Urban Flood Adaptation through Public Space Retrofits: The Case of Lisbon (Portugal)
Abstract
:1. Introduction
2. Methodology
3. Flooding in Lisbon: Existing Vulnerabilities and Projected Events
3.1. Brief Overview of Lisbon’s Floods
3.2. Projected Climate-Driven Changes in Lisbon’s Flood Events
4. Assessment of the Conceptual Framework of Flood Adaptation Measures Applicable in the Design of Public Spaces, in the Lisbon Case
4.1. Current Municipal Adaptation Response
4.2. Additionally Relevant Adaptation Measures Presented by the Conceptual Framework
4.3. Identification of Potential Implementation Areas
4.4. Possible Designs and Their Infrastructural Significance
5. Discussion
6. Final Considerations
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations and Acronyms
Appendix A
Appendix A.1. Preliminary Design 1—Residential Area at Carnide
Implementation Area | ||
“Impervious Tributary Area” (m2) | 4581.4279 | |
0.025 m stormwater Volume (m3) | 114.5357 | |
Stormwater Volume Managed | Bioretention Planters (0.3 m + 0.2 m depth) | Rain Garden (0.4 m + 0.5 m depth) |
Installation Geometry | ||
Installation Volume (m3) | 147.7712 | 176.7347 |
Installation Area (m2) | 197.0282 | 196.3719 |
Infiltration Data | ||
Infiltration Design Rate (cm/h) | 0.5080 | 0.5080 |
Infiltration Period (h) | 8 | 8 |
Estimate Infiltration Volume (m3) | 8.0072 | 7.9806 |
Soil Layer | ||
Volume of Soil (m3) | 59.1085 | 78.5488 |
Porosity of Soil (%) | 25% | 25% |
Storage Volume of Planting Soil (m3) | 14.7771 | 19.6372 |
Storage Layer | ||
Volume of Storage Layer (m3) | 39.4056 | 98.1860 |
Porosity of Storage Layer (%) | 50% | 50% |
Storage Volume of Drainage Layer (m3) | 19.7028 | 49.0930 |
Partial Stormwater Volume Managed (m3) | 42.4872 | 76.7107 |
Estimated Total of Stormwater Volume Managed (m3) | 119.1979 |
Appendix A.2. Preliminary Design 2—Parking Lot at Campolide
Implementation Area | |
“Impervious Tributary Area” (m2) | 2456.4092 |
0.025 m stormwater Volume (m3) | 61.4102 |
Stormwater Volume Managed | Bioretention Planters (0.45 m + 0.25 m depth) |
Installation Geometry | |
Installation Volume (m3) | 158.0004 |
Installation Area (m2) | 225.7148 |
Infiltration Data | |
Infiltration Design Rate (cm/h) | 0.5080 |
Infiltration Period (h) | 8 |
Estimate Infiltration Volume (m3) | 9.1730 |
Soil Layer | |
Volume of Soil (m3) | 101.5717 |
Porosity of Soil (%) | 25% |
Storage Volume of Planting Soil (m3) | 25.3929 |
Storage Layer | |
Volume of Storage Layer (m3) | 56.4287 |
Porosity of Storage Layer (%) | 50% |
Storage Volume of Drainage Layer (m3) | 28.2144 |
Estimated Total of Stormwater Volume Managed | 62.7803 |
Appendix A.3. Preliminary Design 3—Part of the Six-Way Street of Av. Berna
Implementation Area | ||
“Impervious Tributary Area” (m2) | 5123.3351 | |
0.025 m stormwater Volume (m3) | 128.0834 | |
Stormwater Volume Managed | Green gutters (0.45 m + 0.45 m depth) | Bioswales (0.5 m + 0.65m depth) |
Installation Geometry | ||
Installation Volume (m3) | 27.4179 | 280.7558 |
Installation Area (m2) | 30.4643 | 244.1355 |
Infiltration Data | ||
Infiltration Design Rate (cm/h) | 0.5080 | 0.5080 |
Infiltration Period (h) | 8 | 8 |
Estimate Infiltration Volume (m3) | 1.2381 | 9.9217 |
Soil Layer | ||
Volume of Soil (m3) | 13.7089 | 122.0678 |
Porosity of Soil (%) | 25% | 25% |
Storage Volume of Planting Soil (m3) | 3.4272 | 30.5169 |
Storage Layer | ||
Volume of Storage Layer (m3) | 13.7089 | 158.6881 |
Porosity of Storage Layer (%) | 50% | 50% |
Storage Volume of Drainage Layer (m3) | 6.8545 | 79.3440 |
Partial Stormwater Volume Managed (m3) | 11.5198 | 119.7826 |
Estimated Total of Stormwater Volume Managed (m3) | 131.3024 |
Appendix A.4. Brief Discussion on the Preliminary Design Studies
References
- Costa, J.P.; João, F.D.S.; Filipe, D.S.; Luis, D.; Clara, M.; Maria, M.S.; Diamantino, O.; André, N.; Sónia, G.; Han, M.; et al. Climate Change Adaptation in Urbanised Estuaries. Contributes to the Lisbon Case; Faculdade de Ciências Sociais e Humanas da Universidade Nova de Lisboa: Óbidos, Portugal, 2014. [Google Scholar]
- Fernandes, A.; de Sousa, J.F.; Vicente, T.; Ferreira, J.C. Challenges to an integrated delta approach: The case of the tagus estuary. J. Coast. Res. 2013, 2, 1128–1133. [Google Scholar] [CrossRef]
- Meyer, H.; Nijhuis, S.; Pouderoijen, M.; Campanella, R.; Zagare, V.; Dijk, W.V.; Broesi, R.; Marchand, M.; Dieu, P.Q.; Le, T.; et al. Urbanized Deltas in Transition; Techne Press: Amsterdam, The Netherlands, 2014. [Google Scholar]
- C40CITIES. Why Cities? Ending Climate Change Begins in the City. 2014. Available online: http://www.c40.org/ending-climate-change-begins-in-the-city (accessed on 27 March 2015).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; Core Writing Team: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- European Environment Agency (EEA). Climate Change, Impacts and Vulnerability in Europe 2012. An Indicator-Based Report; Report No. 12/2012; European Environment Agency: Copenhagen, Denmark, 2012; p. 300. [Google Scholar]
- Schiermeier, Q. Increased flood risk linked to global warming. Nature 2011, 470, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Quintino, M.I. A Água Enquanto Matéria Construtora No Projecto de Arquitectura Paisagista; Instituto Superior de Agronomia, University of Lisbon: Portugal, Lisbon, 2011. [Google Scholar]
- Prominski, M.; Stokman, A.; Zeller, S.; Voermanek, D.S.A. River.Space.Design: Planning Strategies, Methods and Projects for Urban Rivers; Birkhauser: Basel, Switzerland, 2012. [Google Scholar]
- Matos Silva, M. Urban adaptation through flood risk management infrastructure and public space design. In Landscape: A Place of Cultivation; Silva, I.M.D., Marques, T.P., Andrade, G., Eds.; School of Sciences, University of Porto: Porto, Portugal, 2014; pp. 292–296. [Google Scholar]
- Matos Silva, M.; Costa, J. Flood adaptation measures applicable in the design of urban public spaces: Proposal for a conceptual framework. Water 2016, 8, 284. [Google Scholar] [CrossRef]
- Matos Silva, M.; Costa, J.P. Climate change and urbanism. A new role for public space design? In The Art of Urban Design in Urban Regeneration. Interdisciplinarity, Policies, Governance, Public Space; Remesar, A., Ed.; Publicacions i Edicions de la Universitat de Barcelona: Barcelona, Spain, 2016; pp. 62–86. [Google Scholar]
- Matos Silva, M.; Costa, J.P. Water & the city, climate change adaptation in practice: Territorial evaluation, spatial planning and project. In L’Aigua I L’espai Públic. Anàlisi Dels Efectes del Canvi Climàtic; Corbella, D., Ed.; Universitat de Barcelona Edicions: Barcelona, Spain, 2017; pp. 33–52. [Google Scholar]
- Meyer, H. City and Port—Transformation of Port Cities. London, Barcelona, New York, Rotterdam; International Books: Utrecht, The Netherlands, 1999. [Google Scholar]
- Costa, J.P. Urbanismo e Adaptação às Alterações Climáticas, as Frentes de Água; Livros Horizonte: Lisboa, Portugal, 2013. [Google Scholar]
- Costa, J.P. La Ribera Entre Proyectos. Formación y transformación del Territorio Portuario, a Partir del Caso de Lisboa. Ph.D. Thesis, TU Catalonia, Barcelona Technical Superior Scholl of Architecture, Barcelona, Spain, 2007. [Google Scholar]
- Einfalt, T.; Hatzfeld, F.; Wagner, A.; Seltmann, J.; Castro, D.; Frerichs, S. Urbas: Forecasting and management of flash floods in urban areas. Urb. Water J. 2009, 6, 369–374. [Google Scholar] [CrossRef]
- Oliveira, P. Inundações na Cidade de Lisboa—Estudo de Hidrogeografia Urbana; Universidade de Lisboa: Lisboa, Portugal, 2003. [Google Scholar]
- Deasy, C.; Titman, A.; Quinton, J.N. Measurement of flood peak effects as a result of soil and land management, with focus on experimental issues and scale. J. Environ. Manag. 2014, 132, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Cunha, N.S.; Magalhães, M.R.; Domingos, T.; Abreu, M.M.; Küpfer, C. The land morphology approach to flood risk mapping: An application to portugal. J. Environ. Manag. 2017, 193, 172–187. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, M.A. Avaliação do Desempenho de Sistemas de Drenagem Urbana. Ph.D. Thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal, 2008. [Google Scholar]
- ChiRoN (Information Systems); Engidro (Engineering Studies); Hydra (Hydraulics and Environment); Emarlis. Plano Geral de Drenagem de Lisboa. Fase a: Relatório; Miraflores, Oeiras, Portugal, 2006; p. 108. Available online: http://www.ordemengenheiros.pt/pt/atualidade/noticias/plano-geral-de-drenagem-da-camara-municipal-de-lisboa-2016-2030-em-debate-na-regiao-sul/.
- Copernicus; European Environment Agency (EEA). Raster Dataset of Built-Up and Non Built-Up Areas including Continuous Degree of Soil Sealing Ranging from 0–100% in Aggregated Spatial Resolution (100 × 100 m and 20 × 20 m). Available online: https://www.arcgis.com/home/item.html?id=6467475da74a408bbfa9de256fb31116 (accessed on 10 May 2017).
- Câmara Municipal de Lisboa. Plano Director Municipal de Lisboa; 2nd Serie; No. 168 de 30 de agosto de 2012; Departamento de Planeamento e Reabilitação Urbana, Ed.; Lisboa, Portugal, 2012. [Google Scholar]
- De Matos, J.S.; Monteiro, A.J.; de Oliveira, R.P. Plano Geral de Drenagem de Lisboa 2016–2030; Câmara Municipal de Lisboa: Lisboa, Portugal, 2015; p. 345. [Google Scholar]
- Santos, F.D.; Forbes, K.; Moita, R. Climate Change in Portugal Scenarios, Impacts and Adaptation Measures—Siam I; Gradiva-Publicações: Lisboa, Spain, 2002. [Google Scholar]
- Santos, F.D.; Miranda, P.; Valente, M.A.; Tomé, A.R.; Trigo, R.; Coelho, M.F.E.S.; Aguiar, A.; Azevedo, E.B.; Cunha, L.V.d.; Ribeiro, L.; et al. Alterações Climáticas em Portugal. Cenários, Impactos e Medidas de Adaptação—Siam II; Gradiva-Publicações: Lisboa, Spain, 2006. [Google Scholar]
- Dias, L.; Santos, F.D. Climate change scenarios, lisbon and the tagus estuary. In Climate Change Adaptation in Urbanised Estuaries Contributes to the Lisbon Case; Costa, J.P., Sousa, J.F.D., Eds.; Várzea da Rainha Impressores: Óbidos, Portugal, 2014; pp. 157–173, in press. [Google Scholar]
- Oliveira, P.E.; Ramos, C. Inundações na cidade de lisboa durante o século XX e seus factores agravantes. Finisterra 2002, XXXVII, 33–54. [Google Scholar]
- Plano Estratégico de Cascais Face às Alterações Climáticas (PECAC). Plano Estratégico de Cascais Face às Alterações Climáticas; Santos, F.D., Aguiar, R., Eds.; Câmara Municipal de Cascais: Cascais, Portugal, 2010; p. 59. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Schaeffer, M.; Hare, W.; Rahmstorf, S.; Vermeer, M. Long-term sea-level rise implied by 1.5 °C and 2 °C warming levels. Nat. Clim. Chang. 2012, 2, 867–870. [Google Scholar] [CrossRef]
- Rahmstorf, S. A new view on sea level rise Nat. Rep. Clim. Chang. 2010, 4, 44–45. [Google Scholar] [CrossRef]
- Antunes, C. Monitorização da Variação do Nível Médio do Mar. In Proceedings of the 1as Jornadas de Engenharia Hidrográfico, Lisbon, Portugal, 21–22 June 2010; Instituto Hidrográfico: Lisbon, 2010; pp. 273–276. [Google Scholar]
- Aguiar, R. Plano Estratégico de Cascais Face às Alterações Climáticas (Pecac); Câmara Municipal de Cascais: Lisabon, Portugal, 2010; p. 27. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Special Report on Emissions Scenarios (Sres)—Summary for Policymakers; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2000. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation—Summary for Policymakers; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; p. 19. [Google Scholar]
- Centre for Climate Change Impacts Adaptation & Modelling (CCIAM). Cartas de Inundações e de Risco em Cenários de Alterações Climáticas (Cirac); Associação Portuguesa Seguradores (APS), Gráfica Maiadouro: Lisboa, Portugal, 2014; p. 67. [Google Scholar]
- Dias, L. As Alterações Climátocas, as Inundações e a Cidade; Faculty of Architecture, University of Lisbon: Lisbon, Portugal, 2016. [Google Scholar]
- Santos, F.D.; Dias, L.; Karadzic, V.; Lourenço, T.C.; Calheiros, T. Climadapt.Local—Estratégias Municipais de Adaptação às Alterações Climáticas; Managed by the Portuguese Environment Agency (APA) and financed by FPC (85%) and EEAGrants (15%): Climate Change, Impacts, Adaptation and Modelling (CCIAM); Faculty of Sciences University of Lisbon: Lisboa, Spain, 2015. [Google Scholar]
- Brandão, P.; Carrelo, M.; Águas, S. O Chão da Cidade. Guia de Avaliação do Design de Espaço Publico; Centro Português de Design: Lisboa, Portugal, 2002; p. 199. [Google Scholar]
- City of Philadelphia. Green Streets Design Manual; Mayor’s Office of Transportation and Utilities: Philadelphia, PA, USA, 2014; p. 96. [Google Scholar]
- Gaspar, R. Understanding the reasons for behavioral failure: A process view of psychosocial barriers and constraints to pro-ecological behavior. Sustainability 2013, 5, 2960–2975. [Google Scholar] [CrossRef]
- Santos, T.; Tenedório, J.; Gonçalves, J. Quantifying the city’s green area potential gain using remote sensing data. Sustainability 2016, 8, 1247. [Google Scholar] [CrossRef]
- Kim, H.; Lee, D.-K.; Sung, S. Effect of urban green spaces and flooded area type on flooding probability. Sustainability 2016, 8, 134. [Google Scholar] [CrossRef]
- Wiesner, J.B.; York, H.F. The test ban and security. Survival 1965, 7, 13–21. [Google Scholar] [CrossRef]
Main Infrastructural Strategy | Measure | ||
---|---|---|---|
Category | Type | ||
1 | Harvest | Urban greenery, Rooftop retention | Green walls, Green roofs |
Tree alignments | |||
2 | Store | Retention | Retention basins |
Bioretention | Bioretention basins | ||
Reservoirs | Cisterns | ||
Underground reservoirs | |||
3 | Infiltrate | Permeable paving | |
Infiltration techniques | Infiltration trenches, Leaky well | ||
4 | Convey | Stream recovery | Rehabilitation, Restoration |
Study Area: Alcântara Upper Basin | ||||||
---|---|---|---|---|---|---|
COS 2007 | Soil Sealing EEA | Potential Area for Public Space Adaptation (within Area 100% Impermeable) | ||||
COSN5 | Description (English, Author’s Translation) | Total Area (m2) | Area 100% Impermeable (m2) | % | m2 | % of the Total AUB Area |
1.1.1.01.1 | Predominantly vertical continuous urban fabric | 10,869,901.61 | 7,217,630.00 | 63% | 4,547,106.90 | 41.83% |
1.2.2.01.1 | Roads and associated spaces | 2,309,890.69 | 1,519,023.00 | 13% | 197,472.99 | 8.55% |
1.2.1.04.1 | Public and private facilities | 2,321,941.99 | 1,313,419.00 | 69% | 906,259.11 | 39.03% |
1.1.1.02.1 | Predominantly horizontal continuous urban fabric | 1,395,900.20 | 853,389.00 | 73% | 622,973.97 | 44.63% |
1.2.1.01.1 | Industry | 777,098.10 | 639,609.00 | 0% | 0.00 | 0.00% |
1.2.2.02.1 | Rail network and associated spaces | 532,952.94 | 478,908.00 | 10% | 47,890.80 | 8.99% |
1.1.1.03.1 | Parking lot and courtyard areas | 507,111.25 | 362,809.00 | 95% | 344,668.55 | 67.97% |
1.2.1.02.1 | Commerce | 352,647.64 | 264,515.00 | |||
1.4.2.01.2 | Other sports facilities | 407,243.30 | 224,606.00 | |||
1.3.3.01.1 | Areas in construction | 264,533.38 | 194,699.00 | |||
1.4.1.01.1 | Parks and gardens | 808,027.26 | 115,036.00 | |||
1.1.2.01.1 | Discontinuous urban fabric | 293,741.14 | 98,838.00 | |||
1.3.3.02.1 | Abandoned areas in artificialized territories | 110,107.04 | 95,584.00 | |||
1.4.1.02.1 | Cemeteries | 116,858.47 | 57,287.00 | |||
1.4.2.03.1 | Cultural facilities and historic areas | 113,161.32 | 53,476.00 | |||
1.1.2.02.1 | Discontinuous sparse urban fabric | 83,503.35 | 4395.00 | |||
Total areas (m2) | 21,264,619.68 | 13,493,223.00 | 6,666,372.32 | 35.62% |
Projected Scenarios for Flood Adaptation through Public Space Retrofits | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
COS 2007 Description (Author’s Translation) | 2017–2022 (5 Years) | 2022–2027 (5 years) | 2027–2032 (5 Years) | 2032–2037 (5 Years) | 2037–2067 (30 Years) | 2067–2117 (50 Years) | ||||||
Impermeable Public Space Area to be adapted | ||||||||||||
% | m2 | % | m2 | % | m2 | % | m2 | % | m2 | % | m2 | |
Predominantly vertical continuous urban fabric | 2 | 90,942.138 | 3 | 136,413.207 | 5 | 227,355.345 | 5 | 227,355.345 | 10 | 45,4710.69 | 20 | 90,9421.38 |
Roads and associated spaces | 2 | 3949.4598 | 2 | 3949.4598 | 5 | 9873.6495 | 3 | 5924.1897 | 9 | 17,772.569 | 20 | 39,494.598 |
Public and private facilities | 2 | 18,125.1822 | 3 | 27,187.7733 | 5 | 45,312.9555 | 5 | 45,312.9555 | 9 | 81,563.32 | 20 | 181,251.822 |
Predominantly horizontal continuous urban fabric | 1 | 6229.7397 | 1 | 6229.7397 | 1 | 6229.7397 | 2 | 12,459.4794 | 8 | 49,837.918 | 15 | 93,446.0955 |
Industry | - | - | - | - | - | - | - | - | - | - | - | - |
Rail network and associated spaces | 1 | 478.908 | 1 | 478.908 | 1 | 478.908 | 2 | 957.816 | 5 | 2394.54 | 15 | 7183.62 |
Parking lot and courtyard areas | 5 | 17,233.4275 | 5 | 17,233.4275 | 10 | 34,466.855 | 10 | 34,466.855 | 15 | 51,700.283 | 30 | 103,400.565 |
Total areas (m2) | 136,958.8552 | 191,492.5153 | 323,717.4527 | 326,476.6406 | 657,979.3191 | 1,334,198.081 | ||||||
% of Impermeable Public Space Area to be adapted | 2% | 3% | 5% | 5% | 10% | 20% | ||||||
Minimum stored volume * (m3) | 3423.97138 | 4787.31288 | 8092.936318 | 8161.91602 | 16,449.483 | 33,354.952 | ||||||
2% | 5% | 10% | 15% | 25% | 45% | |||||||
Minimum accumulated stored volume * (m3) | 3423.97138 | 8211.28426 | 16,304.22058 | 244,66.1366 | 40,915.62 | 74,270.5716 | ||||||
Accumulated impermeable Public Space Adaptation area (m2) | 136,958.8552 | 328,451.371 | 652,168.8232 | 978,645.464 | 1,636,624.8 | 2,970,822.86 | ||||||
Along 20 years | Along 50 years | Along 100 years |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matos Silva, M.; Costa, J.P. Urban Flood Adaptation through Public Space Retrofits: The Case of Lisbon (Portugal). Sustainability 2017, 9, 816. https://doi.org/10.3390/su9050816
Matos Silva M, Costa JP. Urban Flood Adaptation through Public Space Retrofits: The Case of Lisbon (Portugal). Sustainability. 2017; 9(5):816. https://doi.org/10.3390/su9050816
Chicago/Turabian StyleMatos Silva, Maria, and João Pedro Costa. 2017. "Urban Flood Adaptation through Public Space Retrofits: The Case of Lisbon (Portugal)" Sustainability 9, no. 5: 816. https://doi.org/10.3390/su9050816
APA StyleMatos Silva, M., & Costa, J. P. (2017). Urban Flood Adaptation through Public Space Retrofits: The Case of Lisbon (Portugal). Sustainability, 9(5), 816. https://doi.org/10.3390/su9050816