A Feasibility Assessment of Photovoltaic Power Systems in Ireland; a Case Study for the Dublin Region
Abstract
:1. Introduction
- Review the planning requirements regarding the installation of restrictions on the size of PV systems in Ireland,
- Evaluate potential energy generation by PV in Dublin and determine the technical feasible size of installation relative to existing roof space,
- Evaluate the energy and economic payback times relating to the proposed solar PV installation at different renewable energy feed-in tariffs,
- Evaluate the potential environmental impacts of the proposed solar PV installation.
1.1. Current Status of Solar Energy Systems in Ireland
1.1.1. Solar PV Potential in Ireland
1.1.2. Site Requirements and Planning Permission
- The total aperture area of any such panel, taken together with any other such panel previously placed on or within the said curtilage, shall not exceed 12 square metres or 50% of the total roof area, whichever is the lesser.
- The distance between the plane of the wall or a pitched roof and the panel shall not exceed 15 cm.
- The distance between the plane of a flat roof and the panel shall not exceed 50 cm.
- The solar panel shall be a minimum of 50 cm from any edge of the wall or roof on which it is mounted.
- The height of a free-standing solar array shall not exceed 2 m, at its highest point, above ground level.
- A free-standing solar array shall not be placed on or forward of the front wall of a house.
- The erection of any free standing solar array shall not reduce the area of private open space, reserved exclusively for the use of the occupants of the house, to the rear or to the side of the house to less than 25 square metres.
1.1.3. Support Measures
1.2. Environmental Impacts of Solar PV Systems
2. Materials and Methods
2.1. System Description
2.2. Environmental and Economic Assessment Methods
- Emat: Primary energy demand to produce materials comprising PV system,
- Emanuf: Primary energy demand to manufacture PV system,
- Etrans: Primary energy demand to transport materials used during the life cycle,
- Einst: Primary energy demand to install the system,
- EEOL: Primary energy demand for end-of-life management,
- Eagen: Annual electricity generation,
- EO&M: Annual primary energy demand for operation and maintenance,
- ηG: Grid efficiency, the average primary energy to electricity conversion efficiency at the demand side.
3. Results and Discussion
3.1. Life Cycle Assessment
3.2. Energy Pay Back Time
3.3. Economic Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Howley, M.; Holland, M.; Dineen, D.; Cotter, E. Energy in Ireland 1990—2014; Sustainable Energy Association Ireland: Sligo, Ireland, 2015. [Google Scholar]
- Duffy, P.; Hanley, E.; Hyde, B.; O’Brien, P.; Ponzi, J.; Cotter, E.; Black, K. Ireland—National Inventory Report 2014—Greenhouse Gas Emissions 1990–2012 Reported to the United Nations Framework Convention on Climate Change; Environmental Protection Agency: Washington, DC, USA, 2014. [Google Scholar]
- European Commission. Directive 2009/28/ec of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/ec and 2003/30/ec; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Department of Communications Energy and Natural Resources. National Renewable Energy Action Plan—Ireland; Department of Communications Energy and Natural Resources: Dublin, Ireland, 2010.
- Murphy, F.; Devlin, G.; McDonnell, K. Benchmarking environmental impacts of peat use for electricity generation in ireland—A life cycle assessment. Sustainability 2015, 7, 6376–6393. [Google Scholar] [CrossRef]
- Howley, M.; Holland, M.; O’Rourke, K. Renewable Energy in Ireland 2012; Sustainable Energy Association Ireland: Sligo, Ireland, 2014. [Google Scholar]
- European Commission. Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—Renewable Energy Progress—com(2015) 293 Final; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Li, Z.; Reynolds, A.; Boyle, F. Domestic integration of micro-renewable electricity generation in ireland—The current status and economic reality. Renew. Energy 2014, 64, 244–254. [Google Scholar] [CrossRef]
- Met Éireann. Sunshine and Solar Radiation. Available online: http://www.met.ie/climate-ireland/sunshine.asp (accessed on 26 January 2017).
- Huld, T.; Dunlop, E.D. Photovoltaic Geographical Information System (PVGIS). Available online: https://ec.europa.eu/jrc/en/scientific-tool/photovoltaic-geographical-information-system-pvgis-geographical-assessment-solar-resource-and (accessed on 26 January 2017).
- Acciona. Amareleja Photovoltaic Solar Plant—A World Benchmark in the Development of Renewable Energies. Available online: https://www.scribd.com/document/125604342/Amareleja-Photovoltaic-Solar-Plant (accessed on 6 February 2017).
- Juwi. Waldpolenze Solar Park. Available online: http://www.juwi.com/solar_energy/references/details/waldpolenz_solar_park/-/-/5/1.html (accessed on 26 January 2017).
- Huld, T.; Müller, R.; Gambardella, A. A new solar radiation database for estimating PV performance in europe and africa. Sol. Energy 2012, 86, 1803–1815. [Google Scholar] [CrossRef]
- Sustainable Energy Association Ireland (SEAI). Best Practice Guide Photovoltaics (PV); Sustainable Energy Association Ireland: Sligo, Ireland, 2014. [Google Scholar]
- Flood, E.; McDonnell, K.; Murphy, F.; Devlin, G. A feasibility analysis of photovoltaic solar power for small communities in ireland. Open Renew. Energy J. 2011, 4, 78–92. [Google Scholar]
- Government of Ireland. Planning and Development Regulations 2007—s.I. No. 83 of 2007; Government of Ireland: Dublin, Ireland, 2007.
- Dusonchet, L.; Telaretti, E. Comparative economic analysis of support policies for solar PV in the most representative eu countries. Renew. Sustain. Energy Rev. 2015, 42, 986–998. [Google Scholar] [CrossRef]
- Department of Communications Energy and Natural Resources. Refit. Available online: http://www.dcenr.gov.ie/Energy/Sustainable+and+Renewable+Energy+Division/REFIT.htm (accessed on 5 November 2014).
- Electric Ireland. Electric Ireland Micro-Generation Pilot Scheme. Available online: https://www.electricireland.ie/ei/residential/price-plans/micro-generation-scheme.jsp (accessed on 23 January 2017).
- Funded Solar. Available online: http://kingspanesb.com/about-funded-solar/ (accessed on 4 March 2016).
- Howley, M.; Holland, M. Electricity & Gas Prices in Ireland: 2nd Semester (July-December) 2015; Sustainable Energy Association Ireland: Sligo, Ireland, 2016. [Google Scholar]
- Murphy, F.; Sosa, A.; McDonnell, K.; Devlin, G. Life cycle assessment of biomass-to-energy systems in ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction. Energy 2016, 109, 1040–1055. [Google Scholar] [CrossRef]
- Murphy, F.; Devlin, G.; McDonnell, K. Greenhouse gas and energy based life cycle analysis of products from the irish wood processing industry. J. Clean. Prod. 2015, 92, 134–141. [Google Scholar] [CrossRef]
- Peng, J.; Lu, L.; Yang, H. Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renew. Sustain. Energy Rev. 2013, 19, 255–274. [Google Scholar] [CrossRef]
- Nugent, D.; Sovacool, B.K. Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey. Energy Policy 2014, 65, 229–244. [Google Scholar] [CrossRef]
- Fthenakis, V.; Alsema, E. Photovoltaics energy payback times, greenhouse gas emissions and external costs: 2004–early 2005 status. Prog. Photovolt. Res. Appl. 2006, 14, 275–280. [Google Scholar] [CrossRef]
- Mason, J.E.; Fthenakis, V.M.; Hansen, T.; Kim, H.C. Energy payback and life-cycle CO2 emissions of the bos in an optimized 3·5 MW PV installation. Prog. Photovolt. Res. Appl. 2006, 14, 179–190. [Google Scholar] [CrossRef]
- Laleman, R.; Albrecht, J.; Dewulf, J. Life cycle analysis to estimate the environmental impact of residential photovoltaic systems in regions with a low solar irradiation. Renew. Sustain. Energy Rev. 2011, 15, 267–281. [Google Scholar] [CrossRef]
- Fthenakis, V.; Frischknecht, R.; Raugei, M.; Kim, H.C.; Alsema, E.; Held, M.; de Wild-Sholten, M. Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity, 2nd ed.; IEA PVPS Task 12; International Energy Agency Photovoltaic Power Systems Programme; International Energy Agency: Paris, France, 2011. [Google Scholar]
- Evans, A.; Strezov, V.; Evans, T.J. Assessment of sustainability indicators for renewable energy technologies. Renew. Sustain. Energy Rev. 2009, 13, 1082–1088. [Google Scholar] [CrossRef]
- Kloepffer, W. Life cycle sustainability assessment of products. Int. J. Life Cycle Assess. 2008, 13, 89–95. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). ISO 14040:2006—Environmental Management—Life Cycle Assessment—Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- International Organization for Standardization (ISO). En ISO 14044:2006: Environmental Management—Life Cycle Assessment—Requirements and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Hsu, D.D.; O’Donoughue, P.; Fthenakis, V.; Heath, G.A.; Kim, H.C.; Sawyer, P.; Choi, J.-K.; Turney, D.E. Life cycle greenhouse gas emissions of crystalline silicon photovoltaic electricity generation. J. Ind. Ecol. 2012, 16, S122–S135. [Google Scholar] [CrossRef]
- Gerbinet, S.; Belboom, S.; Léonard, A. Life cycle analysis (LCA) of photovoltaic panels: A review. Renew. Sustain. Energy Rev. 2014, 38, 747–753. [Google Scholar] [CrossRef]
- Lamnatou, C.; Chemisana, D.; Mateus, R.; Almeida, M.G.; Silva, S.M. Review and perspectives on life cycle analysis of solar technologies with emphasis on building-integrated solar thermal systems. Renew. Energy 2015, 75, 833–846. [Google Scholar] [CrossRef]
- Sherwani, A.F.; Usmani, J.A.; Varun. Life cycle assessment of solar PV based electricity generation systems: A review. Renew. Sustain. Energy Rev. 2010, 14, 540–544. [Google Scholar] [CrossRef]
- Kim, H.C.; Fthenakis, V.; Choi, J.-K.; Turney, D.E. Life cycle greenhouse gas emissions of thin-film photovoltaic electricity generation. J. Ind. Ecol. 2012, 16, S110–S121. [Google Scholar] [CrossRef]
- Pacca, S.; Sivaraman, D.; Keoleian, G.A. Parameters affecting the life cycle performance of PV technologies and systems. Energy Policy 2007, 35, 3316–3326. [Google Scholar] [CrossRef]
- Reich, N.H.; Alsema, E.A.; van Sark, W.G.J.H.M.; Turkenburg, W.C.; Sinke, W.C. Greenhouse gas emissions associated with photovoltaic electricity from crystalline silicon modules under various energy supply options. Prog. Photovolt. Res. Appl. 2011, 19, 603–613. [Google Scholar] [CrossRef]
- Alsema, E.A.; de wild-Scholten, M.J. Environmental life cycle assessment of advanced silicon solar cell technologies. In Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, France, 7–11 June 2004.
- Fthenakis, V.; Kim, H.C.; Frischknecht, R.; Raugei, M.; Sinha, P.; Stucki, M. Life Cycle Inventories and Life Cycle Assessment of Photovoltaic Systems; Pvps task 12, report t12–02:2011; International Energy Agency (IEA): Paris, France, 2011. [Google Scholar]
- Alsema, E.A.; de Wild-Sholten, M.J. Environmental impacts of crystalline silicon photovoltaic module production. In Proceedings of the 13th CIRP International Conference on Life Cycle Engineering, Leuven, Belgium, 31 May–2 June 2006.
- Raugei, M.; Frankl, P. Life cycle impacts and costs of photovoltaic systems: Current state of the art and future outlooks. Energy 2009, 34, 392–399. [Google Scholar] [CrossRef]
- Jungbluth, N.; Tuchschmid, M. Photovoltaics. In Sachbilanzen von Energiesystemen: Grundlagen für den Ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz; Dones, R., Ed.; Ecoinvent Report no.6-xii, Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007. [Google Scholar]
- Turconi, R.; Boldrin, A.; Astrup, T. Life cycle assessment (lca) of electricity generation technologies: Overview, comparability and limitations. Renew. Sustain. Energy Rev. 2013, 28, 555–565. [Google Scholar] [CrossRef] [Green Version]
- PRé Consultants. Simapro 8.0.1, PRé Consultants: Amersfoort, The Netherlands, 2013.
- Wies, R.W.; Johnson, R.A.; Agrawal, A.N.; Chubb, T.J. Simulink model for economic analysis and environmental impacts of a PV with diesel-battery system for remote villages. Power Syst. IEEE Trans. 2005, 20, 692–700. [Google Scholar] [CrossRef]
- Photovoltaik4all. Q-cells q.Peak-g3 275w Mono Mit Schwarzen Rahmen. Available online: http://www.photovoltaik4all.de/pv4all-netz/solarmodule/q-cells/98/q-cells-q.peak-g3-275w-mono-mit-schwarzen-rahmen (accessed on 5 March 2016).
- International Renewable Energy Agency (IRENA); Energy Technology System Analysis Programme IEA-Etsap. Technology Policy Brief e11; The International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2013. [Google Scholar]
- International Energy Agency. Energy Technology Perspectives. Technology Roadmap: Solar Photovoltaic Energy, 2014th ed.; International Energy Agency: Paris, France, 2014. [Google Scholar]
- Department of Communications Energy and Natural Resources. Renewable Energy Feed in Tariff—Reference Prices; Department of Communications Energy and Natural Resources: Dublin, Ireland, 2015.
- International Energy Agency. Projected Costs of Generating Electricity—2005 Update; Organisation for Economic Co-Operation and Development: Paris, Frence, 2005. [Google Scholar]
- Hammond, G.P.; Harajli, H.A.; Jones, C.I.; Winnett, A.B. Whole systems appraisal of a uk building integrated photovoltaic (bipv) system: Energy, environmental, and economic evaluations. Energy Policy 2012, 40, 219–230. [Google Scholar] [CrossRef]
- Howley, M.; Holland, M.; Dineen, D. Energy in ireland 1990–2013; Sustainable Energy Association Ireland: Sligo, Ireland, 2014. [Google Scholar]
- Hernández-Moro, J.; Martínez-Duart, J.M. Analytical model for solar PV and csp electricity costs: Present lcoe values and their future evolution. Renew. Sustain. Energy Rev. 2013, 20, 119–132. [Google Scholar] [CrossRef]
- KPMG. A Brighter Future—The Potential Benefits of Solar PV in Ireland; Irish Solar Energy Association: Dublin, Ireland, 2015. [Google Scholar]
Business Electricity Prices (ex-VAT) | Residential Electricity Prices (All Taxes Included) | ||
---|---|---|---|
Band | Price (c/kWh) | Band | Price (c/kWh) |
IA | 20.5 | DA | 48.1 |
IB | 16.4 | DB | 30.7 |
IC | 13.6 | DC | 24.5 |
ID | 11.2 | DD | 21.1 |
IE | 9.7 | DE | 18.1 |
IF | 8.8 | - | - |
Installation Data | Unit | Quantity |
---|---|---|
Global horizontal irradiation | kWh·m−2 | 963 |
Roof area | m2 | 784 |
Area per panel | m2 | 1.67 |
Number of panels | 195 | |
Total surface area | m2 | 325.7 |
Nominal power | Wp·panel−1 | 275 |
Total nominal power | Wp | 53,625 |
Yearly output | kWh | 43,537 |
kWh·kWp−1 | 811.81 |
Installation Lifetime | Years | 30 |
---|---|---|
Panel replacement rate | % | 2 |
Loss during construction | % | 1 |
Technology | Unit | Quantity | |
---|---|---|---|
1 | Small wind (<5 MW) | cent kWh−1 | 8.2 |
2 | Biomass Combustion | cent kWh−1 | 9.9 |
3 | Large AD Non CHP (>500 kW) | cent kWh−1 | 11.5 |
4 | Large AD CHP (>500 kW) | cent kWh−1 | 14.6 |
Impact Category | Unit | Quantity |
---|---|---|
Inverter Production + Disposal | g CO2-eq kWh−1 | 5.73 |
PV Panel Production + Disposal | g CO2-eq kWh−1 | 49.67 |
Solar Installation Construction + Disposal | g CO2-eq kWh−1 | 12.98 |
Transport | g CO2-eq kWh−1 | 1.22 |
Electricity | g CO2-eq kWh−1 | 4.87 × 10−4 |
Total | g CO2-eq kWh−1 | 69.61 |
Discount Rate (%) | LCOE (€ MWh−1) |
---|---|
5 | 200 |
7.5 | 246 |
10 | 295 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murphy, F.; McDonnell, K. A Feasibility Assessment of Photovoltaic Power Systems in Ireland; a Case Study for the Dublin Region. Sustainability 2017, 9, 302. https://doi.org/10.3390/su9020302
Murphy F, McDonnell K. A Feasibility Assessment of Photovoltaic Power Systems in Ireland; a Case Study for the Dublin Region. Sustainability. 2017; 9(2):302. https://doi.org/10.3390/su9020302
Chicago/Turabian StyleMurphy, Fionnuala, and Kevin McDonnell. 2017. "A Feasibility Assessment of Photovoltaic Power Systems in Ireland; a Case Study for the Dublin Region" Sustainability 9, no. 2: 302. https://doi.org/10.3390/su9020302
APA StyleMurphy, F., & McDonnell, K. (2017). A Feasibility Assessment of Photovoltaic Power Systems in Ireland; a Case Study for the Dublin Region. Sustainability, 9(2), 302. https://doi.org/10.3390/su9020302