Achieving a Sustainable Urban Form through Land Use Optimisation: Insights from Bekasi City’s Land-Use Plan (2010–2030)
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Dataset
2.3. Optimisation Module
2.4. Criteria Functions
2.4.1. Compactness
2.4.2. Compatibility and Dependency
2.4.3. Suitability
2.5. Multi-Criteria and Constraint Handling
2.6. Scenario
2.7. Prediction of New LU (2030)
3. Results and Discussion
3.1. Pareto-Front Optimal Set
3.2. Current LU Optimisation
3.3. LU Allocation in 2030
3.4. The Influence of Compact City, Eco City and LU Zoning in Optimisation
3.5. Limitations
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Curwell, S.; Deakin, M.; Symes, M. Sustainable Urban Development; Routledge: Abingdon, UK, 2005; Volume 1. [Google Scholar]
- Jabareen, Y.R. Sustainable Urban Forms: Their Typologies, Models, and Concepts. J. Plan. Educ. Res. 2006, 26, 38–52. [Google Scholar] [CrossRef]
- Williams, K.; Burton, E.; Jenks, M. Achieving Sustainable Urban Form; Taylor Francis: London, UK, 2000. [Google Scholar]
- Newton, P. Urban Form and Environmental Performance. In Achieving Sustainable Urban Form 2; Taylor Francis: London, UK, 2000; pp. 46–53. [Google Scholar]
- Hu, X.; Weng, Q. Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sens. Environ. 2009, 113, 2089–2102. [Google Scholar] [CrossRef]
- UN Sustainable Development Goals. Available online: https://sustainabledevelopment.un.org/topics (accessed on 25 November 2015).
- Steiner, F. The Living Landscape—An Ecological Approach to Landscape Planning, 2nd ed.; Island Press: Washington, DC, USA, 2008. [Google Scholar]
- Burton, E. The Potential of the Compact City for Promoting Social Equity. In Achieving Sustainable Urban Form; Taylor Francis: London, UK, 2000; pp. 19–29. [Google Scholar]
- Masoomi, Z.; Mesgari, M.S.; Hamrah, M. Allocation of urban land uses by Multi-Objective Particle Swarm Optimization algorithm. Int. J. Geogr. Inf. Sci. 2013, 27, 542–566. [Google Scholar] [CrossRef]
- Jenks, M. The Acceptability of Urban Intensification. In Achieving Sustainable Urban Form; E&FN Spon: London, UK, 2000; p. 242. [Google Scholar]
- Krupnik, T.J.; Schulthess, U.; Ahmed, Z.U.; McDonald, A.J. Sustainable crop intensification through surface water irrigation in Bangladesh? A geospatial assessment of landscape-scale production potential. Land Use Policy 2017, 60, 206–222. [Google Scholar] [CrossRef] [PubMed]
- Lauf, S.; Haase, D.; Kleinschmit, B. The effects of growth, shrinkage, population aging and preference shifts on urban development—A spatial scenario analysis of Berlin, Germany. Land Use Policy 2016, 52, 240–254. [Google Scholar] [CrossRef]
- Tannier, C.; Bourgeois, M.; Houot, H.; Foltête, J.C. Impact of urban developments on the functional connectivity of forested habitats: A joint contribution of advanced urban models and landscape graphs. Land Use Policy 2016, 52, 76–91. [Google Scholar] [CrossRef]
- Alexander, C. A City is Not a Tree. In The City Reader, 1st ed.; Routledge: New York, NY, USA, 1992; pp. 118–131. [Google Scholar]
- Abdalla, R.; Elawad, Y.; Chen, Z.; Han, S.S.; Xia, R. A GIS-supported fuzzy-set approach for flood risk assessment. Can. Water Resour. J. 2014, 39, 3–14. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G. Integration of genetic algorithms and GIS for optimal location search. Int. J. Geogr. Inf. Sci. 2005, 19, 581–601. [Google Scholar] [CrossRef]
- Cao, K.; Batty, M.; Huang, B.; Liu, Y.; Yu, L.; Chen, J. Spatial multi-objective land use optimization: Extensions to the non-dominated sorting genetic algorithm-II. Int. J. Geogr. Inf. Sci. 2011, 25, 1949–1969. [Google Scholar] [CrossRef]
- Ducheyne, E.I.; De Wulf, R.R.; De Baets, B. A spatial approach to forest-management optimization: Linking GIS and multiple objective genetic algorithms. Int. J. Geogr. Inf. Sci. 2006, 20, 917–928. [Google Scholar] [CrossRef]
- Haque, M.A. Locating optimum location for well drilling using genetic algorithms. In Proceedings of the 2002 IEEE International Conference on Industrial Technology, Bangkok, Thailand, 11–14 December 2002; pp. 492–497.
- Handayanto, R.T.; Srie Gunarti, A.S.; Samsiana, S.; Herlawati. A Web-GIS based integrated optimum location assessment tool for gas station using genetic algorithms. ARPN J. Eng. Appl. Sci. 2015, 10, 1383–1388. [Google Scholar]
- Sharafi, M.; ELMekkawy, T.Y. Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach. Renew. Energy 2014, 68, 67–79. [Google Scholar] [CrossRef]
- Shutao, L.; Tan, M.; Tsang, I.W.; Kwok, J.T.Y. A hybrid PSO-BFGS strategy for global optimization of multimodal functions. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2011, 41, 1003–1014. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; He, J.; Liu, F.; Yu, Y. Land-use spatial optimization based on PSO algorithm. Geo-Spat. Inf. Sci. 2011, 14, 54–61. [Google Scholar] [CrossRef]
- Yang, X. Nature-Inspired Optimization Algorithms; Elsevier Science Publishers B. V.: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Loonen, W.; Heuberger, P.; Kuijpers-Linde, M. Spatial optimisation in land-use allocation problems. In Modelling Land-Use Change; Koomen, E., Stillwell, J., Bakema, A., Scholten, H., Eds.; Springer: Berlin, Germany, 2007. [Google Scholar]
- Premalatha, K.; Natarajan, A.M. Discrete PSO with GA Operators for Document Clustering. Int. J. Recent Trends Eng. 2009, 1, 20–24. [Google Scholar]
- Tang, L.; Wang, X. A hybrid multiobjective evolutionary algorithm for multiobjective optimization problems. IEEE Trans. Evol. Comput. 2013, 17, 20–45. [Google Scholar] [CrossRef]
- Coello, C.A.C. Evolutionary Multiobjective Optimization: Theoretical Advances and Applications; Abraham, A., Jain, L., Goldberg, R., Eds.; Springer: London, UK, 2005; pp. 7–32. [Google Scholar]
- Ciptakarya PROFIL KABUPATEN/KOTA BEKASI. Available online: http://ciptakarya.pu.go.id/profil/profil/barat/jabar/bekasi.pdf (accessed on 24 November 2015).
- Bureau of Statistics Population of Bekasi City. Available online: http://bekasikota.bps.go.id/ (accessed on 24 November 2015).
- Dirks, F.J.H.; Rismianto, D.; De Wit, G.J. Groundwater in Bekasi District, West Java, Indonesia. Natuurwetenschappelijk Tijdschrift 1989, 70, 47–55. [Google Scholar]
- Bappeda. Rencana Tata Ruang Kota Bekasi; Bappeda: Bekasi, Indonesia, 2013.
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E.; Peck, D.L. A Land Use And Land Cover Classification System for Use with Remote Sensor Data; A Revision of the Land Use Classification System as Presented in U.S. Geological Survey Circular 671; U.S. Geological Survey: Reston, VA, USA, 1976.
- Despotakis, V.K.; Giaoutzi, M.; Nijkamp, P. Geographic Information Systems, Spatial Modelling and Policy Evaluation; Fischer, M.M., Nijkamp, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 235–261. [Google Scholar]
- Karliansyah, M.A. Urban Air Quality Evaluation: City Profile in Indonesia; Ministry of Environment: Jakarta, Indonesia, 2011.
- Coello, C.A.C. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art. Comput. Methods Appl. Mech. Eng. 2002, 191, 1245–1287. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.
- Eberhart, R.C.; Shi, Y. Comparison between Genetic Algorithms and Particle Swarm Optimization. In Proceedings of the 7th International Conference on Evolutionary Programming VII (EP ’98), San Diego, CA, USA, 25–27 March 1998; Springer: London, UK, 1998; pp. 611–616. [Google Scholar]
- Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 267, 66–72. [Google Scholar] [CrossRef]
- Sindhya, K.; Miettinen, K.; Deb, K. A hybrid framework for evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. 2013, 17, 495–511. [Google Scholar] [CrossRef]
- Goel, T.; Deb, K. Hybrid methods for multi-objective evolutionary algorithms. In Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning, Singapore, 18–22 November 2002; pp. 188–192.
- Koomen, E.; Stillwell, J. Modelling Land-Use Change: Progress and Applications; Koomen, E., Stillwell, J., Bakema, A., Scholten, H.J., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 1–22. [Google Scholar]
- Simmonds, D.; Coombe, D. The Transport Implication of Alternative Urban Form. In Achieving Sustainable Urban Form 2; Taylor Francis: London, UK, 2000; pp. 121–130. [Google Scholar]
- Masnavi, M.-R. The New Millennium and the New Urban Paradigm: The Compact City in Practice. In Achieving Sustainable Urban Form; Taylor Francis: London, UK, 2000; pp. 64–73. [Google Scholar]
- Stead, D.; Williams, J.; Tifheridge, H. Land Use, Transport and People: Identifying the Connections. In Achieving Sustainable Urban Form; Taylor Francis: London, UK, 2000; pp. 174–186. [Google Scholar]
- UN-Habitat; CBD. United Nation Conference on Housing and Sustainable Urban Development; UN Habitat III Issue Papers—Public Space; United Nation: New York, NY, USA, 2015. [Google Scholar]
- Torrens, P.M.; Alberti, M. Centre For Advanceds Spatial Measuring Sprawl. In Centre for Advanced Spatial Analysis; University College London: London, UK, 2000. [Google Scholar]
- Zadeh, L.A. Fuzzy Sets-Information and Control-1965. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Kriken, J.L. Urban design. In The Practise of Local Government Planning; Therefore, F.S., Ed.; International City Management Association: Washington, DC, USA, 1979; p. 354. [Google Scholar]
- Skulmoski, G.J.; Hartman, F.T. The Delphi Method for Graduate Research. J. Inf. Technol. Educ. 2007, 6, 1–21. [Google Scholar]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83. [Google Scholar] [CrossRef]
- Hotman, E. Base Reference Analytical Hierarchy Process for Engineering Process Selection. In Knowledge-Based Intelligent Information and Engineering Systems, Proceedings of the 9th International Conference, KES 2005, Melbourne, Australia, 14–16 September 2005; Khosla, R., Howlett, R.J., Jain, L.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 184–190. [Google Scholar]
- Wise, S. Gis Basics; Taylor Francis: New York, NY, USA, 2002. [Google Scholar]
- Hormann, K.; Agathos, A. The point in polygon problem for arbitrary polygons. Comput. Geom. Theory Appl. 2001, 20, 131–144. [Google Scholar] [CrossRef]
- Yowaldi, Y. The Relation between Land Price and Distance to CBD in Bekasi. Master’s Thesis, Economics of Development (ECD), Erasmus University, The Hague, The Netherlands, 14 December 2012. [Google Scholar]
A. Compatibility (Comp) | ||||||||||
LU Class 1 | Com | El Schl | Indust | Mid Schl | Colg | Med | Sport | Park | Res_low | Res_High |
Commercial | vhgh | vlow | high | low | high | low | vhgh | vhgh | vhgh | vhgh |
Elementary school | vlow | vlow 2 | vhgh | vhgh | vhgh | vhgh | vhgh | vhgh | vhgh | |
Industrial | vhgh | vlow | high | vhgh | vhgh | vhgh | vlow | vlow | ||
Middle school | med | vhgh | vhgh | vhgh | vhgh | vhgh | vhgh | |||
College | med | vhgh | vhgh | vhgh | vhgh | vhgh | ||||
Medical | vlow | vlow | vhgh | vhgh | vhgh | |||||
Sport | vlow | vhgh | vhgh | vhgh | ||||||
Park | vhgh | vhgh | vhgh | |||||||
resident_low | vhgh | vhgh | ||||||||
resident_high | vlow | |||||||||
B. Dependency (Dep) | ||||||||||
LU Class 1 | Com | El Schl | Indust | Mid Schl | Colg | Med | Sport | Park | Res_Low | Res_High |
Commercial | vhgh | vlow | vhgh | low | high | vhgh | vhgh | vhgh | vhgh | vhgh |
Elementary school | vlow | vlow | vhgh | high | vhgh | vhgh | vhgh | vhgh | vhgh | |
Industrial | vhgh | high | vhgh | vhgh | med | vhgh | low | vlow | ||
Middle school | vlow | vhgh | vhgh | vhgh | vhgh | vhgh | vhgh | |||
College | vlow | vhgh | vhgh | vhgh | vhgh | vhgh | ||||
Medical | vhgh | vhgh | vhgh | vhgh | vhgh | |||||
Sport | vlow | vhgh | vhgh | vhgh | ||||||
Park | vhgh | vhgh | vhgh | |||||||
resident_low | vlow | vhgh | ||||||||
resident_high | vlow |
No | Specs Scenario | Criteria for Optimisation | Constraint | Weight Ratio (Comp:Dep:Compactness:Suitability) |
---|---|---|---|---|
1. | Government Policy (GP) | All criteria | LU zone in city plan (2010–2030) | 0.402, 0.237, 0.115, and 0.247 (from survey) |
2. | Sustainable Development (SD) | All criteria | Empty locations with open space (20%) and special location for industrial zones following GP constraint | 0.402, 0.237, 0.115, and 0.247 (from survey) |
3. | Business-as-usual (BAU) | All criteria except suitability | Empty and allowable locations | 0.533, 0.314, 0.153, and 0 (excluding suitability from survey) |
No | LU Class 1 | Year | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2003 | 2006 | 2009 | 2012 | 2015 | 2018 | 2021 | 2024 | 2027 | 2030 2 | ||
1 | Com | 245 | 276 | 309 | 325 | 344 | 355 | 367 | 375 | 385 | 433 (89) |
2 | Medical | 87 | 92 | 101 | 107 | 118 | 121 | 126 | 130 | 135 | 151 (33) |
3 | Sport | 19 | 23 | 24 | 24 | 26 | 27 | 28 | 30 | 32 | 35 (9) |
4 | HD Res | 2122 | 2217 | 2262 | 2282 | 2326 | 2379 | 2412 | 2420 | 2434 | 2677 (351) |
5 | Industrial | 118 | 131 | 139 | 149 | 154 | 167 | 174 | 190 | 201 | 228 (74) |
6 | LD Res | 1446 | 1481 | 1580 | 1539 | 1537 | 1362 | 1191 | 1028 | 871 | 478 |
7 | College | 35 | 35 | 37 | 38 | 38 | 40 | 39 | 40 | 41 | 46 (8) |
8 | Mid Sch | 202 | 203 | 203 | 206 | 207 | 210 | 211 | 211 | 212 | 222 (15) |
9 | Elem Sch | 270 | 270 | 272 | 272 | 273 | 271 | 272 | 273 | 2721 | 276 (3) |
10 | Park | 1904 | 1904 | 1887 | 1858 | 1772 | 1805 | 1775 | 1767 | 1747 | 1669 |
Population (millions) | 1.88 | 2.08 | 2.32 | 2.52 | 2.73 | 3.01 | 3.13 | 3.40 | 3.53 | 3.76 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Handayanto, R.T.; Tripathi, N.K.; Kim, S.M.; Guha, S. Achieving a Sustainable Urban Form through Land Use Optimisation: Insights from Bekasi City’s Land-Use Plan (2010–2030). Sustainability 2017, 9, 221. https://doi.org/10.3390/su9020221
Handayanto RT, Tripathi NK, Kim SM, Guha S. Achieving a Sustainable Urban Form through Land Use Optimisation: Insights from Bekasi City’s Land-Use Plan (2010–2030). Sustainability. 2017; 9(2):221. https://doi.org/10.3390/su9020221
Chicago/Turabian StyleHandayanto, Rahmadya Trias, Nitin Kumar Tripathi, Sohee Minsun Kim, and Sumanta Guha. 2017. "Achieving a Sustainable Urban Form through Land Use Optimisation: Insights from Bekasi City’s Land-Use Plan (2010–2030)" Sustainability 9, no. 2: 221. https://doi.org/10.3390/su9020221
APA StyleHandayanto, R. T., Tripathi, N. K., Kim, S. M., & Guha, S. (2017). Achieving a Sustainable Urban Form through Land Use Optimisation: Insights from Bekasi City’s Land-Use Plan (2010–2030). Sustainability, 9(2), 221. https://doi.org/10.3390/su9020221