The Impact of Infrastructure Stock Density on CO2 Emissions: Evidence from China Provinces
Abstract
:1. Introduction
- (i)
- Does the accumulation of materials in infrastructure have a significant impact on CO2 emissions? What is the extent of the impact comparing to other socioeconomic factors?
- (ii)
- Will the impact vary across different levels of development and regions?
2. Materials and Methods
2.1. Material Stocks of Infrastructure and CO2 Emissions
2.2. A STIRPAT Model for Correlation Analysis
3. Results and Discussion
3.1. Panel Unit Root Test, Cointegration Test and Model Selection
3.2. Panel Regression Results in National and Regional Scales
3.3. Discussion and Policy Implications
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, G.; Bangs, C.E.; Muller, D.B. Stock dynamics and emission pathways of the global aluminium cycle. Nat. Clim. Chang. 2013, 3, 338–342. [Google Scholar] [CrossRef]
- Muller, D.B.; Liu, G.; Lovik, A.N.; Modaresi, R.; Pauliuk, S.; Steinhoff, F.S.; Brattebø, H. Carbon Emissions of Infrastructure Development. Environ. Sci. Technol. 2013, 47, 11739–11746. [Google Scholar] [CrossRef] [PubMed]
- Lucon, O.; Ürge-Vorsatz, D.; Zain Ahmed, A.; Akbari, H.; Bertoldi, P.; Cabeza, L.F.; Eyre, N.; Gadgil, A.; Harvey, L.D.D.; Jiang, Y.; et al. Buildings. In Climate Change 2014: Mitigation of Climate Change; Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; Available online: http://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_chapter9.pdf (accessed on 29 July 2017).
- Seto, K.C.; Dhakal, S.; Bigio, A.; Blanco, H.; Delgado, G.C.; Dewar, D.; Huang, L.; Inaba, A.; Kansal, A.; Lwasa, S.; et al. Human Settlements, Infrastructure and Spatial Planning. In Climate Change 2014: Mitigation of Climate Change; Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; Available online: http://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_chapter12.pdf (accessed on 29 July 2017).
- United Nations. World Urbanization Prospect: The 2014 Revision; United Nations: New York, NY, USA, 2015; Available online: https://esa.un.org/unpd/wup/Publications/Files/WUP2014-Report.pdf (accessed on 29 July 2017).
- Van Vuuren, D.P.; Stehfest, E.; den Elzen, M.G.J.; Kram, T.; van Vliet, J.; Deetman, S.; Isaac, M.; Goldewijk, K.K.; Hof, A.; Beltran, A.M.; et al. RCP2.6: Exploring the possibility to keep global mean temperature increase below 2 °C. Clim. Chang. 2011, 109, 95. [Google Scholar] [CrossRef]
- Poumanyvong, P.; Kaneko, S. Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis. Ecol. Econ. 2010, 70, 434–444. [Google Scholar] [CrossRef]
- Sharma, S.S. Determinants of carbon dioxide emissions: Empirical evidence from 69 countries. Appl. Energy 2011, 88, 376–382. [Google Scholar] [CrossRef]
- Fang, C.L.; Wang, S.J.; Li, G.D. Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities. Appl. Energy 2015, 158, 519–531. [Google Scholar] [CrossRef]
- Yang, W.; Li, T.; Cao, X. Examining the impacts of socio-economic factors, urban form and transportation development on CO2, emissions from transportation in China: A panel data analysis of China’s provinces. Habitat. Int. 2015, 49, 212–220. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Huo, H. Temporal and spatial variations in on-road energy use and CO2 emissions in China, 1978–2008. Energy Policy 2013, 61, 544–550. [Google Scholar] [CrossRef]
- Lin, C.; Liu, G.; Müller, D.B. Characterizing the role of built environment stocks in human development and emission growth. Resour. Conserv. Recycl. 2017, 123, 67–72. [Google Scholar] [CrossRef]
- Han, J.; Xiang, W.N. Analysis of material stock accumulation in China’s infrastructure and its regional disparity. Sustain. Sci. 2013, 8, 553–564. [Google Scholar] [CrossRef]
- Pauliuk, S.; Müller, D.B. The role of in-use stocks in the social metabolism and in climate change mitigation. Glob. Environ. Chang. 2014, 24, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.J.; Yu, D.Y. Assessing urban environmental resources and services of Shenzhen, China: A landscape-based approach for urban planning and sustainability. Landsc. Urban Plan. 2014, 125, 290–297. [Google Scholar] [CrossRef]
- National Bureau Statistics of the People’s Republic of China. China Statistical Yearbook 2016; National Bureau Statistics of China: Beijing, China, 2016. Available online: http://www.stats.gov.cn/tjsj/ndsj/2016/indexch.htm (accessed on 29 July 2017).
- U.S. Geological Survey. Mineral Commodity Summaries; USGS: Sioux Falls, SD, USA, 2014. Available online: http://minerals.usgs.gov/minerals/pubs/commodity/cement/mcs-2014-cemen.pdf (accessed on 29 September 2017).
- Davis, S.J.; Caldeira, K.; Matthews, H.D. Future CO2 emissions and climate change from existing energy infrastructure. Science 2010, 329, 1330–1333. [Google Scholar] [CrossRef] [PubMed]
- The Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Meng, X.; Han, J.; Huang, C. An improved vegetation adjusted nighttime light urban index and its application in quantifying spatiotemporal dynamics of carbon emissions in China. Remote Sens. 2017, 9, 829. [Google Scholar] [CrossRef]
- National Bureau Statistics of China. China Energy Statistical Yearbook; China Statistics Press: Beijing, China, 1996–2014.
- Muller, D.B. Stock dynamics for forecasting material flows: Case study for housing in The Netherlands. Ecol. Econ. 2006, 59, 142–156. [Google Scholar] [CrossRef]
- Gerst, M.D. Linking material flow analysis and resource policy via future scenarios of in-use stock: An example for copper. Environ. Sci. Technol. 2009, 43, 6320–6325. [Google Scholar] [CrossRef] [PubMed]
- Krausmann, F.; Richter, R.; Eisenmenger, N. Resource use in small island states: Material flows in Iceland and Trinidad and Tobago, 1961–2008. J. Ind. Ecol. 2014, 18, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Han, J.; Chen, W.Q. Changing patterns and determinants of infrastructures’ material stocks in Chinese cities. Resour. Conserv. Recycl. 2016, 123, 47–53. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Holdren, J.P. Impact of population growth. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Dietz, T.; Rosa, E.A. Rethinking the environmental impacts of population, affluence, and technology. Hum. Ecol. Rev. 1994, 1, 277–300. [Google Scholar]
- Dietz, T.; Rosa, E.A. Effects of population and affluence on carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 1997, 94, 175–179. [Google Scholar] [CrossRef] [PubMed]
- York, R. Asymmetric effects of economic growth and decline on CO2 emissions. Nat. Clim. Chang. 2012, 2, 762–764. [Google Scholar] [CrossRef]
- Granger, C.W.J.; Newbold, P. Spurious regressions in econometrics. J. Econ. 1974, 2, 111–120. [Google Scholar] [CrossRef]
- Gutierrez, L. On the power of panel cointegration tests: A Monte Carlo comparison. Econ. Lett. 2003, 80, 105–111. [Google Scholar] [CrossRef]
- Pedroni, P. Panel cointegration: Asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesus. IDEAS 2004, 20, 597–625. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, UK, 2002. [Google Scholar]
- Du, G.Y.; Cai, Y.L.; Li, S.C. Fossil-fuel carbon emission intensity change of each province in China during 1997–2007. Geogr. Inf. Sci. 2010, 26, 76–81. (In Chinese) [Google Scholar]
- Liu, Y.C. Land Resources Survey Data sets of China; National Land Resource Survey Office: Beijing, China, 2000. (In Chinese)
- Wang, S.; Fang, C.; Wang, Y. Spatiotemporal variations of energy-related CO2 emissions in China and its influencing factors: An empirical analysis based on provincial panel data. Renew. Sustain. Energy Rev. 2016, 55, 505–515. [Google Scholar] [CrossRef]
- Hankey, S.; Marshall, J.D. Impacts of urban form on future us passenger-vehicle greenhouse gas emissions. Energy Policy 2010, 38, 4880–4887. [Google Scholar] [CrossRef]
- Makido, Y.; Dhakal, S.; Yamagata, Y. Relationship between urban form and CO2 emissions: Evidence from fifty Japanese cities. Urban Clim. 2012, 2, 55–67. [Google Scholar] [CrossRef]
- Chip Card Interface Device (CCID). Consulting 2011: The White Paper of New Energy Industry Maps in China; CCID: Beijing, China; Available online: http://data.ccidconsulting.com/ei/bps/xny/H681104index_1.htm (accessed on 24 May 2016). (In Chinese)
- Deng, X.; Zhan, J.; Rui, C. The patterns and driving forces of urban sprawl in China. IEEE Int. Geosci. Remote Sens. Symp. 2005, 3, 1511–1513. [Google Scholar]
- Ye, Q. The transfer trend and undertaking competitive situation of China’s regional industry. Econ. Geogr. 2016, 34, 91–97, (In Chinese with English Abstract). [Google Scholar]
- Rovense, F.; Perez, M.S.; Amelio, M.; Ferraro, V.; Scornaienchi, N.M. Feasibility analysis of a solar field for a closed unfired joule-brayton cycle. Int. J. Heat. Technol. 2017, 35, 166–171. [Google Scholar] [CrossRef]
- Noussan, M.; Jarre, M.; Poggio, A. Real operation data analysis on district heating load patterns. Energy 2017, 129, 70–78. [Google Scholar] [CrossRef]
- Ningxia has become the first comprehensive new energy demonstration area in China. China News. 17 September 2012. Available online: http://finance.chinanews.com/ny/2012/09-17/4189004.shtml (accessed on 3 December 2017). (In Chinese).
- Thamsiriroj, T.; Smyth, H.; Murphy, J.D. A roadmap for the introduction of gaseous transport fuel: A case study for renewable natural gas in Ireland. Renew. Sustain. Energy Rev. 2011, 15, 4642–4651. [Google Scholar] [CrossRef]
- Nastasi, B.; Basso, G.L. Power-to-gas integration in the transition towards future urban energy systems. Int. J. Hydrogen Energy 2017, 42, 23933–23951. [Google Scholar] [CrossRef]
Variable | Definition (Unit) | Mean Value | Standard Deviation | Maximum | Minimum |
---|---|---|---|---|---|
CE | CO2 emissions from energy consumption (million tons) | 217.407 | 176.826 | 981.956 | 6.334 |
P | Population (million) | 44.167 | 28.139 | 116.250 | 4.810 |
A | GDP per capita (yuan RMB) | 14,302.580 | 11,581.120 | 66,177.720 | 1.205 |
U | Urbanization level (%) | 44.201 | 16.490 | 89.607 | 14.992 |
EI | Energy intensity (ton/10,000 yuan) | 1.248 | 0.695 | 5.455 | 0.376 |
IND | Share of industry in GDP (%) | 45.295 | 8.017 | 60.133 | 19.736 |
MSD | Material stock per built-up area (million tons/km2) | 0.146 | 0.072 | 0.420 | 0.036 |
Variable | LLC Test | TPS Test | ADF-Fisher Test | PP-Fisher Test | ||||
---|---|---|---|---|---|---|---|---|
Level | First Difference | Level | First Difference | Level | First Difference | Level | First Difference | |
ln(CE) | 0.51 | −8.82 *** | 7.27 | −8.74 *** | 16.76 | 185.28 *** | 6.25 | 199.71 *** |
ln(P) | −5.31 *** | −8.69 *** | 0.18 | −11.78 *** | 81.95 * | 233.05 *** | 294.46 *** | 243.77 *** |
ln(A) | 4.57 | −4.27 *** | 12.17 | −3.02 *** | 20.17 | 82.30 ** | 14.88 | 77.57 ** |
ln(EI) | −0.70 | −12.43 *** | 2.17 | −11.19 *** | 50.60 | 233.43 *** | 58.34 | 247.68 *** |
ln(MSD) | 6.09 | −11.47 *** | 12.74 | −11.09 *** | 13.21 | 244.32 *** | 21.91 | 98.31 *** |
ln(IND) | −0.64 | −13.26 *** | 3.16 | −11.29 *** | 32.54 | 229.98 *** | 22.30 | 248.15 *** |
ln(U) | −5.90 *** | −15.31 *** | 2.56 | −13.19 *** | 57.87 | 268.28 *** | 48.15 | 326.27 *** |
Test | All Provinces | Eastern Region | Central Region | Western Region |
---|---|---|---|---|
Panel (within dimension) | ||||
Panel v-Statistic | −4.21 | −2.44 | −2.05 | −2.80 |
Panel rho-Statistic | 6.21 | 3.67 | 3.27 | 3.81 |
Panel PP-Statistic | −11.63 *** | −12.51 *** | −3.65 *** | −5.11 *** |
Panel ADF-Statistic | −6.92 *** | −6.43 *** | −2.24 ** | −3.55 *** |
Group (between-dimension) | ||||
Group rho-Statistic | 7.62 | 4.66 | 4.43 | 5.02 |
Group PP-Statistic | −9.68 *** | −21.55 *** | −11.21 *** | −8.69 *** |
Group ADF-Statistic | −9.81 *** | −9.25 *** | −2.66 ** | −3.56 *** |
Test | All Provinces | Eastern Region | Central Region | Western Region |
---|---|---|---|---|
Hausman test | 135.85 *** | 42.79 *** | 179.85 *** | 71.52 *** |
Likelihood test | 35.75 *** | 22.77 *** | 25.69 *** | 39.19 *** |
Model type | Fixed effect | Fixed effect | Fixed effect | Fixed effect |
Estimation method | LSDV | LSDV | LSDV | LSDV |
Variables | Whole China | Eastern Region | Central Region | Western Region |
---|---|---|---|---|
Constant | −19.11 *** | −20.51 *** | −13.42 *** | −17.94 *** |
(0.69) | (1.15) | (1.45) | (1.05) | |
ln(P) | 1.49 *** | 1.46 *** | 1.11 *** | 1.71 *** |
(0.05) | (0.07) | (0.14) | (0.09) | |
ln(A) | 1.33 *** | 1.56 *** | 0.89 *** | 0.89 *** |
(0.09) | (0.19) | (0.21) | (0.19) | |
ln(A)2 | −0.02 *** | −0.02 ** | −0.01 | 0.01 |
(0.01) | (0.01) | (0.01) | (0.01) | |
ln(EI) | 0.86 *** | 0.84 *** | 0.86 *** | 0.79 *** |
(0.02) | (0.03) | (0.02) | (0.03) | |
ln(IND) | 0.21 *** | 0.14 ** | 0.29 *** | 0.23 *** |
(0.03) | (0.06) | (0.05) | (0.06) | |
ln(U) | −0.01 | −0.08 *** | 0.06 | −0.01 |
(0.02) | (0.03) | (0.05) | (0.03) | |
ln(MSD) | −0.11 *** | −0.34 *** | 0.14 ** | 0.06 |
(0.02) | (0.04) | (0.04) | (0.04) | |
R2 | 0.97 | 0.97 | 0.96 | 0.96 |
F-statistic | 4484.93 *** | 5438.08 *** | 2641.29 *** | 3240.67 *** |
SSR | 1.35 | 0.49 | 0.17 | 0.32 |
Observations | 551 | 228 | 152 | 171 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Meng, X.; Zhang, Y.; Liu, J. The Impact of Infrastructure Stock Density on CO2 Emissions: Evidence from China Provinces. Sustainability 2017, 9, 2312. https://doi.org/10.3390/su9122312
Han J, Meng X, Zhang Y, Liu J. The Impact of Infrastructure Stock Density on CO2 Emissions: Evidence from China Provinces. Sustainability. 2017; 9(12):2312. https://doi.org/10.3390/su9122312
Chicago/Turabian StyleHan, Ji, Xing Meng, Yanqi Zhang, and Jiabin Liu. 2017. "The Impact of Infrastructure Stock Density on CO2 Emissions: Evidence from China Provinces" Sustainability 9, no. 12: 2312. https://doi.org/10.3390/su9122312
APA StyleHan, J., Meng, X., Zhang, Y., & Liu, J. (2017). The Impact of Infrastructure Stock Density on CO2 Emissions: Evidence from China Provinces. Sustainability, 9(12), 2312. https://doi.org/10.3390/su9122312