The Role of Renewable Energy in the Promotion of Circular Urban Metabolism
Abstract
:1. Introduction
2. Materials and Methods
3. Urban Metabolism
Methods for Assessing Urban Metabolism
4. Energy in the Cities
4.1. Renewable Energy in the Cities
4.1.1. Biofuels
4.1.2. Biomass
4.1.3. Biogas
4.1.4. Incineration
4.1.5. Wind Power
4.1.6. Geothermal Energy
4.1.7. Photovoltaic Energy
4.1.8. Solar Thermal
4.1.9. Other Technologies
4.1.10. Integration of Technologies
4.1.11. City Projects
4.1.12. Maturity of Technology
5. Discussion
- The high density of the population concentrated in cities offers opportunities for achieving economies of scale [11], promotion of the development of new jobs, and the growth of the gross domestic product (GDP) [128]. Llera and colleagues [129], mention that the economies of scale at the same time influences jobs requirements between 1.7 and 14 compared with natural gas or coal power plants.
- Increasing GDP and decreasing the intermediate consumption of energy will increase the value added [40].
- It is appropriate to perform an analysis and to suggest actions (of emission reduction or energy savings) at the local level (cities, towns or urban districts) [130].
- Self-provision decreases uncertainties in the energy supply due to externalities [42] and reduces large energy production and transport infrastructures [4,55]. It also allows reductions in the consumption of fossil fuels. In addition, the area requirement for energy production is reduced as transmission networks decrease. Social changes in energy use require changes that influence the implementation of policies that fall under the principles of sustainable development [46,51].
- Rapid urbanization can be used as an opportunity to change the future of cities if they are conceived of as systems in which energy flows can be used in an efficient manner. [131]. Energy supply efficiency is promoted because the losses associated with transport from long distances will decrease [55,103], and there will be a reduction in raw material consumption since it avoids losses by energy transformation [51]. In addition to the use of non-renewable resources (lower consumption of fossil resources), distributed energies are close to the points of consumption (increases energy efficiency), reducing energy dependence and increasing safety and reliability [93,127].
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Seto, K.C.; Shobhakar, D.; Bigio, A.; Blanco, H.; Delgado, G.C.; Dewar, D.; Huang, L.; Inaba, A.; Kansal, A.; Lwasa, S.; et al. Human Settlements, Infrastructure, and Spatial Planning; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; Chapter 12. [Google Scholar]
- Grubler, A.; Bai, X.; Buettner, T.; Dhakal, S.; Fisk, D.J.; Ichinose, T.; Keirstead, J.E.; Sammer, G.; Satterthwaite, D.; Schulz, N.B.; et al. Urban Energy Systems. In Global Energy Assessment: Toward a Sustainable Future; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2012; pp. 1307–1400. ISBN 9780203066782. [Google Scholar]
- Ngo, N.S.; Pataki, D.E. The energy and mass balance of Los Angeles County. Urban Ecosyst. 2008, 11, 121–139. [Google Scholar] [CrossRef]
- Creutzig, F.; Baiocchi, G.; Bierkandt, R.; Pichler, P.-P.; Seto, K.C. Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proc. Natl. Acad. Sci. USA 2015, 112, 6283–6288. [Google Scholar] [CrossRef] [PubMed]
- Dixon, T.; Eames, M.; Britnell, J.; Watson, G.B.; Hunt, M. Urban retrofitting: Identifying disruptive and sustaining technologies using performative and foresight techniques. Technol. Forecast. Soc. Chang. 2014, 89, 131–144. [Google Scholar] [CrossRef]
- Grewal, P.S.; Grewal, P.S. Can cities become self-reliant in energy? A technological scenario analysis for Cleveland, Ohio. Cities 2013, 31, 404–411. [Google Scholar] [CrossRef]
- Weisz, H.; Steinberger, J.K. Reducing energy and material flows in cities. Curr. Opin. Environ. Sustain. 2010, 2, 185–192. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.R.M. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Agudelo-Vera, C.M.; Leduc, W.R.W.A.; Mels, A.R.; Rijnaarts, H.H.M. Harvesting urban resources towards more resilient cities. Resour. Conserv. Recycl. 2012, 64, 3–12. [Google Scholar] [CrossRef]
- Pincetl, S. Nature, urban development and sustainability—What new elements are needed for a more comprehensive understanding? Cities 2012, 29, S32–S37. [Google Scholar] [CrossRef]
- Moles, R.; Foley, W.; Morrissey, J.; O’Regan, B. Practical appraisal of sustainable development—Methodologies for sustainability measurement at settlement level. Environ. Impact Assess. Rev. 2008, 28, 144–165. [Google Scholar] [CrossRef]
- Páez, A. Energy-urban transition: The Mexican case. Energy Policy 2010, 38, 7226–7234. [Google Scholar] [CrossRef]
- International Energy Agency. Cities, Towns & Renewable Energy Cities, Towns; IEA/OECD: Paris, France, 2009. [Google Scholar]
- Baño Nieva, A.; Castilla Pascual, F.; Estirado Oliet, F. Proyecto SYMBCITY del solar decathlon Europe 2014: Redensificación sostenible como forma de intervención urbana en tiempos de crisis. Informes de la Construcción 2015, 67, 1–10. [Google Scholar] [CrossRef]
- Georgescu-Roegen, N. Energy and Economic Myths. South. Econ. J. 1975, 41, 347–381. [Google Scholar] [CrossRef]
- ONU Objetivos de Desarrollo Sostenible. Available online: http://www.un.org/sustainabledevelopment/es/2015/09/la-asamblea-general-adopta-la-agenda-2030-para-el-desarrollo-sostenible/#prettyPhoto (accessed on 10 November 2016).
- ONU. Proyecto de Documento Final de la Conferencia de las Naciones Unidas Sobre la Vivienda y el Desarrollo Urbano Sostenible (Hábitat III); UNU: Quito, Ecuador, 2016. [Google Scholar]
- Ren, H.; Zhou, W.; Nakagami, K.; Gao, W.; Wu, Q. Feasibility assessment of introducing distributed energy resources in urban areas of China. Appl. Therm. Eng. 2010, 30, 2584–2593. [Google Scholar] [CrossRef]
- Kennedy, C.; Cuddihy, J.; Engel-Yan, J. The Changing Metabolism of Cities. J. Ind. Ecol. 2007, 11, 43–59. [Google Scholar] [CrossRef]
- Pandis Iveroth, S.; Johansson, S.; Brandt, N.; Iveroth, S.P.; Johansson, S.; Brandt, N. The potential of the infrastructural system of Hammarby Sjöstad in Stockholm, Sweden. Energy Policy 2013, 59, 716–726. [Google Scholar] [CrossRef]
- Cumo, F.; Garcia, D.A.; Calcagnini, L.; Rosa, F.; Sferra, A.S. Urban policies and sustainable energy management. Sustain. Cities Soc. 2012, 4, 29–34. [Google Scholar] [CrossRef]
- Orehounig, K.; Evins, R.; Dorer, V.; Carmeliet, J. Assessment of renewable energy integration for a village using the energy hub concept. Energy Procedia 2013, 57, 940–949. [Google Scholar] [CrossRef]
- Pincetl, S.; Bunje, P.; Holmes, T. An expanded urban metabolism method: Toward a systems approach for assessing urban energy processes and causes. Landsc. Urban Plan. 2012, 107, 193–202. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Yu, X. Evaluation of urban metabolism based on emergy synthesis: A case study for Beijing (China). Ecol. Model. 2009, 220, 1690–1696. [Google Scholar] [CrossRef]
- Zhang, Y. Urban metabolism: A review of research methodologies. Environ. Pollut. 2013, 178, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Wolman, A. The metabolism of cities. Sci. Am. 1965, 3, 179–190. [Google Scholar] [CrossRef]
- Kennedy, C. Comment on article “Is There a Metabolism of an Urban Ecosystem?” by Golubiewski. Ambio 2012, 41, 765–766. [Google Scholar] [CrossRef] [PubMed]
- Golubiewski, N. The Power of Language in Feedback Metaphors: A Response to Kennedy. Ambio 2012, 41, 767–768. [Google Scholar] [CrossRef]
- Huang, S.-L.L.; Chen, C.-W.W. Theory of urban energetics and mechanisms of urban development. Ecol. Model. 2005, 189, 49–71. [Google Scholar] [CrossRef]
- Pichler, P.-P.; Zwickel, T.; Chavez, A.; Kretschmer, T.; Seddon, J.; Weisz, H. Reducing Urban Greenhouse Gas Footprints. Sci. Rep. 2017, 7, 14659. [Google Scholar] [CrossRef] [PubMed]
- Bristow, D.N.; Kennedy, C.A. Urban Metabolism and the Energy Stored in Cities. J. Ind. Ecol. 2013, 17, 656–667. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Fath, B.D.; Li, S. Ecological network analysis of an urban energy metabolic system: Model development, and a case study of four Chinese cities. Ecol. Model. 2010, 221, 1865–1879. [Google Scholar] [CrossRef]
- Chen, S.; Chen, B. Network Environ Perspective for Urban Metabolism and Carbon Emissions: A Case Study of Vienna, Austria. Environ. Sci. Technol. 2012, 46, 4498–4506. [Google Scholar] [CrossRef] [PubMed]
- Brunner, P.H. Reshaping Urban Metabolism. J. Ind. Ecol. 2007, 11, 11–13. [Google Scholar] [CrossRef]
- Leduc, W.R.W.A.; Van Kann, F.M.G. Spatial planning based on urban energy harvesting toward productive urban regions. J. Clean. Prod. 2013, 39, 180–190. [Google Scholar] [CrossRef]
- Huang, S.-L.; Hsu, W.-L. Materials flow analysis and emergy evaluation of Taipei’s urban construction. Landsc. Urban Plan. 2003, 63, 61–74. [Google Scholar] [CrossRef]
- Kennedy, C.; Pincetl, S.; Bunje, P. The study of urban metabolism and its applications to urban planning and design. Environ. Pollut. 2011, 159, 1965–1973. [Google Scholar] [CrossRef] [PubMed]
- Pauleit, S.; Duhme, F. Assessing the environmental performance of land cover types for urban planning. Landsc. Urban Plan. 2000, 52, 1–20. [Google Scholar] [CrossRef]
- Niza, S.; Rosado, L.; Ferrão, P. Urban Metabolism. J. Ind. Ecol. 2009, 13, 384–405. [Google Scholar] [CrossRef]
- Bristow, D.N.; Kennedy, C.A. The Energy for Growing and Maintaining Cities. Ambio 2013, 42, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Barles, S. Urban Metabolism of Paris and Its Region. J. Ind. Ecol. 2009, 13, 898–913. [Google Scholar] [CrossRef]
- Conke, L.S.; Ferreira, T.L. Urban metabolism: Measuring the city’s contribution to sustainable development. Environ. Pollut. 2015, 202, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Alfonso Piña, W.H.; Pardo Martínez, C.I.; Alfonso, W.H.; Pardo, C.I. Urban material flow analysis: An approach for Bogotá, Colombia. Ecol. Indic. 2014, 42, 32–42. [Google Scholar] [CrossRef]
- Chen, S.; Chen, B. Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis. Appl. Energy 2015, 138, 99–107. [Google Scholar] [CrossRef]
- Haberl, H. The Energetic Metabolism of Societies: Part II: Empirical Examples. J. Ind. Ecol. 2001, 5, 71–88. [Google Scholar] [CrossRef]
- Haberl, H. The Energetic Metabolism of Societies Part I: Accounting Concepts. J. Ind. Ecol. 2001, 5, 11–33. [Google Scholar] [CrossRef]
- Proops, J.L.R. Input-output analysis and energy intensities: A comparison of some methodologies. Appl. Math. Model. 1977, 1, 181–186. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Q.; Zhang, F. Input-output modeling for urban energy consumption in Beijing: Dynamics and comparison. PLoS ONE 2014, 9, e89850. [Google Scholar] [CrossRef] [PubMed]
- Terrados, J.; Almonacid, G.; Pérez-Higueras, P. Proposal for a combined methodology for renewable energy planning. Application to a Spanish region. Renew. Sustain. Energy Rev. 2009, 13, 2022–2030. [Google Scholar] [CrossRef]
- IDEA. Plan de Energias Renovables 2011–2020. Available online: http://www.idae.es/tecnologias/energias-renovables/plan-de-energias-renovables-2011-2020 (accessed on 7 December 2017).
- Vandevyvere, H.; Stremke, S. Urban planning for a renewable energy future: Methodological challenges and opportunities from a design perspective. Sustainability 2012, 4, 1309–1328. [Google Scholar] [CrossRef]
- Arodudu, O.; Ibrahim, E.; Voinov, A.; van Duren, I. Exploring bioenergy potentials of built-up areas based on NEG-EROEI indicators. Ecol. Indic. 2014, 47, 67–79. [Google Scholar] [CrossRef]
- Eicker, U.; Klein, M. Large-scale renewable energy integration within energy-efficient urban areas: Results from three German case studies. Int. J. Low-Carbon Technol. 2014, 9, 202–213. [Google Scholar] [CrossRef]
- Kanters, J.; Wall, M.; Dubois, M.-C. Typical Values for Active Solar Energy in Urban Planning. Energy Procedia 2014, 48, 1607–1616. [Google Scholar] [CrossRef]
- Moscovici, D.; Dilworth, R.; Mead, J.; Zhao, S. Can sustainability plans make sustainable cities? The ecological footprint implications of renewable energy within Philadelphia’s Greenworks Plan. Sustain. Sci. Pract. Policy 2015, 11, 32–43. [Google Scholar] [CrossRef]
- Barragán, E.A.; Terrados, J.; Zalamea, E.; Pablo, A. Electricity production using renewable resources in urban centres. Proc. Inst. Civ. Eng. 2017. [Google Scholar] [CrossRef]
- Fath, K.; Stengel, J.; Sprenger, W.; Wilson, H.R.; Schultmann, F.; Kuhn, T.E. A method for predicting the economic potential of (building-integrated) photovoltaics in urban areas based on hourly Radiance simulations. Sol. Energy 2015, 116, 357–370. [Google Scholar] [CrossRef]
- Yeo, I.-A.; Yee, J.-J. A proposal for a site location planning model of environmentally friendly urban energy supply plants using an environment and energy geographical information system (E-GIS) database (DB) and an artificial neural network (ANN). Appl. Energy 2014, 119, 99–117. [Google Scholar] [CrossRef]
- Raud, M.; Mitt, M.; Oja, T.; Olt, J.; Orupõld, K.; Kikas, T. The utilisation potential of urban greening waste: Tartu case study. Urban For. Urban Green. 2017, 21, 96–101. [Google Scholar] [CrossRef]
- Shi, Y.; Ge, Y.; Chang, J.; Shao, H.; Tang, Y. Garden waste biomass for renewable and sustainable energy production in China: Potential, challenges and development. Renew. Sustain. Energy Rev. 2013, 22, 432–437. [Google Scholar] [CrossRef]
- McHugh, N.; Edmondson, J.L.; Gaston, K.J.; Leake, J.R.; O’Sullivan, O.S. Modelling short-rotation coppice and tree planting for urban carbon management—A citywide analysis. J. Appl. Ecol. 2015, 52, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.J.; Cassula, A.M.; Osvaldo Prado, P.; Dias, R.A.; Balestieri, J.A.P. Assessment of dry residual biomass potential for use as alternative energy source in the party of General Pueyrredón, Argentina. Renew. Sustain. Energy Rev. 2015, 41, 568–583. [Google Scholar] [CrossRef]
- Shen, Y.; Linville, J.L.; Urgun-Demirtas, M.; Mintz, M.M.; Snyder, S.W. An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs. Renew. Sustain. Energy Rev. 2015, 50, 346–362. [Google Scholar] [CrossRef]
- Aguilar-Virgen, Q.; Taboada-González, P.; Ojeda-Benítez, S. Analysis of the feasibility of the recovery of landfill gas: A case study of Mexico. J. Clean. Prod. 2014, 79, 53–60. [Google Scholar] [CrossRef]
- Nadaletti, W.C.C.; Cremonez, P.A.A.; de Souza, S.N.M.; Bariccatti, R.A.A.; Belli Filho, P.; Secco, D. Potential use of landfill biogas in urban bus fleet in the Brazilian states: A review. Renew. Sustain. Energy Rev. 2015, 41, 277–283. [Google Scholar] [CrossRef]
- De Souza, S.N.; Horttanainen, M.; Antonelli, J.; Klaus, O.; Lindino, C.A.; Nogueira, C.E. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: Landfill gas, biogas and thermal treatment. Waste Manag. Res. 2014, 32, 1015–1023. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Yang, W.; Li, Z.; Higano, Y.; Wang, X. Discovering the energy, economic and environmental potentials of urban wastes: An input–output model for a metropolis case. Energy Convers. Manag. 2016, 114, 168–179. [Google Scholar] [CrossRef]
- Zhang, Y.; Choudhary, R.; Soga, K. Influence of GSHP system design parameters on the geothermal application capacity and electricity consumption at city-scale for Westminster, London. Energy Build. 2015, 106, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Schiel, K.; Baume, O.; Caruso, G.; Leopold, U. GIS-based modelling of shallow geothermal energy potential for CO2 emission mitigation in urban areas. Renew. Energy 2016, 86, 1023–1036. [Google Scholar] [CrossRef]
- Arola, T.; Eskola, L.; Hellen, J.; Korkka-Niemi, K. Mapping the low enthalpy geothermal potential of shallow Quaternary aquifers in Finland. Geotherm. Energy 2014, 2, 9. [Google Scholar] [CrossRef]
- Fujiia, M.; Tanabeb, S.; Yamadad, M.; Mishimae, T.; Sawadateb, A.; Ohsawae, S. Assessment of the potential for developing mini/micro hydropower: A case study in Beppu City, Japan. J. Hydrol. Reg. Stud. 2015, 11, 107–116. [Google Scholar] [CrossRef]
- Eicker, U.; Monien, D.; Duminil, É.; Nouvel, R. Energy performance assessment in urban planning competitions. Appl. Energy 2015, 155, 323–333. [Google Scholar] [CrossRef]
- Mavromatidis, G.; Orehounig, K.; Carmeliet, J. Evaluation of photovoltaic integration potential in a village. Sol. Energy 2015, 121, 152–168. [Google Scholar] [CrossRef]
- Gautam, B.R.; Li, F.; Ru, G. Assessment of urban roof top solar photovoltaic potential to solve power shortage problem in Nepal. Energy Build. 2015, 86, 735–744. [Google Scholar] [CrossRef]
- Jamal, T.; Ongsakul, W.; Singh, J.G.; Salehin, S.; Ferdous, S.M. Potential rooftop distribution mapping using Geographic Information Systems (GIS) for Solar PV Installation: A case study for Dhaka, Bangladesh. In Proceedings of the 2014 3rd International Conference on the Developments in Renewable Energy Technology, Dhak, Bangladesh, 29–31 May 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Rosas-Flores, J.A.; Rosas-Flores, D.; Fernández Zayas, J.L. Potential energy saving in urban and rural households of Mexico by use of solar water heaters, using geographical information system. Renew. Sustain. Energy Rev. 2016, 53, 243–252. [Google Scholar] [CrossRef]
- Izquierdo, S.; Montañés, C.; Dopazo, C.; Fueyo, N. Roof-top solar energy potential under performance-based building energy codes: The case of Spain. Sol. Energy 2011, 85, 208–213. [Google Scholar] [CrossRef]
- Zalamea, E.; García Alvarado, R. Roof characteristics for integrated solar collection in dwellings of Real- Estate developments in Concepción, Chile. J. Constr. 2014, 36, 36–44. [Google Scholar] [CrossRef]
- Avelino Gonçalves, F.; Dos Santos, E.S.; De Macedo, G.R. Use of cultivars of low cost, agroindustrial and urban waste in the production of cellulosic ethanol in Brazil: A proposal to utilization of microdistillery. Renew. Sustain. Energy Rev. 2015, 50, 1287–1303. [Google Scholar] [CrossRef]
- Kraxner, F.; Aoki, K.; Kindermann, G.; Leduc, S.; Albrecht, F.; Liu, J.; Yamagata, Y. Bioenergy and the city—What can urban forests contribute? Appl. Energy 2016, 165, 990–1003. [Google Scholar] [CrossRef]
- Kook, J.W.; Lee, S.H. Analysis of Biomass Energy Potential around Major Cities in South Korea. Appl. Chem. Eng. 2015, 26, 178–183. [Google Scholar] [CrossRef]
- Matter, A.; Ahsan, M.; Marbach, M.; Zurbrügg, C. Impacts of policy and market incentives for solid waste recycling in Dhaka, Bangladesh. Waste Manag. 2015, 39, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sharma, M.P. GHG emission and carbon sequestration potential from MSW of Indian metro cities. Urban Clim. 2014, 8, 30–41. [Google Scholar] [CrossRef]
- Saha, M.; Eckelman, M.J. Geospatial assessment of potential bioenergy crop production on urban marginal land. Appl. Energy 2015, 159, 540–547. [Google Scholar] [CrossRef]
- Van Meerbeek, K.; Ottoy, S.; De Meyer, A.; Van Schaeybroeck, T.; Van Orshoven, J.; Muys, B.; Hermy, M. The bioenergy potential of conservation areas and roadsides for biogas in an urbanized region. Appl. Energy 2015, 154, 742–751. [Google Scholar] [CrossRef]
- Scarlat, N.; Motola, V.; Dallemand, J.F.; Monforti-Ferrario, F.; Mofor, L. Evaluation of energy potential of Municipal Solid Waste from African urban areas. Renew. Sustain. Energy Rev. 2015, 50, 1269–1286. [Google Scholar] [CrossRef]
- Zubizarreta, J.; Rodrigues, M.; Gómez, A.; Zubizarreta, J.; Rodrigues, M.; Dopazo, C.; Fueyo, N. Potential and cost of electricity generation from human and animal waste in Spain. Renew. Energy 2010, 35, 498–505. [Google Scholar] [CrossRef]
- Millward-Hopkins, J.T.; Tomlin, A.S.; Ma, L.; Ingham, D.B.; Pourkashanian, M. Assessing the potential of urban wind energy in a major UK city using an analytical model. Renew. Energy 2013, 60, 701–710. [Google Scholar] [CrossRef]
- Shu, Z.R.; Li, Q.S.; Chan, P.W. Statistical analysis of wind characteristics and wind energy potential in Hong Kong. Energy Convers. Manag. 2015, 101, 644–657. [Google Scholar] [CrossRef]
- Li, D.; Cheung, K.; Chan, W.; Cheng, C.; Wong, T. An analysis of wind energy potential for micro wind turbine in Hong Kong. Build. Serv. Eng. Res. Technol. 2013, 35, 268–279. [Google Scholar] [CrossRef]
- Ishugah, T.F.; Li, Y.; Wang, R.Z.; Kiplagat, J.K. Advances in wind energy resource exploitation in urban environment: A review. Renew. Sustain. Energy Rev. 2014, 37, 613–626. [Google Scholar] [CrossRef]
- Hassanli, S.; Hu, G.; Kwok, K.C.S.; Fletcher, D.F. Utilizing cavity flow within double skin façade for wind energy harvesting in buildings. J. Wind Eng. Ind. Aerodyn. 2017, 167, 114–127. [Google Scholar] [CrossRef]
- Toja-Silva, F.; Colmenar-Santos, A.; Castro-Gil, M. Urban wind energy exploitation systems: Behaviour under multidirectional flow conditions—Opportunities and challenges. Renew. Sustain. Energy Rev. 2013, 24, 364–378. [Google Scholar] [CrossRef]
- Arola, T.; Korkka-Niemi, K. The effect of urban heat islands on geothermal potential: examples from Quaternary aquifers in Finland. Hydrogeol. J. 2014, 22, 1953–1967. [Google Scholar] [CrossRef]
- Hafeez, S.; Atif, S. 3D Rooftop Photovoltaic Potential Calculation Using GIS Techniques: A Case Study of F-11 Sector Islamabad. In Proceedings of the 2014 12th International Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan, 17–19 December 2014; pp. 187–192. [Google Scholar] [CrossRef]
- Liang, J.; Gong, J.; Zhou, J.; Ibrahim, A.N.; Li, M. An open-source 3D solar radiation model integrated with a 3D Geographic Information System. Environ. Model. Softw. 2015, 64, 94–101. [Google Scholar] [CrossRef]
- The Solar Heating and Cooling Programme. Solar Energy Systems in Architecture; IEA SHC Task 41. Available online: http://task41.iea-shc.org/data/sites/1/publications/T41DA2-Solar-Energy-Systems-in-Architecture-28March2013.pdf (accessed on 7 December 2017).
- Sarralde, J.J.; Quinn, D.J.; Wiesmann, D.; Steemers, K. Solar energy and urban morphology: Scenarios for increasing the renewable energy potential of neighbourhoods in London. Renew. Energy 2015, 73, 10–17. [Google Scholar] [CrossRef]
- Zalamea, E. Potencial Solar Activo en Techumbres de Viviendas Inmobiliarias. Available online: http://revistas.ubiobio.cl/index.php/RHS/article/view/2310/2148 (accessed on 7 December 2017).
- Wegertseder, P.; Lund, P.; Mikkola, J.; García Alvarado, R. Combining solar resource mapping and energy system integration methods for realistic valuation of urban solar energy potential. Sol. Energy 2016, 135, 325–336. [Google Scholar] [CrossRef]
- Chaianong, A.; Pharino, C. Outlook and challenges for promoting solar photovoltaic rooftops in Thailand. Renew. Sustain. Energy Rev. 2015, 48, 356–372. [Google Scholar] [CrossRef]
- Radomes, A.A.; Arango, S. Renewable energy technology diffusion: An analysis of photovoltaic-system support schemes in Medellín, Colombia. J. Clean. Prod. 2015, 92, 152–161. [Google Scholar] [CrossRef]
- Rosenbloom, D.; Meadowcroft, J. Harnessing the Sun: Reviewing the potential of solar photovoltaics in Canada. Renew. Sustain. Energy Rev. 2014, 40, 488–496. [Google Scholar] [CrossRef]
- International Energy Agency. Energy Technology Perspectives 2016 (Executive Summary); International Energy Agency: Paris, France, 2016. [Google Scholar]
- Jelle, B.P. Building Integrated Photovoltaics: A Concise Description of the Current State of the Art and Possible Research Pathways. Energies 2016, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Mol, A.P.J.; Lu, Y. Solar water heaters in China: A new day dawning. Energy Policy 2010, 38, 383–391. [Google Scholar] [CrossRef]
- Marique, A.-F.; Reiter, S. A simplified framework to assess the feasibility of zero-energy at the neighbourhood/community scale. Energy Build. 2014, 82, 114–122. [Google Scholar] [CrossRef]
- Leite Neto, P.B.; Saavedra, O.R.; Souza Ribeiro, L.A. Optimization of electricity generation of a tidal power plant with reservoir constraints. Renew. Energy 2015, 81, 11–20. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, Y.; Yuan, S.; Wu, C.; Zhang, H. Performance and potential of solar updraft tower used as an effective measure to alleviate Chinese urban haze problem. Renew. Sustain. Energy Rev. 2015, 51, 1499–1508. [Google Scholar] [CrossRef]
- Sarralde, J.J.; Quinn, D.; Wiesmann, D. Urban Modelling for Resource Performance Analysis: Estimating Cities’ Renewable Energy Potential. Available online: http://ibpsa.org/proceedings/BS2011/P_1468.pdf (accessed on 7 December 2017).
- Matin, M.; Istiaque, S.M. Design and Integrate Dual Renewable Energy in a Residential Building of Urban Area. In Proceedings of the International Conference on Electrical Engineering and Information & Communication Technology, Dhaka, Bangladesh, 10–12 April 2014; pp. 2–7. [Google Scholar]
- Orehounig, K.; Mavromatidis, G.; Evins, R.; Dorer, V.; Carmeliet, J. Towards an energy sustainable community: An energy system analysis for a village in Switzerland. Energy Build. 2014, 84, 277–286. [Google Scholar] [CrossRef]
- Byrne, J.; Taminiau, J.; Seo, J.; Lee, J.; Shin, S. Are solar cities feasible? A review of current research. Int. J. Urban Sci. 2017. [Google Scholar] [CrossRef]
- University of Cambridge Energy Efficient Cities Initiative. Available online: http://www.eeci.cam.ac.uk/about.shtml (accessed on 20 February 2017).
- Mitigation of CO2 Emissions in Urban Areas: Solutions for Innovative Cities—iGUESS. Available online: https://www.list.lu/en/research/project/music/ (accessed on 7 December 2017).
- International Renewable Energy Agency. Renewable Energy in Cities; International Renewable Energy Agency: Abu Dhabi, UAE, 2016. [Google Scholar]
- Xu, J.; Ni, T.; Zheng, B. Hydropower development trends from a technological paradigm perspective. Energy Convers. Manag. 2015, 90, 195–206. [Google Scholar] [CrossRef]
- Vargas, R.C. Biorefinerías para la Producción de Biocombustibles de Segunda Generación; Universidad Politécnica de Valencia: Valencia, Spain, 2012; Available online: https://www.educacion.gob.es/teseo/imprimirFicheroTesis.do?idFichero=41887 (accessed on 7 December 2017).
- EEA. EU bioenergy Potential from a Resource-Efficiency Perspective; EEA: Copenhagen, Denmark, 2013. [Google Scholar]
- Jacquet, N.; Haubruge, E.; Richel, A. Production of biofuels and biomolecules in the framework of circular economy: A regional case study. Waste Manag. Res. 2015, 12, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Willis, J.; Stone, L.; Durden, K.; Beecher, N.; Hemenway, C.; Greenwood, R. Barriers to Biogas Use for Renewable Energy. Available online: https://www.nyserda.ny.gov/-/media/Files/EERP/.../werf-biogas-barriers-report.pdf (accessed on 7 December 2017).
- Fallde, M.; Eklund, M. Towards a sustainable socio-technical system of biogas for transport: The case of the city of Linköping in Sweden. J. Clean. Prod. 2015, 98, 17–28. [Google Scholar] [CrossRef]
- Gsänger, S.; Pitteloud, J.-D. 2015 Small Wind World Report Summary; World Wind Energy Association: Bonn, Germany, 2015. [Google Scholar]
- Benli, H. Potential application of solar water heaters for hot water production in Turkey. Renew. Sustain. Energy Rev. 2016, 54, 99–109. [Google Scholar] [CrossRef]
- Chang, K.-C.; Lin, W.-M.; Lee, T.-S.; Chung, K.-M. Subsidy programs on diffusion of solar water heaters: Taiwan’s experience. Energy Policy 2011, 39, 563–567. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Solar Heating and Cooling for Residential Applications; IRENA: Abu Dhabi, UAE, 2015. [Google Scholar]
- Diczfalusy, B.; Taylor, P. Technology Roadmap, Energy-Efficient Buildings: Heating and Cooling Equipment; International Energy Agency: Paris, France, 2011; Volume 5. [Google Scholar]
- Eleftheriadis, I.M.; Anagnostopoulou, E.G. Identifying barriers in the diffusion of renewable energy sources. Energy Policy 2015, 80, 153–164. [Google Scholar] [CrossRef]
- Llera, E.; Scarpellini, S.; Aranda, A.; Zabalza, I. Forecasting job creation from renewable energy deployment through a value-chain approach. Renew. Sustain. Energy Rev. 2013, 21, 262–271. [Google Scholar] [CrossRef]
- Bennett, M.; Newborough, M. Auditing energy use in cities. Energy Policy 2001, 29, 125–134. [Google Scholar] [CrossRef]
- Leduc, W.R.W.A.; Rovers, R. Urban tissue: The representation of the urban energy potential. In Proceedings of the 25th Conference on Passive and Low Energy Architcture, Dublin, Ireland, 22–24 October 2008. [Google Scholar]
- Barragán, E.; Espinoza, J.L. Políticas para la Promoción de las Energías Renovables en el Ecuador. En: “Energías Renovables en el Ecuador. Situación Actual, Tendencias y Perspectivas”; Peláez Samaniego, M.R., y Espinoza Abad, J.L., Eds.; Universidad de Cuenca, Gráficas Hernández: Cuenca, Ecuador, 2015; ISBN 9788578110796. [Google Scholar]
- Hazami, M.; Naili, N.; Attar, I.; Farhat, A. Solar water heating systems feasibility for domestic requests in Tunisia: Thermal potential and economic analysis. Energy Convers. Manag. 2013, 76, 599–608. [Google Scholar] [CrossRef]
- Shmelev, S.E.; Van Den Bergh, J.C.J.M. Optimal diversity of renewable energy alternatives under multiple criteria: An application to the UK. Renew. Sustain. Energy Rev. 2016, 60, 679–691. [Google Scholar] [CrossRef]
- Beccali, M.; Cellura, M.; Mistretta, M. Decision-making in energy planning. Application of the Electre method at regional level for the diffusion of renewable energy technology. Renew. Energy 2003, 28, 2063–2087. [Google Scholar] [CrossRef]
- Georgescu-Roegen, N. Energy Analysis and Economic Valuation. South. Econ. J. 1979, 45, 1023–1058. [Google Scholar] [CrossRef]
Schools a | Assesses b | Obtains c | Case Study | Author |
---|---|---|---|---|
Flow Accounting | Ma | In | Munich | [38] |
Inv, Fl, Ba, Be | Lisbon | [39] | ||
En | Ba, In, | Toronto | [31] | |
Fl, Be, In | Singapore, Hong Kong | [40] | ||
Ma | Fl, Be | Typical American city, Brussels, Sydney, Tokyo, Hong Kong, Vienna, London, Cape Town | [19] | |
En | Inv, Fl, Ba, Be | Los Angeles | [3] | |
Inv, Ba, Be, In | Paris | [11,41] | ||
Inv, Fl, Ba, Be | Curitiba | [42] | ||
Inv, Fl, Ba, In | Bogota | [43] | ||
Biophysical Indicators | Em | Inv, Fl, Ba, In | Taipei | [36] |
Inv, Fl, Ba, In | Taipei | [29] | ||
Ba, Be, In | Beijing, Shanghai, Tianjin, Chongqing | [32] | ||
Inv, Fl, Ba, Be | Beijing | [24] | ||
Ex | Inv, Rq, Ef | Kerkrade | [35] | |
Inv, Rq, Ef | Wageningen | [9] |
Sector | System | For urban Integration |
---|---|---|
Biofuels | Bioethanol | Yes |
Biodiesel | No | |
Biomass | Gasification | No |
Direct combustion | Yes | |
Co-combustion | No | |
Biogas | Biogas * | Yes |
Waste | Biogas from MSW ** landfills | Yes |
Incineration and co-incineration | Yes | |
Gasification | No | |
Energy from the sea *** | Currents | No |
Tidal energy | Yes | |
Wind power | Terrestrial (horizontal or vertical axis) | Yes |
Maritime | No | |
Geothermal | Power generation | No |
Air conditioning (closed loop or open loop) | Yes | |
Hydroelectric | Mini-hydraulic | Yes |
Photovoltaic solar energy | Photovoltaic (terraces or facades) | Yes |
Solar thermal | Solar thermal | Yes |
Thermoelectric solar | Parabolic cylinder | No |
Central receiver | No | |
Linear Fresnel collectors | No | |
Parabolic Stirling dishes | No |
System | City | Potential * | Demand | Use | Reference | Objective of the Study |
---|---|---|---|---|---|---|
Bioethanol | Tartu (Estonia) | 93% | 1.29 million liters of diesel 0.14 tons of natural gas | Fuel for transport | [59] | Shows that the urban vegetable waste from green areas and gardens can be used to produce biofuels. |
Urban areas of (China) | 12.6% | 42,334 million liters of petrol | [60] | Determines the energy potential of the waste of gardens for production of ethanol. | ||
Biomass | Leicester (England) | 3.3% | ----- | Thermal | [61] | Investigates the potential for using biomass harvested in the city for thermal purposes. |
Mar del Plata (Argentina) | 4.36% | 1265 GWh/year | Electric | [62] | Determines the energy potential of forest and agricultural waste. | |
3.32% | 2912 GWh/year | Thermal | ||||
Beijing (China) | 80% | 9501 GWh/year | Electric | [60] | Determines the energy potential of the waste of urban gardens. | |
Jiangsu (China) | 51% | 14,617 GWh/year | ||||
Qinghai (China) | 10% | 915 GWh/year | ||||
Biogas | Stockholm (Switzerland) | 12% | 8300 kWh/per capita/year | Thermal | [20] | Explores the integration of renewable infrastructure to reduce the metabolic fluxes of a district. |
Oakland (United States) | 120% | 55 GWh/year | Electric | [63] | Examines the use of the technology of anaerobic digestion in the wastewater treatment plants in the United States. | |
Mexicali (Mexico) | 6% | The percentage is compared with the requirement of lighting | Electric | [64] | Determines the waste from landfills. | |
Tijuana (Mexico) | 40% | |||||
Cities in Brazil | 100% | 107 buses | Fuel for buses | [65] | Determines the number of urban transport vehicles that can be fueled with landfill gas in Brazil. | |
São Paulo (Brazil) | 7.30% | 8723.6 GWh/year | Landfill biogas | [66] | Performs an analysis of the technical potential for the production of electricity using urban solid waste. | |
Rio de Janeiro (Brazil) | 6.73% | 5481 GWh/year | ||||
Tartu (Estonia) | 54.5% | 1.29 million liters of diesel 0.14 tons of natural gas | Fuel for transport | [59] | The biogas potential of greening waste was calculated. | |
Incineration | Rio de Janeiro (Brazil) | 25.03% | 8723.6 GWh/year | Solid urban waste incineration | [66] | Performs an analysis of the technical potential for the production of electricity using urban solid waste. |
12.44% | 5481 GWh/year | Incineration of waste-derived fuel | ||||
Stockholm (Switzerland) | 12% | 8300 kWh/per capita/year | Incineration | [20] | Explores the integration of renewable infrastructure to reduce the metabolic fluxes of a district. | |
Changchun City (China) | 29.29% | 837.15 GWh/year | Incineration | [67] | This study explores the energy potentials of urban solid wastes. | |
Wind Power | Wageningen (The Netherlands) | 43% | 450 MWh/ha year | Electric | [9] | Investigates the potential of a city to provide its own energy resources. |
Geothermal energy | Westminster (England) | 100% | ≈49,000 buildings ≈63,000 buildings | Thermal | [68] | Presents a model for examining the feasibility of installing geothermal energy in the city. |
Ludwigsburg (Germany) | 68.69% | 873.5 GWh | Thermal | [69] | Develops a model to determine the potential of geothermal energy. | |
Cities in Finland | 25% | 1.3 million m2 of standard housing units | Thermal | [70] | Investigates geothermal potential to provide heating to buildings. | |
45% | 1.7 million m2 of housing of low power consumption | |||||
Hydropower | Beppu (Japan) | 100% | 29,000 dwellings with consumption of 300 kWh/month | Electric | [71] | Investigates the potential for hydroelectric generation using plants placed in rivers crossing a city. |
Photovoltaic | Ostfildern (Germany) | 45% | 10,700 MWh/year | Electric | [53] | Analyses the performance of renewable energies in urban environments. |
Ludwigsword (Germany) | 18% | 430,000 MWh/year | ||||
Munich (Germany) | 100% | 20 KWh/m2 | [72] | Assesses the photovoltaic energy potential depending on the design of the building. | ||
Wageningen (The Netherlands) | 50% 66% | 45 KWh/m2 year | [9] | Investigates the potential of a city to obtain its own energy resources. | ||
Kerkrade (The Netherlands) | 18% | 481,001 MWh/year | [35] | Proposes a method to identify the energy that can be leveraged within the city. | ||
Karlsruhe (Germany) | 9.5% ** | 410 GWh/year | [57] | Uses a method that calculates the economic potential of photovoltaic roofs and facades. | ||
Zernez (Switzerland) | 64% | 7.4 GWh/year | [73] | Develops a framework for the optimal integration of photovoltaic energy in a villa. | ||
Cities of (Nepal) | 100% | 1228 GWh | [74] | Evaluates the feasibility of producing electricity with photovoltaic panels to supply the demand not covered. | ||
Dhaka (Bangladesh) | 15% | 773.41 GWh/year | [75] | Discusses the available area of roofs and the energy system is modelled to determine the potential of solar energy. | ||
Mexico (urban residential areas) | 45.6% | 29,088 GWh/year | Water heating | [76] | Assesses the potential for solar water heating. | |
Solar Thermal | Spain (8005 municipalities) | 68.4% | 28,249 GWh/year | Water heating | [77] | Determines the surface of roofs available for the placement of thermal solar panels. |
Concepción-Chile (recent 3233 housing) | 75% | 19,788.7 MW | [78] | Determines the slope with best qualification by housing according to orientation and inclination, compares feasible joint production universe of study to typical demands. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barragán-Escandón, A.; Terrados-Cepeda, J.; Zalamea-León, E. The Role of Renewable Energy in the Promotion of Circular Urban Metabolism. Sustainability 2017, 9, 2341. https://doi.org/10.3390/su9122341
Barragán-Escandón A, Terrados-Cepeda J, Zalamea-León E. The Role of Renewable Energy in the Promotion of Circular Urban Metabolism. Sustainability. 2017; 9(12):2341. https://doi.org/10.3390/su9122341
Chicago/Turabian StyleBarragán-Escandón, Antonio, Julio Terrados-Cepeda, and Esteban Zalamea-León. 2017. "The Role of Renewable Energy in the Promotion of Circular Urban Metabolism" Sustainability 9, no. 12: 2341. https://doi.org/10.3390/su9122341
APA StyleBarragán-Escandón, A., Terrados-Cepeda, J., & Zalamea-León, E. (2017). The Role of Renewable Energy in the Promotion of Circular Urban Metabolism. Sustainability, 9(12), 2341. https://doi.org/10.3390/su9122341