Land Cover Changes (1963–2010) and Their Environmental Factors in the Upper Danube Floodplain
Abstract
:1. Introduction
- How did the land cover pattern, i.e., the land cover composition and structure, change from 1963 to 2010 in the Upper Danube Floodplain?
- ○
- How did the grassland pattern change?
- ○
- How did the riparian forest pattern change?
- Which environmental factors are related to land cover change (especially grassland and riparian forest changes) in the active Upper Danube Floodplain?
- Which are the ecological consequences of the recorded trends in a floodplain context?
2. Materials and Methods
2.1. Study Area
2.2. Analysis of Land Cover Composition and Structure Change
2.3. Analysis of the Relationship between Land Cover Change and Environmental Factors
3. Results
3.1. Land Cover Change
3.2. Structural Change of Land Cover
3.2.1. Landscape Level
3.2.2. Class Level
3.3. Relationship between the Change of Land Cover and Environmental Factors
4. Discussion
4.1. How Did the Floodplain Land Cover Change?
4.2. Did the Grassland in the Study Area Decrease?
4.3. Did the Riparian Forest in the Study Area Decrease?
4.4. Suitability of Landscape Structure Analysis
4.5. Relationship between Grassland and Riparian Forest Change and Environmental Factors
4.6. What Is the Ecological Relevance of the Observed Trends in the Floodplain?
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Abbreviation (Alphabetic Order) | Description |
---|---|
AA | Stable arable land |
A-G | Arable land to grassland |
A-R | Arable land to riparian forest |
A-F | Arable land to other forests |
A-E | Arable land to other land cover |
GG | Stable grassland |
G-A | Grassland to arable land |
G-R | Grassland to riparian forest |
G-F | Grassland to other forests |
G-E | Grassland to other land cover |
RR | Stable riparian forest |
R-A | Riparian forest to arable land |
R-G | Riparian forest to grassland |
R-F | Riparian forest to other forests |
R-E | Riparian forest to other land cover |
References
- Härdtle, W. On the theoretical concept of the potential natural vegetation and proposals for an up-to-date modification. Folia Geobot. 1995, 30, 263–276. [Google Scholar] [CrossRef]
- Hughes, F.M.R.; Rood, S.B. Allocation of River Flows for Restoration of Floodplain Forest Ecosystems: A Review of Approaches and Their Applicability in Europe. Environ. Manag. 2003, 32, 12–33. [Google Scholar] [CrossRef] [PubMed]
- Welsch, D.J. Riparian Forest Buffers—Function and Design for Protection and Enhancement of Water Resources; NA-PR-07-91; USDA Forest Service Northeastern Area: Radnor, PA, USA, 1991.
- Schmitt, C.B.; Belokurov, A.; Besançon, C.; Boisrobert, L.; Burgess, N.D.; Campbell, A.; Coad, L.; Fish, L.; Gliddon, D.; Humphries, K.; et al. Global Ecological Forest Classification and Forest Protected Area Gap Analysis. Analyses and Recommendations in View of the 10% Target for Forest Protection under the Convention on Biological Diversity (CBD), 2nd ed.; Freiburg University Press: Freiburg, Germany, 2009; pp. 1–34. [Google Scholar]
- Habel, J.C.; Dengler, J.; Janišová, M.; Török, P.; Wellstein, C.; Wiezik, M. European grassland ecosystems: Threatened hotspots of biodiversity. Biodivers. Conserv. 2013, 22, 2131–2138. [Google Scholar] [CrossRef]
- Krause, B.; Culmsee, H.; Wesche, K.; Bergmeier, E.; Leuschner, C. Habitat loss of floodplain meadows in north Germany since the 1950s. Biodivers. Conserv. 2011, 20, 2347–2364. [Google Scholar] [CrossRef]
- Wesche, K.; Krause, B.; Culmsee, H.; Leuschner, C. Fifty years of change in Central European grassland vegetation: Large losses in species richness and animal-pollinated plants. Biol. Conserv. 2012, 150, 76–85. [Google Scholar] [CrossRef]
- Freeman, R.E.; Stanley, E.H.; Turner, M.G. Analysis and conservation implications of landscape change in the Wisconsin River floodplain, USA. Ecol. Appl. 2003, 13, 416–431. [Google Scholar] [CrossRef]
- Hein, T.; Schwarz, U.; Habersack, H.; Nichersu, I.; Preiner, S.; Willby, N.; Weigelhofer, G. Current status and restoration options for floodplains along the Danube River. Sci. Total Environ. 2016, 543, 778–790. [Google Scholar] [CrossRef] [PubMed]
- Schiemer, F.; Guti, G.; Keckeis, H.; Staras, M. Ecological Status and Problems of the Danube River and its Fish Fauna: A Review. In Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries, Phnom Penh, Kingdom of Cambodia, 11–14 February 2003; Welcomme, R.L., Petr, T., Eds.; FAO Regional Office for Asia and the Pacific: Bangkok, Thailand, 2004; Volume 1, pp. 273–299. [Google Scholar]
- Schwarz, U. Assessment of the Balance and Management of Sediments of the Danube; Slovenian National Commitee for IHP Unesco: Ljubljana, Slovenia, 2008. [Google Scholar]
- Gingrich, S.; Haidvogl, G.; Krausmann, F. The Danube and Vienna: Urban resource use, transport and land cover 1800–1910. Reg. Environ. Chang. 2012, 12, 283–294. [Google Scholar] [CrossRef]
- Winiwarter, V.; Schmid, M.; Hohensinner, S.; Haidvogl, G. The environmental history of the Danube River Basin as an issue of long-term socio-ecological research. In Long Term Socio-Ecological Research: Studies in Society-Nature Interactions across Spatial and Temporal Scales; Singh, S.J., Haberl, H., Chertow, M., Mirtl, M., Schmid, M., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 2, pp. 103–122. [Google Scholar]
- Jungwirth, M. Ecology of Large Rivers, Anthropogenic Pressures and Impacts; ICPDR: Vienna, Austria, 2007; Available online: https://www.icpdr.org/main/sites/default/files/JUNGWIRTH_BOKU_EcologyLargeRivers.pdf (accessed on 11 June 2016).
- Ward, J.V.; Stanford, J.A. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. River Res. Appl. 1995, 11, 105–119. [Google Scholar] [CrossRef]
- González, E.; González-Sanchís, M.; Cabezas, Á.; Comín, F.A.; Muller, E. Recent changes in the riparian forests of a large regulated Mediterranean river: Implications for management. Environ. Manag. 2010, 45, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Bloesch, J.; Gutknecht, D.; Iordache, V. (Eds.) Report on the International Workshop “Hydrology and Limnology–Another Boundary in the Danube River Basin”, Petronell, Austria, October 14–16, 2004; International Association for Danube Research (IAD): Vienna, Austria, 2004. [Google Scholar]
- Dale, V.H.; Brown, S.; Haeuber, R.A.; Hobbs, N.T.; Huntly, N.; Naiman, R.J.; Riebsame, W.E.; Turner, M.G.; Valone, T.J. Ecological principles and guidelines for managing the use of land. Ecol. Appl. 2000, 10, 639–670. [Google Scholar] [CrossRef]
- Lindborg, R.; Eriksson, O. Historical landscape connectivity affects present plant species diversity. Ecology 2004, 85, 1840–1845. [Google Scholar] [CrossRef]
- Tilman, D.; May, R.M.; Lehman, C.L.; Nowak, M.A. Habitat destruction and the extinction debt. Nature 1994, 371, 65–66. [Google Scholar] [CrossRef]
- Kuussaari, M.; Bommarco, R.; Heikkinen, R.K.; Helm, A.; Krauss, J.; Lindborg, R.; Öckinger, E.; Pärtel, M.; Pino, J.; Rodà, F.; et al. Extinction debt: A challenge for biodiversity conservation. Trends Ecol. Evol. 2009, 24, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Leyer, I.; Mosner, E.; Lehmann, B. Managing floodplain-forest restoration in European river landscapes combining ecological and flood-protection issues. Ecol. Appl. 2012, 22, 240–249. [Google Scholar] [CrossRef] [PubMed]
- De Jager, N.R.; Rohweder, J.J. Changes in aquatic vegetation and floodplain land cover in the Upper Mississippi and Illinois rivers (1989–2000–2010). Environ. Monit. Assess. 2017, 189, 77. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.Q.; Ren, L.L.; Li, Q.F. The detection and analysis of land use change in the Laoha River Basin during the past four decades. Remote Sens. Land Resour. 2012, 24, 125–131. [Google Scholar]
- Fickas, K.C.; Cohen, W.B.; Yang, Z. Landsat-based monitoring of annual wetland change in the Willamette Valley of Oregon, USA from 1972 to 2012. Wetl. Ecol. Manag. 2016, 24, 73–92. [Google Scholar] [CrossRef]
- Dufour, S.; Rinaldi, M.; Piégay, H.; Michalon, A. How do river dynamics and human influences affect the landscape pattern of fluvial corridors? Lessons from the Magra River, Central–Northern Italy. Landsc. Urban Plan. 2015, 134, 107–118. [Google Scholar] [CrossRef]
- Müller, N. Effects of natural and human disturbances on floodplain vegetation. In Proceedings of the International Symposium on River Restoration, Tokyo, Japan, 26–27 May 1998. [Google Scholar]
- Stromberg, J.C.; Tluczek, M.G.; Hazelton, A.F.; Ajami, H. A century of riparian forest expansion following extreme disturbance: Spatio-temporal change in Populus/Salix/Tamarix forests along the Upper San Pedro River, Arizona, USA. For. Ecol. Manag. 2010, 259, 1181–1189. [Google Scholar] [CrossRef]
- Pechanec, V.; Machar, I.; Kilianová, H. Development of land use in the Morava River Floodplain during the past 175 years. In New Developments in Environmental Science and Geoscience, Proceedings of the International Conference on Environmental Science and Geoscience (ESG 2015), Vienna, Austria, 15–17 March 2015. [Google Scholar]
- Tockner, K.; Pusch, M.; Borchardt, D.; Lorang, M.S. Multiple stressors in coupled river–floodplain ecosystems. Freshw. Biol. 2010, 55, 135–151. [Google Scholar] [CrossRef]
- Hudson, P.F.; Colditz, R.R.; Aguilar-Robledo, M. Spatial relations between floodplain environments and land use-land cover in a large lowland tropical river valley: Pánuco basin México. Environ. Manag. 2006, 38, 487–503. [Google Scholar] [CrossRef] [PubMed]
- Herold, M.; Goldstein, N.C.; Clarke, K.C. The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote Sens. Environ. 2003, 86, 286–302. [Google Scholar] [CrossRef]
- Cushman, S.A.; McGarigal, K. Landscape metrics, scales of resolution. In Designing Green Landscapes; Gadow, K., Pukkala, T., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 33–51. [Google Scholar]
- Fichera, C.R.; Modica, G.; Pollino, M. Land Cover classification and change-detection analysis using multi-temporal remote sensed imagery and landscape metrics. Eur. J. Remote Sens. 2012, 45, 1–18. [Google Scholar] [CrossRef]
- Schindler, S.; von Wehrden, H.; Poirazidis, K.; Wrbka, T.; Kati, V. Multiscale performance of landscape metrics as indicators of species richness of plants, insects and vertebrates. Ecol. Indic. 2013, 31, 41–48. [Google Scholar] [CrossRef]
- Lausch, A.; Herzog, F. Applicability of landscape metrics for the monitoring of landscape change: Issues of scale, resolution and interpretability. Ecol. Indic. 2002, 2, 3–15. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, S.; Deng, L.; Dong, S.; Yang, Z.; Yang, J. Landscape change and hydrologic alteration associated with dam construction. Int. J. Appl. Earth Obs. Geoinf. 2012, 16, 17–26. [Google Scholar] [CrossRef]
- Fox, D.M.; Witz, E.; Blanc, V.; Soulié, C.; Penalver-Navarro, M.; Dervieux, A. A case study of land cover change (1950–2003) and runoff in a Mediterranean catchment. Appl. Geogr. 2012, 32, 810–821. [Google Scholar] [CrossRef]
- Merritt, D.M.; Poff, N. Shifting dominance of riparian Populus and Tamarix along gradients of flow alteration in western North American rivers. Ecol. Appl. 2010, 20, 135–152. [Google Scholar] [CrossRef] [PubMed]
- Benjankar, R.; Egger, G.; Jorde, K.; Goodwin, P.; Glenn, N.F. Dynamic floodplain vegetation model development for the Kootenai River, USA. J. Environ. Manag. 2011, 92, 3058–3070. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.V.; Tockner, K.; Arscott, D.B.; Claret, C. Riverine landscape diversity. Freshw. Biol. 2002, 47, 517–539. [Google Scholar] [CrossRef]
- Schweizer, P.E.; Matlack, G.R. Factors driving land use change and forest distribution on the coastal plain of Mississippi, USA. Landsc. Urban Plan. 2014, 121, 55–64. [Google Scholar] [CrossRef]
- Jung, M.; Burt, T.P.; Bates, P.D. Toward a conceptual model of floodplain water table response. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Butler, J.R.; Wong, G.Y.; Metcalfe, D.J.; Honzák, M.; Pert, P.L.; Rao, N.; van Grieken, M.E.; Lawson, T.; Bruce, C.; Kroon, F.J.; et al. An analysis of trade-offs between multiple ecosystem services and stakeholders linked to land use and water quality management in the Great Barrier Reef, Australia. Agric. Ecosyst. Environ. 2013, 180, 176–191. [Google Scholar] [CrossRef]
- Jones, K.B.; Slonecker, E.T.; Nash, M.S.; Neale, A.C.; Wade, T.G.; Hamann, S. Riparian habitat changes across the continental United States (1972–2003) and potential implications for sustaining ecosystem services. Landsc. Ecol. 2010, 25, 1261–1275. [Google Scholar] [CrossRef]
- Schmidt, H.G. Postwar Developments in West German Agriculture, 1945–1953. Agric. Hist. 1955, 29, 147–159. [Google Scholar]
- Marggraf, R. Comparative assessment of agri-environment programmes in federal states of Germany. Agric. Ecosyst. Environ. 2003, 98, 507–516. [Google Scholar] [CrossRef]
- Schneider, E. Floodplain restoration of large European rivers, with examples from the Rhine and the Danube. In Restoration of Lakes, Streams, Floodplains, and Bogs in Europe, 1st ed.; Eiseltová, M., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 185–223. [Google Scholar]
- International Commission for the Protection of the Danube River (ICPDR). Danube Facts and Figures: Germany; ICPDR: Vienna, Austria, 2007; Available online: https://www.icpdr.org/main/sites/default/files/DE_Facts_%20Figures.pdf (accessed on 16 May 2016).
- Bavarian Environment Agency (LfU). Description of the Cultural Landscape 33 Dungau. In Draft of the Structure of the Bavarian Cultural Landscape as a Contribution to Biodiversity; Bavarian Environment Agency (LfU): Augsburg, Germany, 2011; Available online: http://www.lfu.bayern.de/natur/kulturlandschaft/entwurf_gliederung/doc/33_dungau.pdf (accessed on 16 May 2016). (In German)
- German Meteorological Service (DWD). Long-Term Mean Values for Reference Period 1981–2010, Precipitation and Temperature Raster Map for Germany. Offenbach, Germany, 2013. Available online: www.dwd.de (accessed on 16 May 2016).
- Seibert, P. Overview Map of Natural Vegetation Area of Bayern 1: 500,000 with Explanations, Series for Vegetation Science; The German Federal Agency for Nature Conservation (BfN): Bad Godesberg, Germany, 1968; Volume 3. (In German) [Google Scholar]
- Bavarian State Office for Survey and Geoinformation (LDBV). Digital Orthophotos (DOP 20), Ground Resolution: 0.2 m × 0.2 m; Bavarian State Office for Survey and Geoinformation (LDBV): Munich, Germany, 2014. [Google Scholar]
- Djebou, D.C.S. Integrated approach to assessing streamflow and precipitation alterations under environmental change: Application in the Niger River Basin. J. Hydrol. Reg. Stud. 2015, 4, 571–582. [Google Scholar] [CrossRef]
- Long, H.; Tang, G.; Li, X.; Heilig, G.K. Socio-economic driving forces of land-use change in Kunshan, the Yangtze River Delta economic area of China. J. Environ. Manag. 2007, 83, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Uuemaa, E.; Mander, Ü.; Marja, R. Trends in the use of landscape spatial metrics as landscape indicators: A review. Ecol. Indic. 2013, 28, 100–106. [Google Scholar] [CrossRef]
- Ewers, R.M.; Didham, R.K. The effect of fragment shape and species’ sensitivity to habitat edges on animal population size. Conserv. Biol. 2007, 21, 926–936. [Google Scholar] [CrossRef] [PubMed]
- Moser, D.; Zechmeister, H.G.; Plutzar, C.; Sauberer, N.; Wrbka, T.; Grabherr, G. Landscape patch shape complexity as an effective measure for plant species richness in rural landscapes. Landsc. Ecol. 2002, 17, 657–669. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. Fragstats: Spatial Pattern Analysis Program for Quantifying Landscape Structure; Gen. Tech. Rep. PNW-GTR-351; USDA Forest Service Pacific Northwest Research Station: Portland, OR, USA, 1995.
- Didham, R.K. Ecological Consequences of Habitat Fragmentation. Available online: http://www.els.net/WileyCDA/ElsArticle/refId-a0021904.html (accessed on 1 June 2017).
- Rutledge, D. Landscape Indices as Measures of the Effects of Fragmentation: Can Pattern Reflect Process? DOC Science Internal Series 98; Department of Conservation: Wellington, New Zealand, 2003.
- Jaeger, J.A. Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landsc. Ecol. 2000, 15, 115–130. [Google Scholar] [CrossRef]
- Gustafson, E.J.; Parker, G.R. Using an index of habitat patch proximity for landscape design. Landsc. Urban Plan. 1994, 29, 117–130. [Google Scholar] [CrossRef]
- Bender, D.J.; Tischendorf, L.; Fahrig, L. Using patch isolation metrics to predict animal movement in binary landscapes. Landsc. Ecol. 2003, 18, 17–39. [Google Scholar] [CrossRef]
- Peters, D.P.; Goslee, S.C. Landscape diversity. Encycl. Biodivers. 2001, 3, 645–658. [Google Scholar] [CrossRef]
- Fahrig, L.; Baudry, J.; Brotons, L.; Burel, F.G.; Crist, T.O.; Fuller, R.J.; Sirami, C.; Siriwardena, G.M.; Martin, J.L. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 2011, 14, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Nagendra, H. Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Appl. Geogr. 2002, 22, 175–186. [Google Scholar] [CrossRef]
- Lewis, R.J. An introduction to classification and regression tree (CART) analysis. In Proceedings of the Annual Meeting of the Society for Academic Emergency Medicine, San Francisco, CA, USA, 22–25 May 2000; pp. 1–14. [Google Scholar]
- Therneau, T.; Atkinson, B.; Ripley, B. Package ‘rpart’: Recursive Partitioning and Regression Trees. R Package Version 4.1–10. 2015. Available online: https://cran.r-project.org/web/packages/rpart/index.html (accessed on 16 May 2016).
- Hietel, E.; Waldhardt, R.; Otte, A. Analysing land cover changes in relation to environmental variables in Hesse, Germany. Landsc. Ecol. 2004, 19, 473–489. [Google Scholar] [CrossRef]
- Opršal, Z.; Šarapatka, B.; Kladivo, P. Land-use changes and their relationships to selected landscape parameters in three cadastral areas in Moravia (Czech Republic). Morav. Geogr. Rep. 2013, 21, 41–50. [Google Scholar] [CrossRef]
- Rothkegel, W.; Herzog, H. The Soil Evaluation Law—Comment; Carl Heymanns: Berlin, Germany, 1935. (In German) [Google Scholar]
- Breitschuh, G.; Eckert, H.; Breitschuh, T.; Körschens, M. Soil fertility in sustainable agriculture. In Soil Fertility-Basis of Successful Agriculture, Proceedings of the Conference of the Association of Agricultural Chambers (VLK) and the Federal Working Group on Fertilization (BAD), Würzburg, Germany, 21–22 April 2015. (In German). [Google Scholar]
- Vorderbrügge, T.; Miller, R.; Peter, M.; Sauer, S. Derivation of soil-physical parameters from the class indexes of soil evaluation using the example of the field capacity. DBG-Mitteilungen 2005, 107, 531–532. (In German) [Google Scholar]
- Walz, U. Monitoring of landscape change and functions in Saxony (Eastern Germany)–Methods and indicators. Ecol. Indic. 2008, 8, 807–817. [Google Scholar] [CrossRef]
- Meeus, J.H.A. Pan-European landscapes. Landsc. Urban Plan. 1995, 31, 57–79. [Google Scholar] [CrossRef]
- Thomas, J. Property rights, land fragmentation and the emerging structure of agriculture in Central and Eastern European countries. J. Agric. Dev. Econ. 2006, 3, 225–275. [Google Scholar]
- European Commission. The Common Agricultural Policy: A Partnership between Europe and Farmers; Publications Office of the European Union: Luxembourg, Luxembourg, 2014; pp. 1–16. Available online: http://www.euic.mk/content/Brochures-pdf-NEW/EN/Agriculture_EN.pdf (accessed on 19 August 2016).
- Henle, K.; Alard, D.; Clitherow, J.; Cobb, P.; Firbank, L.; Kull, T.; McCracken, D.; Moritz, R.F.A.; Niemelä, J.; Rebane, M.; et al. Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe—A review. Agric. Ecosyst. Environ. 2008, 124, 60–71. [Google Scholar] [CrossRef]
- Parris, K. Measuring the environmental impacts of the common agricultural policy: Challenges, recent trends and outlook, and future directions. In Proceedings of the Common Agriculture Policy and the Environmental Challenge—New Tasks for the Public Administrations, Maastricht, The Netherlands, 14–15 May 2001. [Google Scholar]
- Bavarian State Ministry of Food, Agriculture and Forestry (StMELF) & Bavarian State Ministry of the Environment and Consumer Protection (StMUV). Bavarian Future Program Agriculture and Rural Areas 2007–2013; Bavarian State Ministry of Food, Agriculture and Forestry (StMELF) & Bavarian State Ministry of the Environment and Consumer Protection (StMUV): Munich, Germany, 2005; pp. 1–849. (In German) [Google Scholar]
- Klimo, E.; Hager, H. The Floodplain Forests in Europe: Current Situations and Perspectives; European Forest Institute Research Report 10; Brill: Leiden, The Netherlands, 2001. [Google Scholar]
- Schnitzler, A.; Hale, B.W.; Alsum, E. Biodiversity of floodplain forests in Europe and eastern North America: A comparative study of the Rhine and Mississippi Valleys. Biodivers. Conserv. 2005, 14, 97–117. [Google Scholar] [CrossRef]
- Blanton, P.; Marcus, W.A. Transportation infrastructure, river confinement, and impacts on floodplain and channel habitat, Yakima and Chehalis rivers, Washington, USA. Geomorphology 2013, 189, 55–65. [Google Scholar] [CrossRef]
- Dister, E.; Gomer, D.; Obrdlik, P.; Petermann, P.; Schneider, E. Water management and ecological perspectives of the Upper Rhine’s floodplains. River Res. Appl. 1990, 5, 1–15. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Chang, J.; Viovy, N.; Vuichard, N.; Ciais, P.; Campioli, M.; Klumpp, K.; Martin, R.; Leip, A.; Soussana, J.F. Modeled Changes in Potential Grassland Productivity and in Grass-Fed Ruminant Livestock Density in Europe over 1961—2010. PLoS ONE 2015, 10, e0127554. [Google Scholar] [CrossRef] [PubMed]
- Soons, M.B.; Messelink, J.H.; Jongejans, E.; Heil, G.W. Habitat fragmentation reduces grassland connectivity for both short-distance and long-distance wind-dispersed forbs. J. Ecol. 2005, 93, 1214–1225. [Google Scholar] [CrossRef]
- German Federal Institute of Hydrology (BfG). Vegetation of the Danube Floodplain between Straubing and Vilshofen—Site Potential for Floodplain Vegetation of the Actual Situation and the Design Variants; BfG-1773; BfG: Koblenz, Germany, 2012. (In German) [Google Scholar]
- Sayer, J.A.; Maginnis, S. Forests in Landscapes: Ecosystem Approaches to Sustainability; Routledge: London, UK, 2007. [Google Scholar]
- Mikusiński, G.; Angelstam, P. Economic geography, forest distribution, and woodpecker diversity in Central Europe. Conserv. Biol. 1998, 12, 200–208. [Google Scholar] [CrossRef]
- Ebner, K.H.; Kleinert, E. Flood Protection of the Danube—Foreshore Management between Straubing and Vilshofen; Water Management Office Deggendorf (WWA Deggendorf): Deggendorf, Germany, 2007; Available online: http://www.flussmeister.de/archiv/pdf/17.pdf (accessed on 20 September 2016). (In German)
- Kupfer, J.A. Landscape ecology and biogeography: Rethinking landscape metrics in a post-FRAGSTATS landscape. Prog. Phys. Geogr. 2012, 36, 400–420. [Google Scholar] [CrossRef]
- Li, H.; Wu, J. Use and misuse of landscape indices. Landsc. Ecol. 2004, 19, 389–399. [Google Scholar] [CrossRef]
- Zebardast, L.; Yavari, A.R.; Salehi, E.; Makhdoum, M. Application of effective mesh size metric for the analysis of forest habitat fragmentation inside the defined road effect zone of Golestan National Park. J. Environ. Stud. 2011, 37, 4–6. [Google Scholar]
- Honnay, O.; Jacquemyn, H.; Bossuyt, B.; Hermy, M. Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species. New Phytol. 2005, 166, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Reger, B.; Otte, A.; Waldhardt, R. Identifying patterns of land-cover change and their physical attributes in a marginal European landscape. Landsc. Urban Plan. 2007, 81, 104–113. [Google Scholar] [CrossRef]
- Brown, A.G. Alluvial Geoarchaeology: Floodplain Archaeology and Environmental Change; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Bannister, J.M.; Herbert, E.R.; Craft, C.B. Spatial Variability in Sedimentation, Carbon Sequestration, and Nutrient Accumulation in an Alluvial Floodplain Forest. In The Role of Natural and Constructed Wetlands in Nutrient Cycling and Retention on the Landscape; Vymazal, J., Ed.; Springer: Cham, Switzerland, 2015; pp. 41–55. [Google Scholar]
- Bürgi, M.; Turner, M.G. Factors and processes shaping land cover and land cover changes along the Wisconsin River. Ecosystems 2002, 5, 184–201. [Google Scholar] [CrossRef]
- Klapproth, J.C.; Johnson, J.E. Understanding the Science behind Riparian Forest Buffers: Effects on Water Quality; Virginia Cooperative Extension: Blacksburg, VA, USA, 2009. [Google Scholar]
- Makaske, B.; Maas, G.J.; van den Brink, C.; Wolfert, H.P. The influence of floodplain vegetation succession on hydraulic roughness: Is ecosystem rehabilitation in Dutch embanked floodplains compatible with flood safety standards? Ambio 2011, 40, 370–376. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, R.V.; Hunsaker, C.T.; Jones, K.B.; Riitters, K.H.; Wickham, J.D.; Schwartz, P.M.; Goodman, I.A.; Jackson, B.L.; Baillargeon, W.S. Monitoring environmental quality at the landscape scale. BioScience 1997, 47, 513–519. [Google Scholar] [CrossRef]
- Noe, G.B.; Hupp, C.R. Carbon, nitrogen, and phosphorus accumulation in floodplains of Atlantic Coastal Plain rivers, USA. Ecol. Appl. 2005, 15, 1178–1190. [Google Scholar] [CrossRef]
- Harms, W.B.; Stortelder, A.H.F.; Vos, W. Effects of intensification of agriculture on nature and landscape in the Netherlands. In Land Transformation in Agriculture; Wolman, M.G., Fournier, F.G.A., Eds.; John Wiley & Sons: New York, NY, USA, 1987; pp. 357–379. [Google Scholar]
- Water Management Office Regensburg (WWA Regensburg). The Federal Waterway Danube: Expansion of the Waterway and Improvement of Flood Protection Straubing—Vilshofen Section 1: Straubing—Deggendorf Explanation Report; WWA Regensburg: Regensburg, Germany, 2014. (In German) [Google Scholar]
- Bavarian State Office for Statistics (LfStat). Evaluation of agricultural census in 1960, 1979, 1991 and 2010; Bavarian State Office for Statistics (LfStat): Fürth, Germany, 2015. (In German) [Google Scholar]
Study Site | Area (ha) | Area of Active Floodplain (ha) | Mean Elevation (m a.s.l.) | Mean Slope (°) | Mean Soil Rating Index * |
---|---|---|---|---|---|
Barbing | 425 | 203 | 329 | 1.0 | 47.3 |
Gmünd | 422 | 198 | 331 | 1.6 | 53.1 |
Irlbach | 423 | 41 | 319 | 1.4 | 59.3 |
Niederalteich | 428 | 64 | 310 | 1.0 | 53.2 |
Langkünzing | 426 | 48 | 305 | 1.0 | 53.8 |
Type | Subtype | Description |
---|---|---|
Woody vegetation | Riparian forest | Woodland adjacent to water bodies (e.g., the Danube River, backwater, backwater lake and creek) |
Forest | A complex of trees and other woody vegetation not adjacent to the water body | |
Copse | A thicket of trees or shrubs | |
Agricultural land | Arable land | Land where crops such as maize, wheat and rye are sown |
Grassland | Grass-dominated land mown for fodder production or grazed | |
Orchard | Garden with fruit trees close to settlements | |
Water body | Artificial pond | A gravel pit for extraction of gravel filled with water |
Backwater | A water body periodically or seasonally connected to the main channel | |
Backwater lake | A stagnant water body close to and not connected with the main channel | |
Creek | A small narrow stream | |
Ditch | A long narrow excavation for drainage and irrigation | |
River | Danube River | |
Margin | Field hedge | Closely spaced shrubs and trees in line separating fields from each other |
Field margin | Non-woody vegetation and grass strips in line between fields | |
Road hedge | Closely spaced shrubs and trees in line separating roads from adjoining fields or other facilities | |
Road margin | Non-woody vegetation and grass strips in line separating road from adjoining fields or other facilities | |
Built-up Land | Vegetated path | Unpaved path covered with vegetation (e.g., in forest, between fields) |
Path | Paved path with concrete or other surfaces | |
Road | Routes with one or more lanes | |
Settlements | Houses/homesteads grouped together | |
Construction site | Bare land used for construction | |
Industrial land | Land used for industrial purposes (e.g., wastewater treatment) |
Abbreviation | Metrics | Description | Unit | Scale Level |
---|---|---|---|---|
LSI | Landscape Shape Index | Shape complexity of patches compared to standard shape | None | Landscape & class level |
MPS | Mean Patch Size | Average patch size of each land cover | ha | Class level |
MESH | Effective Mesh Size | Probability that two randomly chosen points of land cover located in the same patch | ha | Landscape & class level |
PROX_MN | Mean Proximity Index | Proximity of all patches whose edges are within a specified search radius of the focal patch (in this study the radius is defined as 500 m) | None | Class level |
SHDI | Shannon’s Diversity Index | Diversity of land cover patches based on the number and distribution of patches | None | Landscape level |
SHEI | Shannon’s Evenness Index | Evenness of land cover patches based on the number and distribution of patches | None | Landscape level |
Land Cover Type | Active Floodplain | Former Floodplain | ||||
---|---|---|---|---|---|---|
1963–1978 | 1978–1995 | 1995–2010 | 1963–1978 | 1978–1995 | 1995–2010 | |
Riparian forest | 4.01% | 3.14% | −2.34% | 0.07% | 0.07% | 0.48% |
Forest | 0.21% | 0.03% | 2.63% | 0.00% | 0.07% | 0.67% |
Copse | 0.44% | −0.09% | 0.11% | 0.68% | 1.02% | −0.41% |
Arable land | −6.20% | −2.18% | −2.89% | 0.92% | −1.42% | −0.50% |
Grassland | −2.11% | −1.90% | −1.05% | −4.29% | −1.50% | −0.92% |
Orchard | −0.06% | 0.04% | −0.01% | −0.15% | −0.07% | 0.13% |
Artificial pond | −0.02% | 0.02% | 0.04% | 0.85% | 1.51% | 0.42% |
Backwater | 4.00% | −0.46% | 3.24% | 0.04% | −0.01% | 0.04% |
Backwater lake | −0.45% | 0.31% | 0.16% | 0.00% | 0.03% | 0.01% |
Creek & Ditch | −0.03% | 0.26% | −0.16% | 0.00% | −0.05% | −0.02% |
Field hedge/margin | 0.31% | −0.16% | −0.09% | 0.51% | −0.28% | 0.05% |
Road hedge/margin | −0.04% | 0.74% | 0.07% | 0.56% | 0.12% | 0.05% |
Vegetated path | 0.01% | −0.38% | −0.01% | 0.04% | 0.13% | −0.39% |
Path | 0.14% | 0.39% | −0.05% | 0.22% | 0.00% | 0.16% |
Road | 0.01% | 0.22% | −0.15% | 0.48% | 0.04% | 0.03% |
Settlements | 0.01% | 0.04% | 0.08% | 0.28% | 0.20% | 0.32% |
Construction site * | −0.23% | 0.10% | −0.14% |
Floodplain Type | 1963–1978 | 1978–1995 | 1995–2010 | |||
---|---|---|---|---|---|---|
Land Cover Change | Changed Area (%) | Land Cover Change | Changed Area (%) | Land Cover Change | Changed Area (%) | |
Active Floodplain | A-G | 6.0 | A-G | 5.4 | A-G | 4.0 |
G-A | 3.4 | G-A | 4.8 | G-A | 1.4 | |
G-R | 3.2 | G-R | 2.4 | G-F | 1.5 | |
Total * | 26.7 | total | 25.2 | total | 20.1 | |
Former Floodplain | A-G | 4.0 | A-G | 3.7 | A-G | 2.6 |
G-A | 7.0 | G-A | 4.0 | G-A | 2.8 | |
total | 22.1 | total | 20.1 | total | 14.7 |
Landscape Metrics | Active Floodplain | Former Floodplain | ||||||
---|---|---|---|---|---|---|---|---|
1963 | 1978 | 1995 | 2010 | 1963 | 1978 | 1995 | 2010 | |
Landscape | ||||||||
LSI | 11.06 ± 0.80 | 10.62 ± 1.01 | 10.84 ± 1.22 | 9.96 ± 1.34 | 11.45 ± 2.24 | 12.05 ± 2.27 | 12.91 ± 1.63 | 12.48 ± 1.57 |
MESH (ha) | 20.14 ± 7.17 | 18.88 ± 6.69 | 13.70 ± 2.27 | 18.50 ± 2.52 | 33.68 ± 10.68 | 30.76 ± 11.55 | 28.48 ± 14.16 | 26.93 ± 11.16 |
SHDI ** | 1.26 ± 0.09 | 1.33 ± 0.08 | 1.29 ± 0.11 | 1.30 ± 0.13 | 0.95 ± 0.02 | 0.98 ± 0.06 | 1.15 ± 0.08 | 1.17 ± 0.12 |
SHEI *** | 0.51 ± 0.04 | 0.53 ± 0.03 | 0.51 ± 0.02 | 0.54 ± 0.04 | 0.37 ± 0.02 | 0.37 ± 0.02 | 0.42 ± 0.03 | 0.43 ± 0.04 |
Riparian forest | ||||||||
LSI *** | 10.4 ± 1.65 | 11.04 ± 1.50 | 10.92 ± 1.60 | 10.12 ± 1.81 | 3.40 ± 1.53 | 3.67 ± 1.50 | 5.51 ± 1.58 | 4.54 ± 1.36 |
MPS (ha) *** | 1.21 ± 0.14 | 1.91 ± 0.35 | 2.21 ± 0.51 | 1.92 ± 0.27 | 0.13 ± 0.08 | 0.37 ± 0.16 | 0.29 ± 0.11 | 0.38 ± 0.23 |
MESH (ha) *** | 1.38 ± 0.72 | 2.76 ± 1.52 | 3.40 ± 1.57 | 4.38 ± 3.04 | 0.004 ± 0.004 | 0.005 ± 0.003 | 0.008 ± 0.003 | 0.018 ± 0.013 |
PROX_MN *** | 92.76 ± 28.17 | 192.92 ± 61.95 | 475.44 ± 184.33 | 131.04 ± 35.44 | 4.02 ± 2.57 | 3.84 ± 3.38 | 12.61 ± 5.13 | 1.78 ± 2.86 |
Grassland | ||||||||
LSI | 10.16 ± 1.04 | 8.37 ± 0.93 | 8.76 ± 1.28 | 7.84 ± 0.92 | 10.24 ± 2.29 | 9.40 ± 1.76 | 8.95 ± 1.45 | 8.34 ± 1.48 |
MPS (ha) * | 0.61 ± 0.08 | 0.63 ± 0.16 | 0.66 ± 0.09 | 0.87 ± 0.12 | 0.48 ± 0.04 | 0.50 ± 0.06 | 0.53 ± 0.15 | 0.50 ± 0.14 |
MESH (ha) * | 4.71 ± 2.51 | 3.70 ± 2.06 | 3.98 ± 2.88 | 4.82 ± 2.95 | 1.10 ± 0.37 | 0.60 ± 0.32 | 0.55 ± 0.33 | 0.53 ± 0.37 |
PROX_MN | 260.80 ± 135.28 | 190.80 ± 81.88 | 140.19 ± 54.21 | 146.77 ± 86.10 | 143.39 ± 51.05 | 59.90 ± 20.29 | 68.57 ± 35.09 | 54.17 ± 28.68 |
Arable land | ||||||||
LSI ** | 5.61 ± 0.34 | 5.16 ± 0.65 | 4.18 ± 0.88 | 3.56 ± 0.71 | 7.83 ± 1.69 | 7.54 ± 1.59 | 7.49 ± 1.33 | 7.06 ± 1.40 |
MPS (ha) | 0.53 ± 0.14 a | 0.55 ± 0.15 a | 1.08 ± 0.25 ab | 1.42 ± 0.33 b | 0.43 ± 0.06 a | 0.15 ± 0.07 ab | 1.19 ± 0.06 ab | 1.39 ± 0.05 b |
MESH (ha) *** | 12.09 ± 7.92 | 10.47 ± 7.47 | 4.01 ± 1.93 | 4.73 ± 2.85 | 32.51 ± 10.96 | 29.94 ± 11.69 | 27.76 ± 14.24 | 26.18 ± 11.27 |
PROX_MN ** | 326.47 ± 182.93 | 626.89 ± 396.60 | 312.33 ± 250.61 | 347.65 ± 304.18 | 2111.83 ± 838.54 | 2269.85 ± 896.74 | 1982.81 ± 798.20 | 2874.85 ± 1102.47 |
Environmental Factors | Arable Land Change | Grassland Change | Riparian Forest Change | ||||||
---|---|---|---|---|---|---|---|---|---|
1963–1978 | 1978–1995 | 1995–2010 | 1963–1978 | 1978–1995 | 1995–2010 | 1963–1978 | 1978–1995 | 1995–2010 | |
Aspect | 2 | 1 | 2 | 1 | 1 | 5 | 10 | 11 | 8 |
Distance to river | 15 | 14 | 22 | 4 | 13 | 31 | 43 | 7 | 26 |
Height above MW | 10 | 22 | 22 | 18 | 21 | 18 | 20 | 46 | 26 |
Slope | 4 | 4 | 4 | 2 | 2 | 5 | 9 | 2 | 5 |
Soil rating index | 42 | 18 | 16 | 18 | 13 | 26 | |||
Soil texture | 7 | 18 | 16 | 26 | 9 | 10 | |||
Study site | 20 | 23 | 18 | 31 | 41 | 6 | 17 | 34 | 34 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Otte, A.; Ludewig, K.; Donath, T.W.; Harvolk-Schöning, S. Land Cover Changes (1963–2010) and Their Environmental Factors in the Upper Danube Floodplain. Sustainability 2017, 9, 943. https://doi.org/10.3390/su9060943
Xu F, Otte A, Ludewig K, Donath TW, Harvolk-Schöning S. Land Cover Changes (1963–2010) and Their Environmental Factors in the Upper Danube Floodplain. Sustainability. 2017; 9(6):943. https://doi.org/10.3390/su9060943
Chicago/Turabian StyleXu, Fang, Annette Otte, Kristin Ludewig, Tobias W. Donath, and Sarah Harvolk-Schöning. 2017. "Land Cover Changes (1963–2010) and Their Environmental Factors in the Upper Danube Floodplain" Sustainability 9, no. 6: 943. https://doi.org/10.3390/su9060943
APA StyleXu, F., Otte, A., Ludewig, K., Donath, T. W., & Harvolk-Schöning, S. (2017). Land Cover Changes (1963–2010) and Their Environmental Factors in the Upper Danube Floodplain. Sustainability, 9(6), 943. https://doi.org/10.3390/su9060943