An Alternative Method of Spatial Autocorrelation for Chlorophyll Detection in Water Bodies Using Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site
2.2. Data Acquisition
2.3. Data Analysis
3. Results and Discussion
3.1. Results of the Laboratory Analysis
3.2. Correlation between Spectral Data and Chlorophyll
3.3. Correlation between NDVImod and Chlorophyll from Images Obtained with UAVs
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tundisi, J.G.; Tundisi, T.M. Limnologia, 1st ed.; Oficina de Textos: São Paulo, Brasil, 2008. (In Portuguese) [Google Scholar]
- Sperling, M. Introdução à Qualidade das Águas e ao Tratamento de Esgotos, 3rd ed.; UFMG: Belo Horizonte, Brasil, 2005. (In Portuguese) [Google Scholar]
- Smith, V.H.; Schindler, D.W. Eutrophication science: Where do we go from here? Trends Ecol. Evol. 2009, 24, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Y.; Yang, F.; Cao, X.; Bai, Z.; Zhu, J.; Chen, E.; Li, Y.; Ran, Y. Spatial and temporal variations of chlorophyll-a concentration from 2009 to 2012 in Poyang Lake, China. Environ. Earth Sci. 2015, 73, 4063–4075. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, X.; Zhou, B.; Tian, L.; Yuan, X.; Feng, L. Assessment of total suspended sediment concentrations in Poyang Lake using HJ-1A/1B CCD imagery. Chin. J. Oceanol. Limnol. 2012, 30, 295–304. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Zimba, P.V.; Everitt, J.H. Remote sensing techniques to assess water quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef]
- Walczykowski, P.; Jenerowicz, A.; Orych, A. A review on remote sensing methods of detecting physical water pollutants. Proc. Res. Conf. Tech. Discip. 2013, 1, 125–130. [Google Scholar]
- Baban, S.M.J. Use of remote sensing and geographical information systems in developing lake management strategies. Hydrobiologia 1999, 395, 211–226. [Google Scholar] [CrossRef]
- Zang, W.; Lin, J.; Wang, Y.; Tao, H. Investigating small-scale water pollution with UAV remote sensing technology. In Proceedings of the World Automation Congress (WAC) 2012, Puerto Vallarta, Mexico, 24–28 June 2012; IEEE: New York, NY, USA, 2012. [Google Scholar]
- Tamminga, A.; Hugenholtz, C.; Eaton, B.; Lapointe, M. Hyperspatial remote sensing of channel reach morphology and hydraulic fish habitat using and unmanned aerial vehicle (UAV): A first assessment in the context of river research and management. Riv. Res. App. 2015, 31, 379–391. [Google Scholar] [CrossRef]
- Su, T.-C.; Chou, H.-T. Application of Multispectral Sensors Carried on Unmanned Aerial Vehicle (UAV) to Trophic State Mapping of Small Reservoirs: A Case Study of Tain-Pu Reservoir in Kinmen, Taiwan. Remote Sens. 2015, 7, 10078–10097. [Google Scholar] [CrossRef]
- Cândido, A.K.A.A.; Paranhos Filho, A.C.; Haupenthal, M.R.; Silva, N.M.; Correa, J.S.; Ribeiro, M.L. Water quality and chlorophyll measurement through vegetation indices generated from orbital and suborbital images. Water Air Soil. Pollut. 2016. [Google Scholar] [CrossRef]
- Toth, C.; Józków, G. Remote sensing platforms and sensors: A survey. ISPRS J. Photogam. Remote Sens. 2016, 115, 22–36. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photog. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Colomina, I.; Blázquez, P.; Molina, P.; Parés, M.E.; Wis, M. Towards a New Paradigm for High-Resolution Low-Cost Photogrammetry and Remote Sensing. Available online: http://www.isprs.org/proceedings/XXXVII/congress/1_pdf/205.pdf (accessed on 1 March 2017).
- Ballesteros, R.; Ortega, J.F.; Hernández, D.; Moreno, M.A. Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: Description of image acquisition and processing. Precis. Agric. 2014, 15, 579–592. [Google Scholar] [CrossRef]
- Flynn, K.F.; Chapra, S.C. Remote Sensing of Submerged Aquatic Vegetation in a Shallow Non-Turbid River Using an Unmanned Aerial Vehicle. Remote Sens. 2014, 6, 12815–12836. [Google Scholar] [CrossRef]
- Luo, J.; Li, X.; Ma, R.; Li, F.; Duan, H.; Hu, W.; Qin, B.; Huang, W. Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China. Ecol. Ind. 2016, 60, 503–513. [Google Scholar] [CrossRef]
- Tauro, F.; Oliveri, G.; Petroselli, A.; Porfiri, M. Flow monitoring with a camera: A case study on a flood event in Tiber River. Envrion. Monit. Assess. 2016. [Google Scholar] [CrossRef] [PubMed]
- Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture. Remot. Sens. 2013, 5, 5006–5039. [Google Scholar] [CrossRef] [Green Version]
- Moraes, E.E.; Sampaio, M.I.R; Garcia, V.Q.; Severo, P.T.G.; Alonso, M.; Guimarães, L.G.; Pereira, R.S. Análise da resposta espectral da água em estações de tratamento para comprimentos de onda dentro do visível. In Proceedings of the XIV Simpósio Brasileiro de Sensoriamento Remoto, SBSR, Natal/RN, Brasil, 25–30 April 2009. (In Portuguese)
- Cheng, C.; Wei, Y.; Sun, X.; Zhou, Y. Estimation of chlorophyll-a concentration in turbid lake using spectral smoothing and derivative analysis. Int. J. Environ. Res. Public Health 2013, 10, 2979–2994. [Google Scholar] [CrossRef] [PubMed]
- Murugan, P.; Sivakumar, R.; Pandiyan, R.; Annadurai, M. Comparison of in-Situ Hyperspectral and Landsat ETM+ Data for Chlorophyll-a Mapping in Case-II Water (Krishnarajapuram Lake, Bangalore). J. Indian Soc. Remote Sens. 2016, 44, 949–957. [Google Scholar] [CrossRef]
- Nusch, E.A. Comparisonof different methods for chlorophyll and phaeopigments determination. Arch. Hydrobiol. 1980, 14, 14–36. [Google Scholar]
- Gitelson, A.A.; Schalles, J.F.; Hladik, C.M. Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study. Remote Sens. Environ. 2007, 109, 464–472. [Google Scholar] [CrossRef]
- Jensen, J.R. Sensoriamento Remoto do Ambiente: Uma Perspectiva em Recursos Terrestres; Parêntese: São José dos Campos, Brasil, 2011. (In Portuguese) [Google Scholar]
- Sváb, E.; Tyler, A.N.; Preston, T.; Présing, M.; Balogh, K.V. Characterizing the spectral reflectance of algae in lake Waters with high suspended sediment concentrations. Int. J. Remote Sens. 2005, 26, 919–928. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Nuhu, M.R. Delineation and Quantification of Submerged Aquatic Vegetation (SAV) in Inland Lakes Using Multispectral Sensors. Master’s Thesis, University of Twente, Enschede, The Netherlands, February 2016. [Google Scholar]
- Londe, L.R. Comportamento Espectral do Fitoplâncton de um Reservatório Brasileiro Eutrofizado-Ibitinga (SP); Doutorado em Sensoriamento Remoto, Instituto Nacional de Pesquisas Espaciais: São José dos Campos, Brazil, 2008. (In Portuguese) [Google Scholar]
- Lissner, J.B.; Guasselli, L.A. Variations of the normalized difference vegetation index (NDVI) in the Itapeva-RS Lake, north coast of Rio Grande do Sul, Brazil, from temporal series analysis. Soc. Nat. 2013, 25, 427–440. [Google Scholar] [CrossRef]
- Hunt, E.R.; Hively, W.D.; Fujikawa, S.J.; Linden, D.S.; Daughtry, C.S.T.; McCarty, G.W. Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sens. 2010, 2, 290–305. [Google Scholar] [CrossRef]
- Hunt, E.R.; Hively, W.D.; McCarty, G.W.; Daughtry, C.S.T.; Forrestal, P.J.; Kratochvil, R.J.; Carr, J.L.; Allen, N.F.; Fox-Rabinovitz, J.R.; Miller, C.D. NIR-green-blue high-resolution digital images for assessment of winter cover crop biomass. GISci. Remote Sens. 2011, 48, 86–98. [Google Scholar] [CrossRef]
- Hunt, E.R.; Daughtry, C.S.T.; Mirsky, S.B.; Hively, W.D. Remote Sensing With Simulated Unmanned Aircraft Imagery for Precision Agriculture Applications. IEEE J. Sel. Top. App. Earth Obs. Remote Sens. 2014, 7, 4566–4571. [Google Scholar] [CrossRef]
- Lehmann, J.R.K.; Nieberding, F.; Prinz, T.; Knoth, C. Analysis of Unmanned Aerial System-Based CIR Images in Forestry—A New Perspective to Monitor Pest Infestation Levels. Forests 2015, 6, 594–612. [Google Scholar] [CrossRef] [Green Version]
- Nijland, W.; Jong, R.; Jong, S.M.; Wulder, M.A.; Bater, C.W.; Coops, N.C. Monitoring plant condition and phenology using infrared sensitive consumer grade digital cameras. Agric. For. Met. 2014, 184, 98–106. [Google Scholar] [CrossRef]
- Rasmussen, J.; Ntakos, G.; Nielsen, J.; Svensgaard, J.; Poulsen, R.; Christensen, S. Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots? Eur. J. Agric. 2016, 74, 75–92. [Google Scholar] [CrossRef]
Parameter | Value (µg/L) |
---|---|
Average | 150.98 |
Minimum value/Location | 115.79/P05 |
Maximum value/Location | 231.01/P11 |
Standard deviation | 27.66 |
Variable | Coefficient | Value of Coefficient |
---|---|---|
Intersection | I | −30.53 |
C1 | 6.05 | |
C2 | −0.26 |
Parameter | Value NDVImod |
---|---|
Minimum value/Location | −0.1389 (P02) |
Maximum value/Location | 0.0493 (P10) |
Average | −0.0495 |
Standard deviation | 0.0494 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guimarães, T.T.; Veronez, M.R.; Koste, E.C.; Gonzaga, L.; Bordin, F.; Inocencio, L.C.; Larocca, A.P.C.; De Oliveira, M.Z.; Vitti, D.C.; Mauad, F.F. An Alternative Method of Spatial Autocorrelation for Chlorophyll Detection in Water Bodies Using Remote Sensing. Sustainability 2017, 9, 416. https://doi.org/10.3390/su9030416
Guimarães TT, Veronez MR, Koste EC, Gonzaga L, Bordin F, Inocencio LC, Larocca APC, De Oliveira MZ, Vitti DC, Mauad FF. An Alternative Method of Spatial Autocorrelation for Chlorophyll Detection in Water Bodies Using Remote Sensing. Sustainability. 2017; 9(3):416. https://doi.org/10.3390/su9030416
Chicago/Turabian StyleGuimarães, Tainá T., Maurício R. Veronez, Emilie C. Koste, Luiz Gonzaga, Fabiane Bordin, Leonardo C. Inocencio, Ana Paula C. Larocca, Marcelo Z. De Oliveira, Dalva C. Vitti, and Frederico F. Mauad. 2017. "An Alternative Method of Spatial Autocorrelation for Chlorophyll Detection in Water Bodies Using Remote Sensing" Sustainability 9, no. 3: 416. https://doi.org/10.3390/su9030416