Ecosystem Services Value Assessment and Uneven Development of the Qingjiang River Basin in China
Abstract
:1. Introduction
- According to the investigation and statistics of Hubei Provincial Bureau of Land and Resources in recent years, due to the expansion of cities in Qingjiang river basin and the large-scale cultivation of cash crops by farmers, the vegetation coverage of these cities decreased from 61.05% in 2000 to 49.41% in 2015, far lower than that of the entire river basin.
- The water and soil erosion are severe in the Qingjiang river basin due to such natural disasters as floods, droughts, landslides, and collapses, and its ecosystem comprehensive index is 0.95 [16], with 0 and 1 being the thresholds; the greater the value, the higher the overall risk, thus indicating that it is a high-risk area.
2. Study Area
3. Materials and Methods
3.1.Data Collection
3.2. Introducing Ecosystem Services Value Model
3.3. Determining the Impact Factors of Ecosystem Services
3.3.1. Analysis of Geographical Factors of Ecosystem Services
3.3.2. Analysis of Social Factors of Ecosystem Services Location
3.4. Methods of Estimating the Ecosystem Services Value
3.4.1. Quantitative Analysis of Natural and Social Factors
3.4.2. Estimation of Ecosystem Services Value
3.5. Prediction of Ecosystem Services Value
3.6. Research Technology Road
4. Results
4.1. Analysis of the Land Use Change Results
4.2. Analysis of Regional Comprehensive Strength in Different Locations
4.3. The Results of the Ecosystem Services Value
4.4. 2016–2035 Ecosystem Services Value Prediction
5. Discussions and Suggestions
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bailey, R.-G. Ecoregions of the United States Map (Scale 1:7,500,000); Ogden, M., Ed.; US Department of Agriculture, Forest Service, Int. Region: Ogden, UT, USA, 1976; pp. 23–27.
- Cai, Y.; Li, H.; Ye, X.; Zhang, H. Analyzing Three Decadal Patterns of Land Use/Land Cover Change and Regional Ecosystem Services at Landscape Level: Study on Two Coastal Metropolitan Regions, Eastern China. Sustainability 2016, 8, 773. [Google Scholar] [CrossRef]
- Wan, L.; Ye, X.; Lee, J.; Lu, X.; Zheng, L.; Wu, K. Effects of Urbanization on Ecosystem Service Values in a Mineral Resource-Based City. Habitat Int. 2015, 46, 54–63. [Google Scholar] [CrossRef]
- Xie, G.-D.; Lin, Z.; Lu, C. Supply, Consumption and Valuation of Ecosystem Services in China. Resour. Sci. 2008, 30, 93–99. [Google Scholar]
- Xie, G.-D.; Zhang, L.; Lu, X. Study on valuation of range land ecosystem services of China. J. Nat. Resour. 2001, 16, 47–53. [Google Scholar]
- Xie, G.-D.; Cao, S.; Leng, Y. Targeted Zoning in China according to Sustainable Development Principles. Resour. Sci. 2015, 37, 1740–1746. [Google Scholar]
- Qi, Z.; Ye, X.; Zhang, H.; Yu, Z. Land Fragmentation and Variation of Ecosystem Services in the Context of Rapid Urbanization: The Case of Taizhou City, China. Stoch. Environ. Res. Risk Assess. 2014, 28, 843–855. [Google Scholar] [CrossRef]
- Ouyang, Z.-Y.; Zhang, L.; Wu, B. An ecosystem classification system based on remote sensor information in China. Acta Ecol. Sin. 2015, 35, 219–226. [Google Scholar] [CrossRef]
- Fu, B.-J.; Chen, L.; Liu, G. The objectives, tasks and characteristics of China ecological regionalization. Acta Ecol. Sin. 1999, 19, 591–595. [Google Scholar]
- Ping, Z.; Liang, H.; Fan, X. Ecosystem Service Value Assessment and Contribution Factor Analysis of Land Use Change in Miyun County, China. Sustainability 2015, 7, 7333–7356. [Google Scholar]
- Jiang, B.; Ouyang, Z.; Miao, H. Ecosystem services valuation of the Haihe river basin wetlands. Acta Ecol. Sin. 2011, 31, 2236–2244. [Google Scholar]
- Guo, Z.; Xiao, X.; Gan, Y.; Zheng, Y. Ecosystem functions, services and their values—A case study in Xingshan County of China. Ecol. Econ. 2001, 38, 141–154. [Google Scholar] [CrossRef]
- Li, T.; Li, W.; Qian, Z. Variations in ecosystem service value in response to land use changes in Shenzhen. Ecol. Econ. 2010, 69, 1427–1435. [Google Scholar]
- Zhang, B.; Li, W.; Xie, G.-D.; Xiao, Y. Water conservation of forest ecosystem in Beijing and its value. Ecol. Econ. 2010, 69, 1416–1426. [Google Scholar]
- Zhou, H.-X.; Liu, J.-E.; Qin, P. Impacts of an alien species (Spartinaalterniflora) on the macrobenthos community of Jiangsu coastal inter-tidal ecosystem. Ecol. Eng. 2009, 35, 521–528. [Google Scholar] [CrossRef]
- Li, B.; Shi, P.; Jin, S. Theory and Quantitative Methodology of Spatial Heterogeneity Analysis of Ecosystem Service Value for the Shiyanghe River Basin, Gansu, China. J. Desert Res. 2013, 33, 943–951. [Google Scholar]
- Chen, N.; Wang, L.; Lu, T. Watershed Scale Ecosystem Services: Progress and Prospective. J. Ecol. Rural Environ. 2012, 28, 113–119. [Google Scholar]
- Guo, R.-Z.; Shen, H.-J.; Yang, M.-M. Studies on ecosystem service value and ecological compensation strategy in Lishui River Basin. Res. Environ. Sci. 2016, 29, 774–782. [Google Scholar]
- Silvertown, J. Have Ecosystem Services Been Oversold? Trends Ecol. Evol. 2015, 30, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-Q.; Zhao, B.-P.; Luo, Z.-J. The ecosystem services value change in the upper reaches of Ganjiang River Based on RS and GIS. Acta Ecol. Sin. 2013, 33, 2761–2767. [Google Scholar] [CrossRef]
- Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Fu, B.-J.; Liu, S.-L.; Ma, K.-M. The contents and methods of integrated ecosystem assessment (IEA). Acta Ecol. Sin. 2001, 21, 1885–1892. [Google Scholar]
- Wu, J. Urban ecology and sustainability: The state-of-the-science and future directions. Landsc. Urban Plan. 2014, 125, 209–221. [Google Scholar] [CrossRef]
- En’shi City Geological Survey Bureau. En’shi City Geological Disaster Prevention Planning (2013–2020); Geological Survey Bureau: En’shi, China, 2013; Volume 5, pp. 8–13.
- Zhang, C.-S.; Xie, G.-D.; Cao, S.-Y. The Distribution Patterns of China’s County Ecological Function. Resour. Sci. 2012, 34, 1636–1646. [Google Scholar]
- Yan, N.-P.; Lin, H.; Wang, X. Analysis of evolution and driving force of ecosystem values in the Three Gorges Reservoir region during 1990–2011. Acta Ecol. Sin. 2014, 34, 5962–5973. [Google Scholar]
- Wang, S.-W.; Huang, G. Study on index system of ecological security assessment in Qingjiang River Basin and management measures. Yangtze River 2016, 47, 5–10. [Google Scholar]
- Jian, F.; Wang, Y.; Zhou, Z. Dynamic Ecological Risk Assessment and Management of Land Use in the Middle Reaches of the Heihe River Based on Landscape Patterns and Spatial Statistics. Sustainability 2016, 8, 536–542. [Google Scholar]
- Xu, G.-C.; Kang, M.-Y.; He, L.-N. Advances in research on ecological vulnerability. Acta Ecol. Sin. 2009, 29, 2578–2588. [Google Scholar]
- Zong, L.; Jiang, T. GIS Based risk zoning and assessment of flood disaster in the middle and lower reaches of the Yangtze River Basin. J. Nat. Dis. 2005, 14, 5–11. [Google Scholar]
- Qian, L.; Mao, J.; Wu, J. Ecological Security Pattern Analysis Based on Invest and Least-Cost Path Model: A Case Study of Dongguan Water Village. Sustainability 2016, 8, 172–181. [Google Scholar]
- Yin, H.; Qing, H.; Guo, T. Measurement Method and Empirical Research on the Sustainable Development Capability of a Regional Industrial System Based on Ecological Niche Theory in China. Sustainability 2014, 6, 8485–8509. [Google Scholar] [CrossRef]
- Lee, J.-A.; Chon, J.; Ahn, C. Planning Landscape Corridors in Ecological Infrastructure Using Least-Cost Path Methods Based on the Value of Ecosystem Services. Sustainability 2014, 6, 7564–7585. [Google Scholar] [CrossRef]
- Chong, Z.; Qin, C.; Ye, X. Environmental Regulation, Economic Network and Sustainable Growth of Urban Agglomerations in China. Sustainability 2016, 8, 467. [Google Scholar] [CrossRef]
- Qiang, T.; He, C.; He, X. Farmers’ Sustainable Strategies for Soil Conservation on Sloping Arable Lands in the Upper Yangtze River Basin, China. Sustainability 2014, 6, 4795–4806. [Google Scholar]
- Luo, S.-W.; Zhang, Y.; Chen, W.-H. Study on Land form of Qingjiang River Basin on the System of Land form Hydrological of Basin. J. Anhui. Agric. Sci. 2010, 38, 1646–1649. [Google Scholar]
- Cheng, J.; Dai, S.; Ye, X. Spatiotemporal heterogeneity of industrial pollution in China. Chin. Econ. Rev. 2016, 40, 179–191. [Google Scholar] [CrossRef]
- Joseph, N.; Stephanie, B.; Mark, R. A Practical Approach for Demonstrating Environmental Sustainability and Stewardship through a Net Ecosystem Service Analysis. Sustainability 2013, 5, 2152–2177. [Google Scholar]
- Wang, H.-B.; Li, J.-F.; Wang, B.-G. The Multilevel Gray Evaluation of Tourism Resources in the Qingjiang River Basin. Syst. Eng. Theory Pract. 2000, 20, 127–131. [Google Scholar]
- Hu, Y.-J.; Chen, X. Threat of Human Activities to Hydrological Regime in Central Asia. Acta Ecol. Sin. 2011, 28, 189–197. [Google Scholar]
- Zhang, R.; Wang, B.; Lin, J. GIS Based Measurement and Regulatory Zoning of Urban Ecological Vulnerability. Sustainability 2015, 7, 9924–9942. [Google Scholar] [CrossRef]
- Yu, Z.-Y.; Li, B.; Zhang, X.-S. Social ecological system and vulnerability driving mechanism analysis. Acta Ecol. Sin. 2014, 34, 1870–1879. [Google Scholar]
- Westley, F.-R.; Tjornbo, O.; Schultz, L. A Theory of Transformative Agency in Linked Social-Ecological Systems. Ecol. Soc. 2013, 18, 378–380. [Google Scholar] [CrossRef]
- Ostrom, E.; Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Ring, I.; Klauer, B.; Wätzold, F.; Watzold, B.-A. Mansson Regional Sustainability: Applied Ecological Economics Bridging the Gap between Natural and Social Sciences. Dep. Energy Environ. Build. Technol. 2013, 1, 597–608. [Google Scholar]
- Khan, M. Effects of changes in land-use and natural disasters on social-ecological resilience and vulnerabilities in coastal Bangladesh. AntikeAbendl. 2012, 59, 126–144. [Google Scholar]
- Zheng, F.; Zang, Z.; Sun, Z. Prediction and analysis of the transition to green economy in China based on the theory of ecosystem services. Acta Ecol. Sin. 2014, 34, 7137–7147. [Google Scholar] [CrossRef]
- Tang, C.; Ma, Y.; Li, J. Trend Prediction and Decomposed Driving Factors of Carbon Emissions in Jiangsu Province during 2015–2020. Sustainability 2016, 8, 1018. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, H. Ecosystem service value analysis and trend prediction in Chang-Zhu-Tan region. Trans. Chin. Soc. Agric. Eng. 2014, 30, 238–246. [Google Scholar]
- Levin, S.; Xepapadeas, T.; Crépin, A.-S. Social-ecological systems as complex adaptive systems: Modeling and policy implications. Environ. Dev. Econ. 2013, 18, 111–132. [Google Scholar] [CrossRef]
- Mcginnis, M.-D.; Ostrom, E. Social-Ecological System Framework: Initial Changes and Continuing Challenges. Ecol. Soc. 2014, 19, 253–265. [Google Scholar] [CrossRef]
- Smith, A.; Stirling, A. The Politics of Social-ecological Resilience and Sustainable Socio-technical Transitions. Ecol. Soc. 2010, 15, 11–22. [Google Scholar] [CrossRef]
- Bryan, B.-A.; Raymond, C.-M.; Crossman, N.-D. Comparing Spatially Explicit Ecological and Social Values for Natural Areas to Identify Effective Conservation Strategies. Conserv. Biol. J. Soc. Conserv. Biol. 2011, 25, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Enticott, G. The Ecological Paradox: Social and Natural Consequences of the Geographies of Animal Health Promotion. Trans. Inst. Br. Geogr. 2010, 33, 433–446. [Google Scholar] [CrossRef]
- Persha, L.; Agrawal, A.; Chhatre, A. Social and ecological synergy: Local rulemaking, forest livelihoods, and biodiversity conservation. Science 2011, 331, 1606–1608. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W. Construction of Efficient Chain, Comprehensive Value-added Exploration and Research of Ecological Village—Ecological Village of Lao Hutan in Huzhou City. Anhui Agric. Sci. Bull. 2012, 5, 23–31. [Google Scholar]
- Barnthouse, L. The strengths of the ecological risk assessment process: Linking science to decision making. Int. Environ. Assess. Manag. 2008, 4, 299–311. [Google Scholar] [CrossRef] [PubMed]
Land Use Types | Types | Definition |
---|---|---|
Crop land | Irrigated land | Single-cropping rice, double-cropping rice. |
Dry land | Single-cropping wheat, wheat/corn, corn, greenhouses. | |
Forest land | Forest land | Evergreen broadleaf, deciduous broadleaf, evergreen needleleaf, deciduous needle leaf, mixed forests. |
Shrub land | Ornamental tree and shrub, spinney, public benefit wood. | |
Orchard land | Terrace garden, pear garden, other garden. | |
Grassland | High grassland | Scrub grasslands, midlatitude grasslands, C4 grasslands, scrub grasslands. |
Low cover land | Marsh, forested wetlands, pasture, meadowy land, wetland. | |
Other land | Other land | Development land, land for roads, salt and alkali, rock, temporallybare croplands, biological crust. |
Unit Area ESV | Irrigated Land | Dry Land | Forest Land | Shrub Land | Orchard Land | High Grassland | Low Cover Land | Other Land |
873.47 | 4620.32 | 4143.00 | 2210.89 | 3314.40 | 1372.82 | 1006.74 | 749.57 |
Regions | Water and Soil Loss | Floods | Rocky Desertification | Integrated Disaster Risk Index |
---|---|---|---|---|
Upper reaches | 0.16 | 0.10 | 0.15 | 0.41 |
Middle reaches | 0.21 | 0.13 | 0.08 | 0.42 |
Lower reaches | 0.07 | 0.04 | 0.01 | 0.12 |
Regions | Irrigated Land | Dry Land | Forest Land | Shrub Land | Orchard Land | High Grassland | Low Cover Land | Other Land |
---|---|---|---|---|---|---|---|---|
Upper reaches | 0.05 | 0.06 | 0.43 | 0.24 | 0.18 | 0.02 | 0.11 | 0.29 |
Middle reaches | 0.18 | 0.21 | 0.31 | 0.19 | 0.05 | 0.07 | 0.09 | 0.17 |
Lower reaches | 0.18 | 0.22 | 0.34 | 0.08 | 0.07 | 0.06 | 0.08 | 0.24 |
Regions | Irrigated Land | Dry Land | Forest Land | Shrub Land | Orchard Land | High Grassland | Low Cover Land | Other Land |
---|---|---|---|---|---|---|---|---|
Upper reaches | 0.03 | 0.05 | 0.19 | 0.28 | 0.31 | 0.24 | 0.33 | 0.17 |
Middle reaches | 0.07 | 0.08 | 0.21 | 0.29 | 0.33 | 0.27 | 0.36 | 0.19 |
Lower reaches | 0.06 | 0.08 | 0.21 | 0.29 | 0.33 | 0.28 | 0.36 | 0.21 |
Types | Area Percentages (%) | Change in Area (104 ha) | Annual Change Rate (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2000–2005 | 2005–2010 | 2010–2015 | 2000–2005 | 2005–2010 | 2010–2015 | |
Irrigated land | 0.11 | 7.49 | 15.70 | 18.74 | 25.99 | −64.11 | 9.31 | 23.63 | −139.77 | 16.87 |
Dry land | 0.04 | 5.41 | 13.76 | 3.52 | −10.82 | 24.33 | −29.82 | −6.82 | 60.54 | −287.53 |
Forest land | 0.06 | 10.09 | 16.41 | 10.50 | 3.05 | 18.33 | −17.01 | 10.30 | 38.20 | −55.05 |
Shrub land | 0.04 | 23.94 | 13.45 | 39.35 | 17.35 | −30.95 | 76.56 | 24.70 | −78.78 | 66.09 |
Orchard land | 0.11 | 7.65 | 8.68 | 10.78 | −4.01 | 2.91 | 6.40 | −17.88 | 11.47 | 20.16 |
High grassland | 0.20 | 4.46 | 11.57 | 4.19 | −16.67 | 20.72 | −21.46 | −127.43 | 61.31 | −173.80 |
Low cover land | 0.23 | 2.38 | 6.21 | 2.26 | −5.12 | 11.17 | −11.48 | −73.52 | 61.58 | −172.60 |
Otherland | 0.19 | 2.03 | 6.66 | 7.38 | −3.51 | 13.49 | 2.27 | −58.89 | 69.33 | 10.43 |
Regions | 2000 Year | 2005 Year | 2010 Year | 2015 Year | ||||
---|---|---|---|---|---|---|---|---|
Before Normalization | After Normalization | Before Normalization | After Normalization | Before Normalization | After Normalization | Before Normalization | After Normalization | |
Lichuan City | 5.05 | 0.80 | 5.10 | 0.86 | 5.22 | 0.86 | 2.90 | 0.64 |
Xianfeng County | 2.82 | 0.45 | 2.94 | 0.49 | 2.83 | 0.47 | 1.56 | 0.35 |
Xuan’en County | 3.85 | 0.61 | 2.69 | 0.45 | 2.32 | 0.38 | 1.33 | 0.30 |
En’shi City | 6.30 | 1.00 | 5.95 | 1.00 | 5.65 | 0.93 | 4.50 | 1.00 |
Jianshi County | 3.51 | 0.55 | 3.90 | 0.66 | 3.47 | 0.57 | 1.84 | 0.41 |
Hefeng County | 2.41 | 0.38 | 2.29 | 0.38 | 2.02 | 0.33 | 1.28 | 0.28 |
Badong County | 2.63 | 0.42 | 4.18 | 0.70 | 3.50 | 0.58 | 1.92 | 0.43 |
Changyang County | 4.52 | 0.71 | 3.34 | 0.56 | 3.17 | 0.52 | 2.93 | 0.65 |
Wufeng County | 2.21 | 0.35 | 2.67 | 0.45 | 1.83 | 0.30 | 1.12 | 0.25 |
Yidu City | 6.32 | 1.00 | 4.91 | 0.83 | 6.04 | 1.00 | 3.27 | 0.73 |
Regions | Ecosystem Services Value | 2000–2015 Variation in 5 Years | Value Change Rate (%) | |||
---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | |||
Lichuan City | 51.01 | 59.29 | 68.92 | 80.11 | 29.10 | 36.33 |
Xianfeng County | 15.34 | 16.56 | 17.87 | 19.29 | 3.95 | 20.48 |
Xuan’en County | 17.34 | 13.46 | 10.45 | 8.12 | −9.22 | −113.55 |
En’shi City | 74.15 | 71.22 | 68.41 | 65.72 | −8.43 | −12.83 |
Jianshi County | 6.73 | 14.15 | 29.75 | 62.54 | 55.81 | 89.24 |
Hefeng County | 7.63 | 11.02 | 15.92 | 23.01 | 15.38 | 66.84 |
Badong County | 47.79 | 36.72 | 15.36 | 6.42 | −31.37 | −191.05 |
Changyang County | 9.67 | 10.19 | 10.75 | 11.33 | 1.66 | 14.65 |
Wufeng County | 28.18 | 9.39 | 3.13 | 1.04 | −17.14 | −155.25 |
Yidu County | 12.03 | 23.30 | 45.13 | 87.40 | 75.37 | 86.24 |
Regions | EcosystemServices Value | 2016–2035 Variationin 5 Years | The Value Change Rate (%) | |||
---|---|---|---|---|---|---|
2020 | 2025 | 2030 | 2035 | |||
Lichuan City | 93.12 | 108.24 | 125.82 | 146.26 | 53.14 | 36.33 |
Xianfeng County | 20.83 | 22.48 | 24.27 | 26.20 | 5.37 | 20.50 |
Xuan’en County | 6.30 | 4.89 | 3.80 | 2.95 | −3.35 | −113.56 |
En’shi City | 63.13 | 60.64 | 58.25 | 55.95 | −7.18 | −12.83 |
Jianshi County | 131.46 | 176.35 | 180.93 | 221.21 | 89.75 | 40.57 |
Hefeng County | 33.21 | 47.97 | 69.29 | 100.07 | 66.86 | 66.81 |
Badong County | 12.69 | 11.12 | 10.47 | 10.21 | −2.48 | −24.29 |
Changyang County | 11.94 | 12.58 | 13.26 | 13.98 | 2.04 | 14.59 |
Wufeng County | 10.35 | 10.12 | 10.04 | 10.01 | −0.34 | −3.40 |
Yidu County | 69.27 | 127.84 | 134.95 | 229.75 | 160.48 | 69.85 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Ye, X.; Wei, Q.; Xin, F.; Lu, Z.; Kudva, S.; Dai, Q. Ecosystem Services Value Assessment and Uneven Development of the Qingjiang River Basin in China. Sustainability 2017, 9, 2356. https://doi.org/10.3390/su9122356
Lin Z, Ye X, Wei Q, Xin F, Lu Z, Kudva S, Dai Q. Ecosystem Services Value Assessment and Uneven Development of the Qingjiang River Basin in China. Sustainability. 2017; 9(12):2356. https://doi.org/10.3390/su9122356
Chicago/Turabian StyleLin, Zhengsong, Xinyue Ye, Qian Wei, Fan Xin, Zhang Lu, Sonali Kudva, and Qiwen Dai. 2017. "Ecosystem Services Value Assessment and Uneven Development of the Qingjiang River Basin in China" Sustainability 9, no. 12: 2356. https://doi.org/10.3390/su9122356
APA StyleLin, Z., Ye, X., Wei, Q., Xin, F., Lu, Z., Kudva, S., & Dai, Q. (2017). Ecosystem Services Value Assessment and Uneven Development of the Qingjiang River Basin in China. Sustainability, 9(12), 2356. https://doi.org/10.3390/su9122356