura ecológica en el desarrollo rural. In Producción Ecológica. Influencia en el Desarrollo Rural, 1st ed.; Guzmán, G.I., García, A.R., Alonso, A.M., Perea, J.M., Eds.; MARM: Madrid, Spain, 2008; pp. 71–266. [Google Scholar]
- Alonso, A.M.; Guzmán, G.I. Comparison of the Efficiency and Use of Energy in Organic and Conventional Farming in Spanish Agricultural Systems. J. Sustain. Agric. 2010, 34, 312–338. [Google Scholar] [CrossRef]
- Asociación Nacional de Fabricantes de Fertilizantes (ANFFE). Evolución del Consumo de Fertilizantes Químicos en España. Available online: http://www.anffe.com/informaci%F3n%20sectorial/evoluci%F3n%20del%20consumo/index.html (accessed on 29 March 2014).
- MAGRAMA (Ministerio de Agricultura, Alimentación y Medio Ambiente). Balance del Nitrógeno en la Agricultura Española. Año 2013. Available online: http://www.mapama.gob.es/es/agricultura/temas/medios-de-produccion/bn2013_metodologia-resultados_tcm7-421744.pdf (accessed on 10 May 2016).
- Nicholls, C.I.; Parrella, M.; Altieri, M.A. The effects of a vegetational corridor on the abundance and dispersal of insect biodiversity within a northern California organic vineyard. Landsc. Ecol. 2001, 16, 133–146. [Google Scholar] [CrossRef]
- Miñarro, M.; Prida, E. Hedgerows surrounding organic apple orchards in north-west Spain: Potential to conserve beneficial insects. Agric. For. Entomol. 2013. [Google Scholar] [CrossRef]
- García-Ruiz, R.; González de Molina, M.; Guzmán, G.I.; Soto, D.; Infante, J. Guidelines for constructing nitrogen, phosphorus and potassium balances in historical agricultural systems. J. Sustain. Agric. 2012, 36, 650–682. [Google Scholar] [CrossRef]
- Moreno, M.M.; Lacasta, C.; Meco, R.; Moreno, C. Rainfed crop energy balance of different farming systems and crop rotations in a semi-arid environment: Results of a long-term trial. Soil Tillage Res. 2011, 114, 118–127. [Google Scholar] [CrossRef]
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; van Otterdijk, R.; Meybeck, A. Global Food Losses and Food waste. Extent, causes and prevention. In Study Conducted for the International Congress Save Food! At Interpack 2011. Düsseldorf, Germany; FAO: Roma, Italy, 2011. [Google Scholar]
- Food and Agriculture Organisation of United Nations (FAO). FAOSTAT—FAO Database for Food and Agriculture; Food and Agriculture Organisation of United Nations (FAO): Rome, Italy, 2015; Available online: http://faostat3.fao.org/ (accessed on 15 January 2015).
- Ponisio, L.C.; M’Gonigle, L.K.; Mace, K.C.; Palomino, J.; de Valpine, P.; Kremen, C. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B Biol. Sci. 2015, 282. [Google Scholar] [CrossRef]
- Kniss, A.R.; Savage, S.D.; Jabbour, R. Commercial Crop Yields Reveal Strengths and Weaknesses for Organic Agriculture in the United States. PLoS ONE 2016, 11, e0161673. [Google Scholar] [CrossRef] [PubMed]
- López Bellido, L. Abonado de los cereales de invierno: Trigo y cebada. In Guía Práctica de la Fertilización Racional de los Cultivos en España; Parte II; MAGRAMA: Madrid, Spain, 2010; pp. 123–132. [Google Scholar]
- Urbano Terrón, P. Abonado de las oleaginosas herbáceas: Girasol, soja y colza. Abonado de cultivos industriales: Remolacha azucarera y algodón. In Guía Práctica de la Fertilización Racional de los Cultivos en España; MAGRAMA: Madrid, Spain, 2010; Part II; pp. 165–171. [Google Scholar]
- Betrán Aso, J. Abonado de los cereales de primavera: Maíz. In Guía Práctica de la Fertilización Racional de los Cultivos en España; MAGRAMA: Madrid, Spain, 2010; Part II; pp. 135–141. [Google Scholar]
- Bermejo Corrales, J.L. Abonado de cultivos industriales: Remolacha azucarera y algodón. In Guía Práctica de la Fertilización Racional de los Cultivos en España; MAGRAMA: Madrid, Spain, 2010; Part II; pp. 155–164. [Google Scholar]
- Otero, I.; Marull, J.; Tello, E.; Diana, G.L.; Pons, M.; Coll, F.; Boada, M. Land abandonment, landscape, and biodiversity: Questioning the restorative character of the forest transition in the Mediterranean. Ecol. Soc. 2015, 20, 7. [Google Scholar] [CrossRef]
- Badgley, C.; Moghtader, J.; Quintero, E.; Zakem, E.; Chappell, M.J.; Avilés-Vázquez, K.; Samulon, A.; Perfecto, I. Organic agriculture and the global food supply. Renew. Agric. Food Syst. 2007, 22, 86–108. [Google Scholar] [CrossRef]
- Billen, G.; Garnier, J.; Lassaletta, L. The nitrogen cascade from agricultural soils to the sea: Modelling nitrogen transfers at regional watershed and global scales. Philos. Trans. R. Soc. B 2013, 368, 20130123. [Google Scholar] [CrossRef] [PubMed]
- Cussó, X.; Garrabou, R.; Tello, E. Social metabolism in an agrarian region of Catalonia (Spain) in 1860–1870: Flows, energy balance and land use. Ecol. Econ. 2006, 58, 49–65. [Google Scholar] [CrossRef]
- Rodale Institute. The Farming Systems Trials. Celebrating 30 Years. 2011. Available online: http://rodaleinstitute.org/assets/FSTbooklet.pdf (accessed on 11 February 2016).
- Smith, L.G.; Williams, A.G.; Pearce, B.D. The energy efficiency of organic agriculture: A review. Renew. Agric. Food Syst. 2015, 30, 280–301. [Google Scholar] [CrossRef]
- Aguilera, E.; Guzmán, G.I.; Alonso, A.M. Greenhouse gas emissions from conventional and organic cropping systems in Spain. I. Herbaceous crops. Agron. Sustain. Dev. 2015, 35, 713–724. [Google Scholar] [CrossRef]
- Aguilera, E.; Guzmán, G.I.; Alonso, A.M. Greenhouse gas emissions from conventional and organic cropping systems in Spain. II. Fruit tree orchards. Agron. Sustain. Dev. 2015, 35, 725–737. [Google Scholar] [CrossRef]
- EPA (Environmental Protection Agency). Carbon Sequestration by Hedgerows in the Irish Landscape. Climate Change Research Programme (CCRP) 2007–2013 Report Series No. 32; 2014. Available online: http://www.birdwatchireland.ie/LinkClick.aspx?fileticket=Csbqc9wMq1s%3D&tabid=1439 (accessed on 15 September 2016). [Google Scholar]
- Lecq, S.; Loisela, A.; Brischoux, F.; Mullin, S.J.; Bonnet, X. Importance of ground refuges for the biodiversity in agricultural hedgerows. Ecol. Indic. 2017, 72, 615–626. [Google Scholar] [CrossRef]
- Kumaraswamy, S.; Kunte, K. Integrating biodiversity and conservation with modern agricultural landscapes. Biodivers. Conserv. 2013, 22, 2735–2750. [Google Scholar] [CrossRef]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2013, 2, 587. [Google Scholar] [CrossRef] [PubMed]
- Gallaher, C.; Snapp, S.S. Organic management and legume presence maintained phosphorus bioavailability in a 17-year field crop experiment. Renew. Agric. Food Syst. 2015, 30, 211–222. [Google Scholar] [CrossRef]
- Bruggen, A.H.C.; van Finckh, M.R. Plant Diseases and Management Approaches in Organic Farming Systems. Annu. Rev. Phytopathol. 2016, 54, 25–54. [Google Scholar] [CrossRef] [PubMed]
Organic Yield/Conventional Yield | Land Cost for Yield Gap * (ha) (A) | Land Cost of Functional Biodiversity * (ha) (B) | Green Manure-Covered Surface (%) | Land Cost for Green Manure * (ha) (C) | Land Cost for Manure * (ha) (D) | Total Unit Land Cost * (ha) (A + B + C + D) | |
---|---|---|---|---|---|---|---|
Winter cereals, pulses, fodder and industrial crops | 0.63 | 0.60 | 0.05 | 0 | 0 | 0.141 | 0.791 |
Summer cereals, sugar beet and sugarcane | 0.69 | 0.45 | 0.05 | 0 | 0 | 1.241 | 1.741 |
Open-air vegetables | 0.75 | 0.34 | 0.05 | 0 | 0 | 2.092 | 2.482 |
Greenhouse vegetables | 0.72 | 0.38 | 0.05 | 0 | 0 | 1.694 | 2.124 |
Olive groves | 0.96 | 0.04 | 0.05 | 25 | 0.022 | 0.296 | 0.408 |
Vineyards | 0.91 | 0.10 | 0.05 | 5 | 0.004 | 0.146 | 0.300 |
Irrigated fruit trees | 0.60 | 0.66 | 0.05 | 35 | 0.031 | 1.930 | 2.671 |
Rainfed fruit trees | 0.91 | 0.10 | 0.05 | 0 | 0 | 0.098 | 0.248 |
N (kg/ha) | |||
---|---|---|---|
Organic | Conventional | % Organic/Conventional | |
Winter cereals, pulses, fodder and industrial crops (excluding barley) | 10 | 48 | 20% |
Summer cereals, sugar beet and sugarcane | 87 | 152 | 57% |
Open-air vegetables | 159 | 124 | 128% |
Greenhouse vegetables | 124 | 293 | 43% |
Olives | 29 | 67 | 43% |
Vineyards | 13 | 8 | 166% |
Irrigated fruit trees | 118 | 207 | 57% |
Rainfed fruit trees | 9 | 42 | 22% |
Current Surface (ha) | Total Land Cost by Yield Gap (A) (ha) | Total Land Cost by Green Manure (B) (ha) | Area with Manure Need (A + B) (ha) | N Applied from Manure (kg/ha) | Total N Need from Manure (t) | |
---|---|---|---|---|---|---|
Winter cereals, pulses, fodder and industrial crops (excluding barley) | 4,703,845 | 7,507,349 | 87,948 | 7,595,297 | 10 | 73,150 |
Summer cereals, sugar beet and sugarcane | 519,526 | 754,151 | 0 | 754,151 | 87 | 65,410 |
Open-air vegetables | 373,551 | 499,191 | 0 | 499,191 | 159 | 79,287 |
Greenhouse vegetables | 70,743 | 97,693 | 0 | 97,693 | 124 | 12,157 |
Olive groves | 2,450,471 | 2,546,899 | 0 | 2,546,899 | 29 | 73,680 |
Vineyards | 1,109,049 | 1,221,323 | 0 | 1221,323 | 13 | 16,436 |
Irrigated fruit trees | 562,000 | 932,240 | 0 | 932,240 | 118 | 110,060 |
Rainfed fruit trees | 674,929 | 744,337 | 0 | 744,337 | 9 | 6704 |
Total | 436,883 |
Land Cost for Yield Gap * (ha) (A) | Land Cost of Functional Biodiversity * (ha) (B) | Land Cost for Green Manure (in Fruit Orchard) * (ha) (C) | Land Cost for Manure * Scenario 2a (ha) (D) | Land Cost for Organic Fertilization * Scenario 2b (ha) (D’) | Total Unit Land Cost * Scenario 2a (ha) (A + B + C + D) | Total Unit Land Cost* Scenario 2b (ha) (A + B + C + D’) | |
---|---|---|---|---|---|---|---|
Winter cereals, pulses, fodder and industrial crops | 0 | 0.05 | 0 | 0.420 | 0.297 | 0.470 | 0.347 |
Summer cereals, sugar beet and sugarcane | 0 | 0.05 | 0 | 1.407 | 0.992 | 1.457 | 1.042 |
Open-air vegetables | 0 | 0.05 | 0 | 1.146 | 0.808 | 1.196 | 0.858 |
Greenhouse vegetables | 0 | 0.05 | 0 | 2.705 | 1.907 | 2.755 | 1.957 |
Olive groves | 0 | 0.05 | 0.088 | 0.000 | 0.000 | 0.138 | 0.138 |
Vineyards | 0 | 0.05 | 0.075 | 0.000 | 0.000 | 0.125 | 0.125 |
Irrigated fruit trees | 0 | 0.05 | 0.088 | 1.014 | 0.715 | 1.152 | 0.853 |
Rainfed fruit trees | 0 | 0.05 | 0.088 | 0.000 | 0.000 | 0.138 | 0.138 |
Current Surface (ha) | Total Land Cost by Green Manure (ha) | Area with N Need (ha) | N Need (kg/ha) | Total N Need (t) | ||||
---|---|---|---|---|---|---|---|---|
Scenario 2a | Scenario 2b | Scenario 2a | Scenario 2b | Scenario 2a | Scenario 2b | |||
Winter cereals, pulses, fodder and industrial crops (excluding barley) | 4,703,845 | 405,826 | 525,274 | 5,109,671 | 5,229,119 | 48 | 247,016 | 252,791 |
Summer cereals, sugar beet and sugarcane | 519,526 | 0 | 0 | 519,526 | 519,526 | 152 | 79,141 | 79,141 |
Open-air vegetables | 373,551 | 0 | 0 | 373,551 | 373,551 | 124 | 46,352 | 46,352 |
Greenhouse vegetables | 70,743 | 0 | 0 | 70,743 | 70,743 | 293 | 20,712 | 20,712 |
Olive groves | 2,450,471 | 0 | 0 | 2,450,471 | 2,450,471 | 0 | 0 | 0 |
Vineyards | 1,109,049 | 0 | 0 | 1,109,049 | 1,109,049 | 0 | 0 | 0 |
Irrigated fruit trees | 562,000 | 0 | 0 | 562,000 | 562,000 | 110 | 61,668 | 61,668 |
Rainfed fruit trees | 674,929 | 0 | 0 | 674,929 | 674,929 | 0 | 0 | 0 |
Total | 454,889 | 460,663 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González de Molina, M.; Guzmán Casado, G.I. Agroecology and Ecological Intensification. A Discussion from a Metabolic Point of View. Sustainability 2017, 9, 86. https://doi.org/10.3390/su9010086
González de Molina M, Guzmán Casado GI. Agroecology and Ecological Intensification. A Discussion from a Metabolic Point of View. Sustainability. 2017; 9(1):86. https://doi.org/10.3390/su9010086
Chicago/Turabian StyleGonzález de Molina, Manuel, and Gloria I. Guzmán Casado. 2017. "Agroecology and Ecological Intensification. A Discussion from a Metabolic Point of View" Sustainability 9, no. 1: 86. https://doi.org/10.3390/su9010086
APA StyleGonzález de Molina, M., & Guzmán Casado, G. I. (2017). Agroecology and Ecological Intensification. A Discussion from a Metabolic Point of View. Sustainability, 9(1), 86. https://doi.org/10.3390/su9010086