Immobilization of Heavy Metals in Sewage Sludge during Land Application Process in China: A Review
Abstract
:1. Introduction
1.1. Sewage Sludge Treatment and Disposal in China
1.2. Effect of Sewage Sludge Land Application
2. Risk Assessment of Heavy Metals
2.1. Characteristics of Heavy Metals
2.2. Soil Properties
2.2.1. pH
2.2.2. Redox Potential
2.2.3. OM in Soil
2.2.4. Organisms in Soil
3. Immobilization of Heavy Metals
3.1. Sewage Sludge Composting
3.2. Chemical Immobilization
3.2.1. Basic Compounds
3.2.2. Aluminosilicate Materials
Fly Ash
Zeolite
Bentonite
3.2.3. Phosphorus-Bearing Materials
3.2.4. Red Mud
3.2.5. Sulfide
4. Problems during the Immobilization Process of Heavy Metals in Sewage Sludge
4.1. Long-Term Stability or Persistence
4.2. Compatibility with the Environment
4.3. Synergistic Effects of Different Immobilizing Methods
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tytła, M.; Widziewicz, K.; Zielewicz, Z. Heavy metals and its chemical speciation in sewage sludge at different stages of processing. Environ. Technol. 2016, 37, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Karvelas, M.; Katsoyiannis, A.; Samara, C. Occurrence and fate of heavy metals in the wastewater treatment process. Chemosphere 2003, 53, 1201–1210. [Google Scholar] [CrossRef]
- Singh, R.P.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, S.; Tor, A.; Aydin, M.E. Investigation on the levels of heavy metals, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in sewage sludge samples and ecotoxicological testing. Clean Soil Air Water 2013, 41, 411–418. [Google Scholar] [CrossRef]
- Grøn, C. Organic contaminants from sewage sludge applied to agricultural soils. Environ. Sci. Pollut. Res. 2007, 14, 53–60. [Google Scholar] [CrossRef]
- Fernández, J.; Palza, C.; García-Gil, J.C.; Polo, A. Biochemical properties and barley yield in a semiarid Mediterranean soil amended with two kinds of sewage sludge. Appl. Soil Ecol. 2009, 42, 18–24. [Google Scholar] [CrossRef]
- Haynes, R.J.; Murtaza, G.; Naidu, R. Inorganic and organic constituents and contaminants of biosolids: Implications for land application. Adv. Agron. 2009, 104, 165–267. [Google Scholar] [CrossRef]
- Huanga, H.J.; Yuanb, X.Z. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. Bioresour. Technol. 2016, 200, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lei, M.; Chen, T.B.; Gao, D.; Zheng, G.D.; Guo, G.H.; Le, D.J. Current status and developing trends of the contents of heavy metals in sewage sludges in China. Front. Environ. Sci. Eng. 2014, 8, 719–728. [Google Scholar] [CrossRef]
- Hung, C.V.; Cam, B.D.; Mai, P.T.; Dzung, B.Q. Heavy metals and polycyclic aromatic hydrocarbons in municipal sewage sludge from a river in highly urbanized metropolitan area in Hanoi, Vietnam: Levels, accumulation pattern and assessment of land application. Environ. Geochem. Health 2015, 37, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Zennegg, M.; Munoz, M.; Schmid, P.; Gerecke, A.C. Temporal trends of persistent organic pollutants in digested sewage sludge (1993–2012). Environ. Int. 2013, 60, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Rizzardini, C.B.; Goi, D. Sustainability of domestic sewage sludge disposal. Sustainability 2014, 6, 2424–2434. [Google Scholar] [CrossRef]
- Li, J.; Luo, G.; Gao, J.; Yuan, S.; Du, J.; Wang, Z. Quantitative evaluation of potential ecological risk of heavy metals in sewage sludge from three wastewater treatment plants in main urban area of Wuxi, China. Chem. Ecol. 2014, 1–28. [Google Scholar] [CrossRef]
- Leng, L.; Yuan, X.; Huang, H.; Jiang, H.; Chen, X.; Zeng, G. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 2014, 167, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.H.; Yang, W.N.; Ngo, H.H.; Guo, W.S.; Jin, P.K.; Dzakpasu, M.; Yang, S.J.; Wang, Q.; Wang, X.C.; Ao, D. Current status of urban wastewater treatment plants in China. Environ. Int. 2016, 92–93, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhang, G.M.; Wang, H.C. Current state of sludge production, management, treatment and disposal in China. Water Res. 2015, 78, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Jing, H.; Ren, M.Z.; Zhang, S.K.; Cheng, J.; Yang, Z.R. Emission, mass balance, and distribution characteristics of PCDD/Fs and heavy metals during cocombustion of sewage sludge and coal in power plants. Environ. Sci. Technol. 2013, 47, 2123–2130. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.M.; Wu, L.H.; Huang, Y.J.; Luo, Y.M.; Christie, P. Total concentrations of heavy metals and occurrence of antibiotics in sewage sludges from cities throughout China. J. Soils Sediments 2014, 14, 1123–1135. [Google Scholar] [CrossRef]
- Liu, C.; Li, K.; Yu, L.Q.; Xu, Y.P.; Huang, B.B.; Wu, J.D.; Wang, Z.J. POPs and their ecological risk in sewage sludge of waste water treatment plants in Beijing, China. Stoch. Environ. Res. Risk Assess. 2013, 27, 1575–1584. [Google Scholar] [CrossRef]
- Zeng, L.X.; Wang, T.; Ruan, T.; Liu, Q.; Wang, Y.W.; Jiang, G.B. Levels and distribution patterns of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China. Environ. Pollut. 2012, 160, 88–94. [Google Scholar] [CrossRef] [PubMed]
- The State Council. The Twelfth Five-Year Plan of Facility Construction for Wastewater Treatment and Recycle. Available online: http://www.gov.cn/zwgk/2012-05/04/content_2129670.htm (assessed on 4 May 2012).
- Jin, L.Y.; Zhang, G.; Tian, H. Current state of sewage treatment in China. Water Res. 2014, 66, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.Y.; Luo, J.Y.; Chen, Y.G. Dilemma of Sewage Sludge Treatment and Disposal in China. Environ. Sci. Technol. 2015, 49, 4781–4782. [Google Scholar] [CrossRef] [PubMed]
- General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; Standardization Administration of the People’s Republic of China. Disposal of Sludge from Municipal Wastewater Treatment Plant—Quality of Sludge for Co-Landfilling (GB/T23485-2009), 1st ed.; Standards Press of China: Beijing, China, 2009; pp. 1–12.
- Ma, X.W.; Weng, H.X.; Zhang, J.J. Regional characteristrics and trend of heavy metals and nutrients of sewage sludges in China. Chin. J. Environ. Sci. 2011, 31, 1306–1313. [Google Scholar]
- Wang, X.; Chen, T.; Ge, Y.H.; Jia, Y.F. Studies on land application of sewage sludge and its limiting factors. J. Hazard. Mater. 2008, 160, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.Q.; Yu, R.L.; Dong, X.Y.; Hu, G.R.; Shang, X.S.; Wang, Q.; Li, H.W. Effects of municipal sewage sludge stabilized by fly ash on the growth of Manilagrass and transfer of heavy metals. J. Hazard. Mater. 2012, 217–218, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.Q.; Xiong, H.X.; Zhao, H.T.; Xu, J.; Feng, K. Structure and characteristics of dissolved organic matter derived from sewage sludge after treating by earthworm. Environ. Chem. 2010, 29, 1101–1105. [Google Scholar]
- Cheng, H.F.; Xu, W.P.; Liu, J.L.; Zhao, Q.J.; He, Y.Q.; Chen, G. Application of composted sewage sludge (CSS) as a soil amendment for turfgrass growth. Ecol. Eng. 2007, 29, 96–104. [Google Scholar] [CrossRef]
- Liu, J.Y.; Sun, S.Y. Total concentrations and different fractions of heavy metals in sewage sludge from Guangzhou, China. Trans. Nonferr. Metal Soc. China 2013, 23, 2397–2407. [Google Scholar] [CrossRef]
- Wang, S.P.; Liu, X.A.; Zheng, Q.; Yang, Z.L.; Zhang, R.X.; Yin, B.H. Analysis on sewage sludge characteristics and its feasibility for landscaping in Xi’an city. China Water Wastewater 2012, 28, 134–137. [Google Scholar]
- Nafez, A.H.; Nikaeen, M.; Kadkhodaie, S.; Hatamzadeh, M.; Moghim, S. Sewage sludge composting: Quality assessment for agricultural application. Environ. Monit. Assess. 2015, 187, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Akvarenga, P.; Mourinha, C.; Farto, M.; Santos, T.; Palma, P.; Sengo, J.; Morais, M.C.; Cunha-Queda, C. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors. Waste Manag. 2015, 40, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Walter, I.; Martínez, F.; Cala, V. Heavy metal speciation and phytotoxic effects of three representative sewage sludges for agricultural uses. Environ. Pollut. 2006, 139, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Moretti, S.M.L.; Bertoncini, E.I.; Vitti, A.C.; Alleoni, L.R.F.; Abreu-Junior, C.H. Concentration of Cu, Zn, Cr, Ni, Cd, and Pb in soil, sugarcane leaf and juice: Residual effect of sewage sludge and organic compost application. Environ. Monit. Assess. 2016, 188, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Ashmawy, A.M.; Ibrahim, H.S.; Moniem, S.M.A.; Saleh, T.S. Immobilization of some metals in contaminated sludge by zeolite prepared from local materials. Toxicol. Environ. Chem. 2012, 94, 1657–1669. [Google Scholar] [CrossRef]
- Shi, W.S.; Liu, C.G.; Ding, D.J.; Lei, Z.F.; Yang, Y.N.; Feng, C.P.; Zhang, Z.Y. Immobilization of heavy metals in sewage sludge by using subcritical water technology. Bioresour. Technol. 2013, 137, 18–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tüfenkçi, Ş.; Türkmen, Ö.; Sönmez, F.; Erdinç, Ç.; Şensoy, S. Effects of humic acid doses and application times on the plant growth, nutrient and heavy metal contents of lettuce grown on sewage sludge-applied soils. Fresenius Environ. Bull. 2006, 15, 295–300. [Google Scholar]
- Latare, A.M.; Kumar, O.; Singh, S.K.; Gupta, A. Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice-wheat system. Ecol. Eng. 2014, 69, 17–24. [Google Scholar] [CrossRef]
- Almendro-Candel, M.B.; Navarro-Pedreño, J.; Jordán, M.M.; Gómez, I.; Meléndez-Pastor, I. Use of municipal waste compost to reclaim limestone quarries mine spoils as soil amendments: Effects on Cd and Ni. J. Geochem. Explor. 2014, 144, 263–366. [Google Scholar] [CrossRef]
- Peña, A.; Mingorance, M.D.; Rossini-Oliva, S. Soil quality improvement by the establishment of a vegetative cover in a mine soil added with composted municipal sewage sludge. J. Geochem. Explor. 2015, 157, 178–183. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Xiao, K.; Liu, J.Y.; Wang, T.; Liu, G.R.; Wang, Y.W.; Jiang, G.B. Polychlorinated naphthalenes in sewage sludge from wastewater treatment plants in China. Sci. Total Environ. 2014, 490, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Lag-Brotons, A.J.; Soriano-Disla, J.M.; Gómez, I.; Navarro-Pedreño, J. Saline irrigation effects on Cynara cardunculus L. plants grown in Mediterranean soils. HortScience 2013, 48, 762–767. [Google Scholar]
- Pérez-Gimeno, A.; Navarro-Pedreño, J.; Almendro-Candel, M.B.; Gómez, I.; Manuel, M.; Jordán, M.M. Environmental consequences of the use of sewage sludge compost and limestone outcrop residue for soil restoration: Salinity and trace elements pollution. J. Soils Sediments 2016, 16, 1012–1021. [Google Scholar] [CrossRef]
- General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; Standardization Administration of the People’s Republic of China. Disposal of Sludge from Municipal Wastewater Treatment Plant-Quality of Sludge Used in Land Improvement (GB/T 24600-2009), 1st ed.; Standards Press of China: Beijing, China, 2009; pp. 1–5.
- Tella, M.; Doelsch, E.; Letourmy, P.; Chataing, S.; Cuoq, F.; Bravin, M.N.; Saint Macary, H. Investigation of potentially toxic heavy metals in different organic wastes used to fertilize market garden crops. Waste Manag. 2013, 33, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, E.A.; Mochón, M.C.; Jiménez Sánchez, J.C.; Ternero, R.M. Heavy metal extractable forms in sludge from wastewater treatment plants. Chemosphere 2002, 47, 765–775. [Google Scholar] [CrossRef]
- Ure, A.M.; Quevauviller, P.; Mantau, H.; Griepink, B. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BRC of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar] [CrossRef]
- Amir, S.; Hafidi, M.; Merlina, G.; Revel, J.C. Sequential extraction of heavy metals during composting of sewage sludge. Chemosphere 2005, 59, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Liu, X.G.; Dai, L.L.; Dai, X.H. Changes of heavy metal speciation during high-solid anaerobic digestion of sewage sludge. Bioresour. Technol. 2013, 131, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.H.; Yuan, X.Z.; Li, H.; Jiang, L.B.; Leng, L.J.; Chen, X.H.; Zeng, G.M.; Li, F.; Cao, L. Chemical speciation, mobility and phyto-accessibility of heavy metals in fly ash and slag from combustion of pelletized municipal sewage sludge. Sci. Total Environ. 2015, 536, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, A.; Lloréns, M.; Sáez, J.; Aguilar, M.I.; Ortuño, J.F.; Meseguer, V.F. Phytotoxicity and heavy metals speciation of stabilised sewage sludges. J. Hazard. Mater. 2004, 10, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.Z.; Leng, L.J.; Huang, H.J.; Chen, X.H.; Wang, H.; Xiao, Z.H.; Zhai, Y.B.; Chen, H.M.; Zeng, H.M. Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge. Chemosphere 2015, 120, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Florencio, I.; Maria, J.M.; Maria, D.S.; Antonio, G.; Leonor, L. Influence of organic matter transformations on the bioavailability of heavy metals in a sludge based compost. J. Environ. Manag. 2012, 95, s104–s109. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.W.C.; Li, K.; Fang, M.; Su, D.C. Toxicity evaluation of sewage sludges in Hong Kong. Environ. Int. 2001, 27, 373–380. [Google Scholar] [CrossRef]
- Weng, H.X.; Ma, X.W.; Fu, F.X.; Zhang, J.J.; Liu, Z.; Tian, L.X.; Liu, L.X. Transformation of heavy metal speciation during sludge drying: Mechanistic insights. J. Hazard. Mater. 2014, 265, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Wei, Y.H.; Liu, J.G. Comparative characterization of sewage sludge compost and soil: Heavy metal leaching characteristics. J. Hazard. Mater. 2016, 310, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Škarpa, P.; Pospíšilová, L.; Bjelková, M.; Fiala, K.; Hlušek, J. Effect of organic matter and pH on the mobility of some heavy metals in soils of permanent grasslands in the foothills of the Hruby Jesenik Mts. Ecol. Chem. Eng. A 2011, 18, 1347–1352. [Google Scholar]
- Liu, Q.; Wang, Z.J.; Tang, H.X. Research progress in heavy metals speciation and toxicity and bioavailability of heavy metals. Chin. J. Environ. Sci. 1996, 17, 89–92. [Google Scholar]
- Martinz, C.E.; Motto, H.L. Solubility of lead, zinc and copper added to mineral soils. Environ. Pollut. 2000, 107, 153–158. [Google Scholar] [CrossRef]
- Boekhold, A.E.; Temminghoff, E.J.M.; Van der Zee, S.E.A.T.M. Influence of electrolyte composition and pH on cadmium sorption by an acid sandy soil. Eur. J. Soil Sci. 1993, 44, 85–96. [Google Scholar] [CrossRef]
- Lucchini, P.; Quilliam, R.S.; De Luca, T.H.; Vamerali, T.; Jones, D.L. Increased bioavailability of metals in two contrasting agricultural soils treated with waste wood-derived biochar and ash. Environ. Sci. Pollut. Res. 2014, 21, 3230–3240. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.M.; Zhang, Y.M.; Lian, J.J.; Chao, J.Y.; Gao, Y.X.; Yang, F.; Zhang, L.Y. Impact of fly ash and phosphatic rock on metal stabilization and bioavailability during sewage sludge vermicomposting. J. Hazard. Mater. 2013, 136, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Zorpas, A.A.; Loizidou, M. Sawdust and natural zeolite as a bulking agent for improving quality of a composting product from anaerobically stabilized sewage sludge. Bioresour. Technol. 2008, 99, 7545–7552. [Google Scholar] [CrossRef] [PubMed]
- Tessier, A.; Campbell, P.G.C.; Bissonl, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Chen, Y.X. Heavy Metals Pollution in Soil-Plant System, 1st ed.; Science Press: Beijing, China, 2008. [Google Scholar]
- Wang, H.K. Advances of metals pollution study in soil. Environ. Chem. 1994, 10, 35–43. [Google Scholar]
- Liu, L.; Chen, H.; Cai, P.; Liang, W.; Huang, Q. Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. J. Hazard. Mater. 2009, 163, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Kulikowska, D.; Gusiatin, Z.M.; Bulkowska, K.; Kierklo, K. Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil. Chemosphere 2015, 136, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Kulikowska, D.; Gusiatin, Z.M.; Bulkowska, K.; Klik, B. Feasibility of using humic substances from compost to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from contaminated soilaged for different periods of time. J. Hazard. Mater. 2015, 300, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Su, D.C.; Wong, J.W.C.; Jagadeesan, H. Implications of rhizospheric heavy metals and nutrients for the growth of alfalfa in sludge amended soil. Chemosphere 2004, 56, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Sivapatham, P.; Lettimore, J.M.; Alva, A.K.; Jayaraman, K.; Harper, L.M. Chemical fractionation of Cu, Zn, Cd, Cr, and Pb in sewage sludge amended soils at the end of 65-d sorghum-sudan grass growth. J. Environ. Sci. Health Part A 2014, 49, 1304–1315. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhao, C.H.; Xing, M.Y.; Lin, Y.N. Enhancement stabilization of heavy metals (Zn, Pb, Cr and Cu) during vermifiltration of liquid-state sludge. Bioresour. Technol. 2013, 146, 649–655. [Google Scholar] [CrossRef] [PubMed]
- He, J.H.; Zhang, Y.Q.; CHeng, G. Research progress in technologies of heavy metals from urban sewage sludge. Appl. Chem. Ind. 2015, 44, 1541–1546. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef] [PubMed]
- Kalderis, D.; Aivalioti, M.; Gidarakos, E. Options for sustainable sewage sludge management in small wastewater treatment plants on islands: The case of Crete. Desalination 2010, 260, 211–217. [Google Scholar] [CrossRef]
- Neklyudov, A.D.; Fedotov, G.N.; Ivankin, A.N. Intensification of composting processes by aerobic microorganisms: A review. Appl. Biochem. Microbiol. 2008, 44, 6–18. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Paredes, C.; Marhuenda-Egea, F.C.; Perez-Espinosa, A.; Bernal, M.P.; Moral, R. Co-composting of distillery wastes with animal manures: Carbon and nitrogen transformations in the evaluation of compost stability. Chemosphere 2008, 72, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Rihani, M.; Malamis, D.; Bihaoui, B.; Etahiri, S.; Loizidou, M.; Assobhei, O. In-vessel treatment of urban primary sludge by aerobic composting. Bioresour. Technol. 2010, 101, 5988–5995. [Google Scholar] [CrossRef] [PubMed]
- Zorpas, A.A.; Inglezakis, V.J.; Loizidou, M. Heavy metals fractionation before, during and after composting of sewage sludge with natural zeolite. Waste Manag. 2008, 28, 2054–2060. [Google Scholar] [CrossRef] [PubMed]
- Lazzari, L.; Sperni, L.; Bertin, P.; Pavoni, B. Correlation between inorganic (heavy metals) and organic (PCBs and PAHs) micropollutant concentrations during sewage sludge composting process. Chemosphere 2000, 41, 427–435. [Google Scholar] [CrossRef]
- Zheng, G.D.; Gao, D.; Chen, T.B.; Luo, W. Stabilization of nickel and chromium in sewage sludge during aerobic composting. J. Hazard. Mater. 2007, 142, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Kulikowska, D. Kinetics of organic matter removal and humification progress during sewage sludge composting. Waste Manag. 2016, 49, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Esteban, J.; Escolástico, C.; Masaguer, A.; Moliner, A. Effects of sheep and horse manure and pine bark amendments on metal distribution and chemical properties of contaminated mine soils. Eur. J. Soil Sci. 2012, 63, 733–742. [Google Scholar] [CrossRef] [Green Version]
- Udom, B.E.; Mbagwu, J.S.C.; Adesodu, J.K.; Agbim, N.N. Distributions of zinc, copper, cadmium and lead in tropical ultisol after long-term disposal of sewage sludge. Environ. Int. 2004, 30, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Gichangi, E.M.; Mnkeni, P.N.S.; Muchaonyerwa, P. Evaluation of the heavy metals immobilization potential of pine bark-based composts. J. Plant Nutr. 2012, 35, 1853–1865. [Google Scholar] [CrossRef]
- He, M.M.; Tian, G.M.; Liang, X.Q. Phytotoxicity and speciation of copper, zinc and lead during the aerobic composting of sewage sludge. J. Hazard. Mater. 2009, 163, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.W.; Kalamdhad, A.S. Reduction of heavy metals during composting—A review. Int. J. Environ. Protect. 2012, 2, 36–43. [Google Scholar]
- Jung, G.B.; Kim, W.I.; Lee, J.S.; Yun, S.G. Effects of liming on uptake to crops of heavy metals in soils amended with industrial sewage sludge. Korean J. Environ. Agric. 2002, 21, 38–44. [Google Scholar] [CrossRef]
- Li, C.P.; Jiang, J.G.; Yin, M.; Gu, J. Influence of lime addition on sludge drying and metal passivation efficiency. China Water Wastewater 2010, 26, 28–31. [Google Scholar]
- Hsiau, P.C.; Lo, S.L. Effects of lime treatment on fractionation and extractabilities of heavy metals in sewage sludge. J. Environ. Sci. Health Part A 1997, 32, 2521–2536. [Google Scholar] [CrossRef]
- Singh, S.; Ram, L.C.; Masto, R.E.; Verma, S.K. A comparative evaluation of minerals and trace elements in the ashes from lignite, coal refuse, and biomass fired power plants. Int. J. Coal Geol. 2011, 87, 112–120. [Google Scholar] [CrossRef]
- Ram, L.C.; Masto, R.E. Fly ash for soil amelioration: A review on the influence of ash blending with inorganic and and organic amendments. Earth-Sci. Rev. 2014, 128, 52–74. [Google Scholar] [CrossRef]
- Sajwan, K.S.; Paramasivam, S.; Alva, A.K.; Adriano, D.C.; Hooda, P.S. Assessing the feasibility of land application of fly ash, sewage sludge and their mixtures. Adv. Environ. Res. 2003, 8, 77–91. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, P.; Bao, M.S.; Bai, L.Y. Study on passivation sewage sludge with coal fly ash. Environ. Sci. Technol. 2013, 36, 343–347. [Google Scholar]
- Bian, J.; Wang, Y.F.; He, J.G.; Yuan, Y.X.; Liu, T.T. Passivation of copper and zinc in sludge by microwave/alkali modified fly ash. China Water Wastewater 2016, 32, 91–95. [Google Scholar]
- Ibrahim, H.S.; Jamil, T.S.; Hegazy, E.Z. Application of zeolite prepared from Egyptian kaolin for the removal of heavy metals: II. Isotherm models. J. Hazard. Mater. 2010, 182, 842–847. [Google Scholar] [CrossRef] [PubMed]
- Castaldi, P.; Santona, L.; Enzo, S.; Melis, P. Sorption processes and XRD analysis of a natural zeolite exchanged with Pb2+, Cd2+ and Zn2+ cations. J. Hazard. Mater. 2008, 156, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Antoniadis, K.; Damalidis, K.; Dimirkou, A. Availability of Cu and Zn in an acidic sludge-amended soil as affected by zeolite application and liming. J. Soils Sediments 2012, 12, 396–401. [Google Scholar] [CrossRef]
- Hamidpour, M.; Afyuni, M.; Kalbasi, M.; Khoshgoftarmanes, A.H.; Inglezakis, V.J. Mobility and plant-availability of Cd(II) and Pb(II) adsorbed on zeolite and bentonite. Appl. Clay Sci. 2010, 48, 342–348. [Google Scholar] [CrossRef]
- Kosobucki, P.; Kruk, M.; Buszewski, B. Immobilization of selected heavy metals in sewage sludge by natural zeolites. Bioresour. Technol. 2008, 99, 5972–5976. [Google Scholar] [CrossRef] [PubMed]
- Tica, D.; Udovic, M.; Lestan, D. Immobilization of potentially toxic metals using different soil amendments. Chemosphere 2011, 85, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Usman, A.R.A.; Kuzyakov, Y.; Stahr, K. Effect on immobilizing substances and salinity on heavy metals availability to wheat grown on sewage sludge-contaminated soil. Soil Sediment Contam. 2005, 14, 329–344. [Google Scholar] [CrossRef]
- Kumararajaab, P.; Manjaiaha, K.M.; Dattaa, S.C.; Sarkarc, B. Remediation of metal contaminated soil by aluminium pillared bentonite: Synthesis, characterisation, equilibrium study and plant growth experiment. Appl. Clay Sci. 2017, 137, 115–122. [Google Scholar] [CrossRef]
- Yang, J.; Yu, K.; Liu, C. Chromium immobilization in soil using quaternary ammonium cations modified montmorillonite: Characterization and mechanism. J. Hazard. Mater. 2017, 321, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Xu, J.; Jiang, X.H.; Liu, C.; McCall, W.; Lu, J.L. Stabilization of heavy metals in soil using two organo-bentonites. Chemosphere 2017, 184, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Cao, X.D.; Wei, X.X.; Jia, J.P.; Yang, Y.L. Immobilization of Pb, Cu, Zn in a multi-metal contaminated soil with phosphorus bearing materials. J. Shanghai Jiaotong Univ. 2011, 29, 62–68. [Google Scholar] [CrossRef]
- Li, Y.Z.; Luo, L.; Yan, H.L.; Luo, H.L.; Zhang, J.C. Effects of phosphorus-bearing materials on fraction transform of heavy metals in lead and cadmium contaminated soil. Chin. J. Environ. Eng. 2015, 9, 2469–2472. [Google Scholar]
- Waterlota, C.; Pruvota, C.; Ciesielskib, H.; Douay, F. Effects of a phosphorus amendment and the pH of water used for watering on the mobility and phytoavailability of Cd, Pb and Zn in highly contaminated kitchen garden soils. Ecol. Eng. 2011, 37, 1081–1093. [Google Scholar] [CrossRef]
- Yuan, Y.; Chai, L.; Yang, Z.; Yang, W. Simultaneous immobilization of lead, cadmium, and arsenic in combined contaminated soil with iron hydroxyl phosphate. J. Soils Sediments 2017, 19, 1–8. [Google Scholar] [CrossRef]
- Huang, G.; Su, X.; Rizwan, M.S.; Zhu, Y.; Hu, H. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils. Environ. Sci. Pollut. Res. 2016, 23, 16845–16856. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wang, X.C.; Cao, X.D. Immobilization of heavy metals in contaminated soils with phosphate-, carbonate-, and silicate-based amendments: A review. Environ. Chem. 2012, 31, 16–25. [Google Scholar]
- Tang, P.; Zhou, Y.C.; Xie, Z.M. Immobilization of heavy metals in sludge using phosphoric acid and monobasic calcium phosphate. J. Zhejiang Univ.-Sci. A 2013, 14, 177–186. [Google Scholar] [CrossRef]
- Cao, X.; Wahbi, A.; Ma, L.; Li, B.; Yang, Y. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. J. Hazard. Mater. 2009, 164, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Ma, L.Q.; Rhue, D.R.; Appel, C.S. Mechanisms of lead, copper, and zinc retention by phosphate rock. Environ. Pollut. 2004, 131, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Schwartz, F.W. Lead immobilization by hydroxyapatite in aqueous solutions. J. Contam. Hydrol. 1994, 15, 187–206. [Google Scholar] [CrossRef]
- Raicevic, S.; Kaludjerovic-Radoicic, T.; Zouboulis, A.I. In situ stabilization of toxic metals in polluted soils using phosphates: Theoretical prediction and experimental verification. J. Hazard. Mater. 2005, 117, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Yu, L. Effectiveness of inorganic amendments in immobilizing containminants in sewage sludge. In Proceedings of the 2010 International Worshop on Diffuse Pollution-Management Measures and Control Technique, Huainan, China, 27–29 October 2010. [Google Scholar]
- Liang, Z.; Peng, X.J.; Luan, Z.K. Immobilization of Cd, Zn and Pb in sewage sludge using red mud. Environ. Earth Sci. 2012, 66, 1321–1328. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, R.; Qian, G.R. Study on heavy metal sabilization in sludge with bentonite and sulfide. Acta Sci. Nat. Univ. Sunyatseni 2007, 46, 41–43. [Google Scholar]
- Chen, S.L.; Tao, X.Y.; Liu, X.H.; Si, Y.B. Effect of the sulfide amendement on the speciation distributuion and bioavailability of heavy metals in municipal sludge. J. Saf. Environ. 2017, 17, 283–290. [Google Scholar] [CrossRef]
- Zorpas, A.A.; Constantinides, T.; Vlyssides, A.G.; Haralambous, I.; Loizidou, M. Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost. Bioresour. Technol. 2000, 72, 113–119. [Google Scholar] [CrossRef]
- Villasenor, J.; Rodriguez, L.; Fernandez, F.J. Composting domestic sewage sludge with natural zeolites in a rotary drum reactor. Bioresour. Technol. 2011, 102, 1447–1454. [Google Scholar] [CrossRef] [PubMed]
- Stylianou, M.A.; Inglezakis, V.J.; Moustakas, K.G.; Loizidou, M.D. Improvement of the quality of sewage sludge compost by adding natural clinoptilolite. Desalination 2008, 224, 240–249. [Google Scholar] [CrossRef]
- Fang, M.; Wong, J.W.C. Effects of lime amendment on availability of heavy metals and maturation in sewage sludge composting. Environ. Pollut. 1999, 106, 83–89. [Google Scholar] [CrossRef]
- Wang, X.; Chen, L.; Xia, S.; Zhao, J. Changes of Cu, Zn, and Ni chemical speciation in sewage sludge co-composted with sodium sulfide and lime. J. Environ. Sci. 2008, 20, 156–160. [Google Scholar] [CrossRef]
- Qiao, L.; Ho, G. The effects of clay amendment and composting on metal speciation in digested sludge. Water Res. 1997, 31, 951–964. [Google Scholar] [CrossRef]
Sampling Site | Description | pH | TN (%) | TP (%) | TK (%) | Ca (%) | OM (%) | Reference |
---|---|---|---|---|---|---|---|---|
Shenyang | Mixed sewage sludge | 6.73 | 2.26 | 1.15 | 0.082 | - | 35.6 | [26] |
Xiamen | Dehydrated sludge | 9.64 | 1.44 | 0.907 | - | - | 44.2 | [27] |
Yangzhou | Dehydrated sludge | 6.86 | 6.67 | 0.61 | - | - | 31.97 | [28] |
Beijing | Composted sludge | 6.86 | 1.1 | 0.795 | - | - | 21.0 | [29] |
Guangzhou | Dehydrated sludge of mixed wastewater | 7.85 | 3.11 | 2.04 | 1.08 | 3.71 | 32.2 | [30] |
Xi’an | Dehydrated sludge | 7.15 | 4.67 | 1.23 | 0.597 | - | 34.72 | [31] |
Iran | Anaerobic digested sewage sludge | 7.8 | 2.4 | - | - | - | 43.5 | [32] |
Portugal | Dehydrated sludge | 7.1 | 6.2 | 5.9 | 5.9 | 12.1 | 67.5 | [33] |
Spain | Anaerobic sewage sludge | 8.73 | 4.5 | 1.72 | 0.275 | - | 57.9 | [34] |
Brazil | Dehydrated sludge | 7.8 | 3.5 | 1.1 | 0.1 | - | - | [35] |
Egypt | Original sewage sludge | 5.2 | - | - | - | - | - | [36] |
Japan | Dewatered anaerobically digested sewage sludge | 6.43 | - | 1.715 | - | - | 46.09 | [37] |
Porland | Dewatered sewage sludge | 7.4 | - | - | - | - | 57.8 | [1] |
Turkey | Obtained from sewage sludge treatment facility | 8.22 | 1.75 | 0.1148 | 0.21 | - | 21.4 | [38] |
Mean in China | 193 sewage sludge samples from 111 cities | - | 3.02 | 1.57 | 0.69 | - | 41.15 | [25] |
Sampling Site | Description | Cd | Pb | Cu | Zn | Cr | Ni | Mn | As | Hg | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
Shenyang | Mixed sewage sludge | 5.0 | 255 | 170 | 290 | [26] | |||||
Xiamen | Dehydrated sewage sludge | 2.75 | 22.2 | 157 | 397 | 42.9 | 83.8 | 513 | 1.05 | [27] | |
Yangzhou | Dehydrated sewage sludge | 2.41 | 137.94 | 251.52 | 1177.62 | 1312.75 | 79.68 | [28] | |||
Beijing | Sewage sludge Compost | 242 | 9.11 | 7.73 | 79.1 | [29] | |||||
Guangzhou | Dehydrated sludge of mixed wastewater | 5.99 | 81.2 | 4567 | 785 | 121 | 148 | 1844 | [30] | ||
Zhaoqing | Dehydrated domestic sewage sludge | nd | 17.4 | 93 | 509 | 15.5 | 51 | 970 | [30] | ||
Xi’an | Dehydrated sewage sludge | 10.48 | 165.5 | 216.9 | 1101 | 772 | 46.5 | 17.0 | 3.42 | [31] | |
Italy | Domestic sewage sludge | 1.357 | 70.69 | 456.6 | 1260.8 | 39.58 | 31.21 | 0.58 | [12] | ||
Iran | Dewatered, anaerobically digested sewage sludge | 4.1 | 169 | 330 | 1908 | 213 | 110 | [32] | |||
Portugal | Dewatered sewage sludge | 1.0 | <5.6 | 140.8 | 757.2 | <5.6 | 22.6 | <1.3 | [33] | ||
Spain | Anaerobic sewage sludge | 2.5 | 164 | 202 | 497 | 25.5 | 20.5 | [34] | |||
Brazil | Dewatered sewage sludge | 1.6 | 26.3 | 202 | 690 | 260 | 54.6 | [35] | |||
Brazil | Composting above mentioned sewage sludge | 1.2 | 19.7 | 152 | 517 | 195 | [35] | ||||
Egypt | Original sewage sludge | 4.0 | 750.0 | 538.0 | 1204.0 | 81.0 | [36] | ||||
Japan | Dewatered anaerobically digested sewage sludge | 73.02 | 122.14 | 415.00 | 750.65 | 150.18 | 638.56 | [37] | |||
France | Activated sewage sludge | 0.60 | 19.7 | 149 | 548 | 27.6 | 26.4 | [46] | |||
Porland | Dewatered sewage sludge | 3.5 | 167.8 | 216.4 | 1477.6 | 44.5 | 23.5 | 0.8 | [38] | ||
Turkey | Obtained from sewage sludge treatment facility | 0.55 | 198 | 860 | 30.6 | 38.5 | 390 | [39] | |||
Mean in China | 107 sewage sludge samples from 48 cities | 3.88 | 112.2 | 499.1 | 2088 | 259.2 | 166.9 | 25.23 | 3.18 | [9] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wang, X.-q.; Wang, D.-f. Immobilization of Heavy Metals in Sewage Sludge during Land Application Process in China: A Review. Sustainability 2017, 9, 2020. https://doi.org/10.3390/su9112020
Zhang X, Wang X-q, Wang D-f. Immobilization of Heavy Metals in Sewage Sludge during Land Application Process in China: A Review. Sustainability. 2017; 9(11):2020. https://doi.org/10.3390/su9112020
Chicago/Turabian StyleZhang, Xuan, Xian-qing Wang, and Dong-fang Wang. 2017. "Immobilization of Heavy Metals in Sewage Sludge during Land Application Process in China: A Review" Sustainability 9, no. 11: 2020. https://doi.org/10.3390/su9112020
APA StyleZhang, X., Wang, X.-q., & Wang, D.-f. (2017). Immobilization of Heavy Metals in Sewage Sludge during Land Application Process in China: A Review. Sustainability, 9(11), 2020. https://doi.org/10.3390/su9112020