The Material Stock–Flow–Service Nexus: A New Approach for Tackling the Decoupling Conundrum
Abstract
:1. Introduction
- Resource flows do not suffice to provide services (e.g., shelter, mobility, communication), i.e., creating benefits for societal wellbeing—they can only do so in combination with material stocks such as machinery, buildings or infrastructures [28]. The location as well as functional types of material stocks and their specific qualities determine both the resource requirements related to the provision of key services, e.g., transport, and spatio-temporal characteristics of their provision, as well as disposal in terms of end-of-life wastes, or their availability for recycling; the latter being crucial knowledge for closing material loops [27,36].
- Approximating “affluence” or even societal wellbeing with measures of economic activity has been criticized. Many scholars believe that indicators such as GDP may be a part of the problem; see the “beyond GDP” [37,38] and “degrowth” [23] debates. Service indicators can provide complementary insights that will help forging alternative or at least complementary concepts of socio-economic wellbeing whose relations to material stocks and flows may be at least as important as efficiency measures such as materials or energy used per unit of GDP. We think that a shift from mainstream economics towards a service-based approach can help determining the societal needs underlying certain flows and the stock–flow–service linkages due to its ability to compare different options to address the same services and the societal needs behind them.
- Many individual and collective decisions concern purchases of long-lived goods and investments into buildings, infrastructures and machinery, i.e., into building up material stocks. However, this also results in legacies that narrow future option spaces.
2. Stock-Flow Relations in Socioeconomic Metabolism Research
2.1. The Concept of Socioeconomic Metabolism
2.2. Stock-Flow Relations in Socioeconomic Metabolism Research
2.3. Recent Progress in Quantifying Socioeconomic Material Stocks
2.4. Resource Flows, Material Stocks, and Services
2.5. The Importance of Spatial Patterns and Urbanization for Resource Demand
3. Contributions of the Stock–Flow–Service Nexus Approach to Socioeconomic Metabolism Research
3.1. New Conceptualizations of Eco-Efficiency
3.2. Food for Thought for Socioecological Transformation Research
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Turner, B.L.I.; Clark, W.C.; Kates, R.W.; Richards, J.F.; Mathews, J.T.; Meyer, W.B. The Earth as Transformed by Human Action: Global and Regional Changes in the Biosphere over the Past 300 Years; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Crutzen, P.J. Geology of mankind. Nature 2002, 415, 23. [Google Scholar] [CrossRef] [PubMed]
- Kates, R.W.; Clark, W.C.; Corell, R.; Hall, J.M.; Jaeger, C.C.; Lowe, I.; McCarthy, J.J.; Schellnhuber, H.J.; Bolin, B.; Dickson, N.M.; et al. Sustainability science. Science 2001, 292, 641–642. [Google Scholar] [CrossRef] [PubMed]
- Seitzinger, S.P.; Svedin, U.; Crumley, C.L.; Steffen, W.; Abdullah, S.A.; Alfsen, C.; Broadgate, W.J.; Biermann, F.; Bondre, N.R.; Dearing, J.A.; et al. Planetary Stewardship in an Urbanizing World: Beyond City Limits. Ambio 2012, 41, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Steffen, W.; Persson, Å.; Deutsch, L.; Zalasiewicz, J.; Williams, M.; Richardson, K.; Crumley, C.; Crutzen, P.; Folke, C.; Gordon, L.; et al. The Anthropocene: From Global Change to Planetary Stewardship. Ambio 2011, 40, 739–761. [Google Scholar] [CrossRef] [PubMed]
- Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C. The trajectory of the Anthropocene: The Great Acceleration. Anthr. Rev. 2015, 2, 81–98. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S., III; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.; et al. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockstrom, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347. [Google Scholar] [CrossRef] [PubMed]
- Haberl, H.; Fischer-Kowalski, M.; Krausmann, F.; Winiwarter, V. Social Ecology, Society-Nature Relations across Time and Space; Human-Environment Interactions, no. 5; Springer: Dordrecht, The Netherlands, 2016. [Google Scholar]
- Pauliuk, S.; Hertwich, E.G. Socioeconomic metabolism as paradigm for studying the biophysical basis of human societies. Ecol. Econ. 2015, 119, 83–93. [Google Scholar] [CrossRef]
- Krey, V.; Masera, O.; Hanemann, M.; Blanford, G.; Bruckner, T.; Haberl, H.; Hertwich, E.; Müller, D. Annex II: Methods and metrics. In Climate Change 2014: Mitigation of Climate Change, Working Group III Contribution to the IPCC Fifth Assessment Report (AR5) of the Intergovernmental Panel for Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Minx, J.C., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., et al., Eds.; Cambride University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1281–1328. [Google Scholar]
- Pauliuk, S.; Arvesen, A.; Stadler, K.; Hertwich, E.G. Industrial ecology in integrated assessment models. Nat. Clim. Chang. 2017, 7, 13–20. [Google Scholar] [CrossRef]
- Fischer-Kowalski, M.; Haberl, H. Social metabolism—A metric for biophysical growth and degrowth. In Handbook of Ecological Economics; Martinez-Alier, J., Muradian, R., Eds.; Edward Elgar: Cheltenham, UK; Northampton, MA, USA, 2015; pp. 100–138. [Google Scholar]
- Dietz, T.; Frank, K.A.; Whitley, C.T.; Kelly, J.; Kelly, R. Political influences on greenhouse gas emissions from US states. Proc. Natl. Acad. Sci. USA 2015, 112, 8254–8259. [Google Scholar] [CrossRef] [PubMed]
- York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 2003, 46, 351–365. [Google Scholar] [CrossRef]
- Steinberger, J.K.; Krausmann, F. Material and Energy Productivity. Environ. Sci. Technol. 2011, 45, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Steinberger, J.K.; Krausmann, F.; Getzner, M.; Schandl, H.; West, J. Development and Dematerialization: An International Study. PLoS ONE 2013, 8, e70385. [Google Scholar] [CrossRef] [PubMed]
- UNEP. Decoupling Natural Resource Use and Environmental Impacts from Economic Growth; A Report of the Working Group on Decoupling to the International Resource Panel; United Nations Environment Programme: Nairobi, Kenya, 2011. [Google Scholar]
- Haberl, H.; Fischer-Kowalski, M.; Krausmann, F.; Martinez-Alier, J.; Winiwarter, V. A socio-metabolic transition towards sustainability? Challenges for another Great Transformation. Sustain. Dev. 2011, 19, 1–14. [Google Scholar] [CrossRef]
- WBGU. Welt im Wandel. Gesellschaftsvertrag für eine Große Transformation; Wissenschaftlicher Beirat Globale Umweltveränderungen (WBGU): Berlin, Germany, 2011. [Google Scholar]
- Korten, D.C. Change the Story, Change the Future: A Living Economy for A Living Earth, 1st ed.; Berrett-Koehler Publishers, Inc.: Oakland, CA, USA, 2015. [Google Scholar]
- Sachs, W. Fair Wealth. Pathways into Post-Development. In Rethinking Development in a Carbon-Constrained World. Development Cooperation and Climate Change; Palosuo, E., Ed.; Ministry of Foreign Affairs: Helsinki, Finland, 2009; pp. 196–206. [Google Scholar]
- Kallis, G.; Kerschner, C.; Martinez-Alier, J. The economics of degrowth. Ecol. Econ. 2012, 84, 172–180. [Google Scholar] [CrossRef]
- Brand, U. “Transformation” as a New Critical Orthodoxy: The Strategic Use of the Term “Transformation” Does Not Prevent Multiple Crises. GAIA—Ecol. Perspect. Sci. Soc. 2016, 25, 23–27. [Google Scholar] [CrossRef]
- UNEP. Policy Coherence of the Sustainable Development Goals, a Natural Resources Perspective; International Resource Panel Report; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2015. [Google Scholar]
- Krausmann, F.; Wiedenhofer, D.; Lauk, C.; Haas, W.; Tanikawa, H.; Fishman, T.; Miatto, A.; Schandl, H.; Haberl, H. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proc. Natl. Acad. Sci. USA 2017, 114, 1880–1885. [Google Scholar] [CrossRef] [PubMed]
- Tanikawa, H.; Fishman, T.; Okuoka, K.; Sugimoto, K. The Weight of Society over Time and Space: A Comprehensive Account of the Construction Material Stock of Japan, 1945–2010: The Construction Material Stock of Japan. J. Ind. Ecol. 2015, 19, 778–791. [Google Scholar] [CrossRef]
- Pauliuk, S.; Müller, D.B. The role of in-use stocks in the social metabolism and in climate change mitigation. Glob. Environ. Chang. 2014, 24, 132–142. [Google Scholar] [CrossRef]
- Müller, D.B.; Wang, T.; Duval, B.; Graedel, T.E. Exploring the engine of anthropogenic iron cycles. Proc. Natl. Acad. Sci. USA 2006, 103, 16111–16116. [Google Scholar] [CrossRef] [PubMed]
- Müller, D. Stock dynamics for forecasting material flows—Case study for housing in The Netherlands. Ecol. Econ. 2006, 59, 142–156. [Google Scholar] [CrossRef]
- Müller, E.; Hilty, L.M.; Widmer, R.; Schluep, M.; Faulstich, M. Modeling Metal Stocks and Flows: A Review of Dynamic Material Flow Analysis Methods. Environ. Sci. Technol. 2014, 48, 2102–2113. [Google Scholar] [CrossRef] [PubMed]
- Augiseau, V.; Barles, S. Studying construction materials flows and stock: A review. Resour. Conserv. Recycl. 2016, in press. [Google Scholar] [CrossRef]
- Fishman, T.; Schandl, H.; Tanikawa, H.; Walker, P.; Krausmann, F. Accounting for the Material Stock of Nations. J. Ind. Ecol. 2014, 18, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Fishman, T.; Schandl, H.; Tanikawa, H. Stochastic Analysis and Forecasts of the Patterns of Speed, Acceleration, and Levels of Material Stock Accumulation in Society. Environ. Sci. Technol. 2016, 50, 3729–3737. [Google Scholar] [CrossRef] [PubMed]
- Fishman, T.; Schandl, H.; Tanikawa, H. The socio-economic drivers of material stock accumulation in Japan’s prefectures. Ecol. Econ. 2015, 113, 76–84. [Google Scholar] [CrossRef]
- Haas, W.; Krausmann, F.; Wiedenhofer, D.; Heinz, M. How Circular is the Global Economy? An Assessment of Material Flows, Waste Production, and Recycling in the European Union and the World in 2005. J. Ind. Ecol. 2015, 19, 765–777. [Google Scholar] [CrossRef]
- Fleurbaey, M. Beyond GDP: The Quest for a Measure of Social Welfare. J. Econ. Lit. 2009, 47, 1029–1075. [Google Scholar] [CrossRef]
- Kubiszewski, I.; Costanza, R.; Franco, C.; Lawn, P.; Talberth, J.; Jackson, T.; Aylmer, C. Beyond GDP: Measuring and achieving global genuine progress. Ecol. Econ. 2013, 93, 57–68. [Google Scholar] [CrossRef]
- Ayres, R.U.; Simonis, U.E. Industrial Metabolism: Restructuring for Sustainable Development; United Nations University Press: Tokyo, Japan; New York, NY, USA; Paris, France, 1994. [Google Scholar]
- Martinez-Alier, J. Ecological Economics. Energy, Environment and Society; Blackwell: Oxford, UK, 1987. [Google Scholar]
- Fischer-Kowalski, M. Society’s Metabolism: The Intellectual History of Materials Flow Analysis, Part I, 1860–1970. J. Ind. Ecol. 1998, 2, 107–136. [Google Scholar] [CrossRef]
- Fischer-Kowalski, M.; Krausmann, F.; Giljum, S.; Lutter, S.; Mayer, A.; Bringezu, S.; Moriguchi, Y.; Schütz, H.; Schandl, H.; Weisz, H. Methodology and Indicators of Economy-wide Material Flow Accounting—State of the Art and Reliability Across Sources. J. Ind. Ecol. 2011, 15, 855–876. [Google Scholar] [CrossRef]
- Haberl, H. The Energetic Metabolism of Societies Part I: Accounting Concepts. J. Ind. Ecol. 2001, 5, 11–33. [Google Scholar] [CrossRef]
- Bringezu, S.; Moriguchi, Y. Material flow analysis. In A Handbook of Industrial Ecology; Ayres, R.U., Ayres, L.W., Eds.; Edward Elgar: Cheltenham, UK, 2002; pp. 79–91. [Google Scholar]
- Bringezu, S.; van de Sand, I.; Schütz, H.; Moll, S. Analysing global resource use of national and regional economies across various levels. In Sustainable Resource Management. Global Trends, Visions and Policies; Bringezu, S., Bleischwitz, R., Eds.; Greenleaf Publishing: Sheffield, UK, 2009; pp. 10–52. [Google Scholar]
- Graedel, T.E.; Harper, E.M.; Nassar, N.T.; Reck, B.K. On the materials basis of modern society. Proc. Natl. Acad. Sci. USA 2015, 112, 6295–6300. [Google Scholar] [CrossRef] [PubMed]
- Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guinée, J.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent developments in Life Cycle Assessment. J. Environ. Manag. 2009, 91, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Ayres, R.U.; Kneese, A.V. Production, Consumption, and Externalities. Am. Econ. Rev. 1969, 59, 282–297. [Google Scholar]
- Boulding, K. The Economics of the Coming Spaceship Earth. In Steady State Economics; Daly, H.E., Ed.; W.H. Freeman: San Francisco, CA, USA, 1972; pp. 121–132. [Google Scholar]
- Laner, D.; Rechberger, H.; Astrup, T. Systematic Evaluation of Uncertainty in Material Flow Analysis. J. Ind. Ecol. 2014, 18, 859–870. [Google Scholar] [CrossRef]
- Patrício, J.; Kalmykova, Y.; Rosado, L.; Lisovskaja, V. Uncertainty in Material Flow Analysis Indicators at Different Spatial Levels. J. Ind. Ecol. 2015, 19, 837–852. [Google Scholar] [CrossRef]
- Lotka, A.J. Elements of Physical Biology; Williams & Wilkins Company: Baltimore, MA, USA, 1925. [Google Scholar]
- Smil, V. General Energetics: Energy in the Biosphere and Civilization; Wiley Interscience: New York, NY, USA, 1991. [Google Scholar]
- Lindeman, R.L. The tropic-dynamic aspect of ecology. Ecology 1942, 23, 399–418. [Google Scholar] [CrossRef]
- Cottrell, F. Energy and Society: The Relation between Energy, Social Change, and Economic Development; McGraw-Hill: New York, NY, USA; Toronto, ON, Canada; London, UK, 1955. [Google Scholar]
- Odum, H.T. Environment, Power and Society; Wiley-Interscience: New York, NY, USA, 1971. [Google Scholar]
- Hall, C.A.S.; Cleveland, C.J.; Kaufmann, R. Energy and Resource Quality: The Ecology of the Economic Process; University Press of Colorado: Niwot, CO, USA, 1992. [Google Scholar]
- Malcolm, S. International Federation of Institutes for Advanced Study. In Energy Analysis Workshop on Methodology and Conventions: 25th–30th August, 1974, Guldsmedshyttan, Sweden; IFIAS: Stockhom, Sweden, 1974. [Google Scholar]
- GEA. Global Energy Assessment—Toward a Sustainable Future; IIASA: Laxenburg, Austria; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Giampietro, M. Comments on “The Energetic Metabolism of the European Union and the United States” by Haberl and Colleagues: Theoretical and Practical Considerations on the Meaning and Usefulness of Traditional Energy Analysis. J. Ind. Ecol. 2006, 10, 173–185. [Google Scholar] [CrossRef]
- Weisz, H. The Probability of the Improbable: Society–Nature Coevolution. Geogr. Ann. Ser. B Hum. Geogr. 2011, 93, 325–336. [Google Scholar] [CrossRef]
- Infante-Amate, J.; Soto Fernandez, D.; Aguilera, E.; Garcia-Ruiz, R.; Guzmán, G.I. The Spanish Transition to Industrial Metabolism: Long-Term Material Flow Analysis (1860–2010). J. Ind. Ecol. 2015, in press. [Google Scholar] [CrossRef]
- Sieferle, R.-P.; Krausmann, F.; Schandl, H.; Winiwarter, V. Das Ende der Fläche: Zum Gesellschaftlichen Stoffwechsel der Industrialisierung; Böhlau: Köln, Germay, 2006. [Google Scholar]
- Schaffartzik, A.; Mayer, A.; Gingrich, S.; Eisenmenger, N.; Loy, C.; Krausmann, F. The global metabolic transition: Regional patterns and trends of global material flows, 1950–2010. Glob. Environ. Chang. 2014, 26, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Krausmann, F.; Gingrich, S.; Eisenmenger, N.; Erb, K.-H.; Haberl, H.; Fischer-Kowalski, M. Growth in global materials use, GDP and population during the 20th century. Ecol. Econ. 2009, 68, 2696–2705. [Google Scholar] [CrossRef]
- Gierlinger, S.; Krausmann, F. The physical economy of the United States of America: Extraction, trade and consumption of materials from 1870 to 2005. In The Socio-Metabolic Transition. Long Term Historical Trends and Patterns in Global Material and Energy Use; Krausmann, F., Ed.; Social Ecology Working Papers; IFF Social Ecology: Vienna, Austria, 2011; pp. 24–49. [Google Scholar]
- Gingrich, S.; Schmid, M.; Gradwohl, M.; Krausmann, F. How Material and Energy Flows Change Socio-Natural Arrangements: The Transformation of Agriculture in the Eisenwurzen Region, 1860–2000. In Long Term Socio-Ecological Research. Studies in Society-Nature Interactions across Spatial and Temporal Scales; Springer Science + Business Media B.V.: Dordrecht, The Netherlands, 2013; Volume 2, pp. 297–313. [Google Scholar]
- Pothen, F.; Schymura, M. Bigger cakes with fewer ingredients? A comparison of material use of the world economy. Ecol. Econ. 2015, 109, 109–121. [Google Scholar] [CrossRef]
- Weisz, H.; Krausmann, F.; Amann, C.; Eisenmenger, N.; Erb, K.-H.; Hubacek, K.; Fischer-Kowalski, M. The physical economy of the European Union: Cross-country comparison and determinants of material consumption. Ecol. Econ. 2006, 58, 676–698. [Google Scholar] [CrossRef]
- Schandl, H.; West, J. Resource use and resource efficiency in the Asia–Pacific region. Glob. Environ. Chang. 2010, 20, 636–647. [Google Scholar] [CrossRef]
- Dittrich, M.; Bringezu, S. The physical dimension of international trade: Part 1: Direct global flows between 1962 and 2005. Ecol. Econ. 2010, 69, 1838–1847. [Google Scholar] [CrossRef]
- Wiedmann, T.O.; Schandl, H.; Lenzen, M.; Moran, D.; Suh, S.; West, J.; Kanemoto, K. The material footprint of nations. Proc. Natl. Acad. Sci. USA 2015, 112, 6271–6276. [Google Scholar] [CrossRef] [PubMed]
- Dorninger, C.; Hornborg, A. Can EEMRIO analyses establish the occurrence of ecologically unequal exchange? Ecol. Econ. 2015, 119, 414–418. [Google Scholar] [CrossRef]
- Erb, K.; Gingrich, S.; Krausmann, F.; Haberl, H. Industrialization, Fossil Fuels, and the Transformation of Land Use. J. Ind. Ecol. 2008, 12, 686–703. [Google Scholar] [CrossRef]
- Chen, W.-Q.; Graedel, T.E. Dynamic analysis of aluminum stocks and flows in the United States: 1900–2009. Ecol. Econ. 2012, 81, 92–102. [Google Scholar] [CrossRef]
- Chen, M.; Graedel, T.E. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob. Environ. Chang. 2016, 36, 139–152. [Google Scholar] [CrossRef]
- Peiró, L.T.; Méndez, G.V.; Ayres, R.U. Material Flow Analysis of Scarce Metals: Sources, Functions, End-Uses and Aspects for Future Supply. Environ. Sci. Technol. 2013, 47, 2939–2947. [Google Scholar] [CrossRef] [PubMed]
- Rauch, J.N.; Pacyna, J.M. Earth’s global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles: GLOBAL METAL CYCLES. Glob. Biogeochem. Cycles 2009, 23. [Google Scholar] [CrossRef]
- Wackernagel, M.; Schulz, N.B.; Deumling, D.; Linares, A.C.; Jenkins, M.; Kapos, V.; Monfreda, C.; Loh, J.; Myers, N.; et al. Tracking the ecological overshoot of the human economy. Proc. Natl. Acad. Sci. USA 2002, 99, 9266–9271. [Google Scholar] [CrossRef] [PubMed]
- Haberl, H.; Erb, K.H.; Krausmann, F.; Gaube, V.; Bondeau, A.; Plutzar, C.; Gingrich, S.; Lucht, W.; Fischer-Kowalski, M. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 2007, 104, 12942–12947. [Google Scholar] [CrossRef] [PubMed]
- Schaffartzik, A.; Haberl, H.; Kastner, T.; Wiedenhofer, D.; Eisenmenger, N.; Erb, K.-H. Trading Land: A Review of Approaches to Accounting for Upstream Land Requirements of Traded Products: A Review of Upstream Land Accounts. J. Ind. Ecol. 2015, 19, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Kastner, T.; Kastner, M.; Nonhebel, S. Tracing distant environmental impacts of agricultural products from a consumer perspective. Ecol. Econ. 2011, 70, 1032–1040. [Google Scholar] [CrossRef]
- Gerst, M.D.; Graedel, T.E. In-Use Stocks of Metals: Status and Implications. Environ. Sci. Technol. 2008, 42, 7038–7045. [Google Scholar] [CrossRef] [PubMed]
- Pauliuk, S.; Wang, T.; Müller, D.B. Steel all over the world: Estimating in-use stocks of iron for 200 countries. Resour. Conserv. Recycl. 2013, 71, 22–30. [Google Scholar] [CrossRef]
- Liu, G.; Müller, D.B. Centennial Evolution of Aluminum In-Use Stocks on Our Aluminized Planet. Environ. Sci. Technol. 2013, 47, 4882–4888. [Google Scholar] [CrossRef] [PubMed]
- Glöser, S.; Soulier, M.; Tercero Espinoza, L.A. Dynamic Analysis of Global Copper Flows. Global Stocks, Postconsumer Material Flows, Recycling Indicators, and Uncertainty Evaluation. Environ. Sci. Technol. 2015, 47, 6564–6572. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Müller, D.B.; Hashimoto, S. The Ferrous Find: Counting Iron and Steel Stocks in China’s Economy: Counting Iron and Steel Stocks in China’s Economy. J. Ind. Ecol. 2015, 19, 877–889. [Google Scholar] [CrossRef]
- Müller, D.B.; Liu, G.; Løvik, A.N.; Modaresi, R.; Pauliuk, S.; Steinhoff, F.S.; Brattebø, H. Carbon Emissions of Infrastructure Development. Environ. Sci. Technol. 2013, 47, 11739–11746. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Bangs, C.E.; Müller, D.B. Stock dynamics and emission pathways of the global aluminium cycle. Nat. Clim. Chang. 2012, 3, 338–342. [Google Scholar] [CrossRef]
- Lin, C.; Liu, G.; Müller, D.B. Characterizing the role of built environment stocks in human development and emission growth. Resour. Conserv. Recycl. 2017, 123, 67–72. [Google Scholar] [CrossRef]
- Wiedenhofer, D.; Steinberger, J.K.; Eisenmenger, N.; Haas, W. Maintenance and Expansion: Modeling Material Stocks and Flows for Residential Buildings and Transportation Networks in the EU25. J. Ind. Ecol. 2015, 19, 538–551. [Google Scholar] [CrossRef] [PubMed]
- Brattebø, H.; Bergsdal, H.; Sandberg, N.H.; Hammervold, J.; Müller, D.B. Exploring built environment stock metabolism and sustainability by systems analysis approaches. Build. Res. Inf. 2009, 37, 569–582. [Google Scholar] [CrossRef]
- Pauliuk, S.; Sjöstrand, K.; Müller, D.B. Transforming the Norwegian Dwelling Stock to Reach the 2 Degrees Celsius Climate Target: Combining Material Flow Analysis and Life Cycle Assessment Techniques. J. Ind. Ecol. 2013, 17, 542–554. [Google Scholar] [CrossRef]
- Schiller, G.; Müller, F.; Ortlepp, R. Mapping the anthropogenic stock in Germany: Metabolic evidence for a circular economy. Resour. Conserv. Recycl. 2017, 123, 93–107. [Google Scholar] [CrossRef]
- Pauliuk, S.; Milford, R.L.; Müller, D.B.; Allwood, J.M. The Steel Scrap Age. Environ. Sci. Technol. 2013, 47, 3448–3454. [Google Scholar] [CrossRef] [PubMed]
- Tanikawa, H.; Hashimoto, S. Urban stock over time: Spatial material stock analysis using 4d-GIS. Build. Res. Inf. 2009, 37, 483–502. [Google Scholar] [CrossRef]
- Rauch, J.M. Global mapping of Al, Cu, Fe, and Zn in-use stocks and in-ground resources. Proc. Natl. Acad. Sci. USA 2009, 106, 18920–18925. [Google Scholar] [CrossRef] [PubMed]
- Kleemann, F.; Lederer, J.; Rechberger, H.; Fellner, J. GIS-based Analysis of Vienna’s Material Stock in Buildings: GIS-based Analysis of Material Stock in Buildings. J. Ind. Ecol. 2016. [Google Scholar] [CrossRef]
- Wallsten, B.; Magnusson, D.; Andersson, S.; Krook, J. The economic conditions for urban infrastructure mining: Using GIS to prospect hibernating copper stocks. Resour. Conserv. Recycl. 2015, 103, 85–97. [Google Scholar] [CrossRef]
- Baccini, P.; Brunner, P.H. Metabolism of the Anthroposphere; Springer-Verlag: Berlin, Germany; New York, NY, USA, 1991. [Google Scholar]
- Fischer-Kowalski, M.; Weisz, H. Society as hybrid between material and symbolic realms. Adv. Hum. Ecol. 1999, 8, 215–251. [Google Scholar]
- Giampietro, M.; Mayumi, K.; Ramos-Martin, J. Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): Theoretical concepts and basic rationale. Energy 2009, 34, 313–322. [Google Scholar] [CrossRef]
- Weisz, H.; Suh, S.; Graedel, T.E. Industrial Ecology: The role of manufactured capital in sustainability. Proc. Natl. Acad. Sci. USA 2015, 112, 6260–6264. [Google Scholar] [CrossRef] [PubMed]
- Haberl, H.; Fischer-Kowalski, M.; Krausmann, F.; Weisz, H.; Winiwarter, V. Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer. Land Use Policy 2004, 21, 199–213. [Google Scholar] [CrossRef]
- Chen, W.-Q.; Graedel, T.E. In-use product stocks link manufactured capital to natural capital. Proc. Natl. Acad. Sci. USA 2015, 112, 6265–6270. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.J.; Caldeira, K.; Matthews, H.D. Future CO2 Emissions and Climate Change from Existing Energy Infrastructure. Science 2010, 329, 1330–1333. [Google Scholar] [CrossRef] [PubMed]
- Raupach, M.R.; Davis, S.J.; Peters, G.P.; Andrew, R.M.; Canadell, J.G.; Ciais, P.; Friedlingstein, P.; Jotzo, F.; van Vuuren, D.P.; Le Quéré, C. Sharing a quota on cumulative carbon emissions. Nat. Clim. Chang. 2014, 4, 873–879. [Google Scholar] [CrossRef]
- Lauk, C.; Haberl, H.; Erb, K.H.; Gingrich, S.; Krausmann, F. Global socioeconomic carbon stocks and carbon sequestration in long-lived products 1900–2008. Environ. Res. Lett. 2012, 7, 034023. [Google Scholar] [CrossRef]
- Pauliuk, S.; Majeau-Bettez, G.; Mutel, C.L.; Steubing, B.; Stadler, K. Lifting Industrial Ecology Modeling to a New Level of Quality and Transparency: A Call for More Transparent Publications and a Collaborative Open Source Software Framework: Open Source Software for Industrial Ecology. J. Ind. Ecol. 2015, 19, 937–949. [Google Scholar] [CrossRef]
- Modaresi, R.; Pauliuk, S.; Løvik, A.N.; Müller, D.B. Global Carbon Benefits of Material Substitution in Passenger Cars until 2050 and the Impact on the Steel and Aluminum Industries. Environ. Sci. Technol. 2014, 48, 10776–10784. [Google Scholar] [CrossRef] [PubMed]
- Allwood, J.M.; Ashby, M.F.; Gutowski, T.G.; Worrell, E. Material efficiency: providing material services with less material production. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2013, 371. [Google Scholar] [CrossRef] [PubMed]
- Herring, H. Energy efficiency—A critical view. Energy 2006, 31, 10–20. [Google Scholar] [CrossRef]
- Schipper, L.; Grubb, M. On the rebound? Feedback between energy intensities and energy uses in IEA countries. Energy Policy 2000, 28, 367–388. [Google Scholar] [CrossRef]
- Creutzig, F.; Fernandez, B.; Haberl, H.; Khosla, R.; Mulugetta, Y.; Seto, K.C. Beyond Technology: Demand-Side Solutions for Climate Change Mitigation. Annu. Rev. Environ. Resour. 2016, 41, 173–198. [Google Scholar] [CrossRef]
- Haas, R.; Nakicenovic, N.; Ajanovic, A.; Faber, T.; Kranzl, L.; Müller, A.; Resch, G. Towards sustainability of energy systems: A primer on how to apply the concept of energy services to identify necessary trends and policies. Energy Policy 2008, 36, 4012–4021. [Google Scholar] [CrossRef]
- Sovacool, B.K. Conceptualizing urban household energy use: Climbing the “Energy Services Ladder”. Energy Policy 2011, 39, 1659–1668. [Google Scholar] [CrossRef]
- Daily, G.C.; Alexander, S.; Ehrlich, P.R.; Goulder, L.; Lubchenco, J.; Matson, P.A.; Mooney, H.A.; Postel, S.L.; Schneider, S.; Tilman, D.R.; et al. Ecosystem Services: Benefits Supplied to Human Societies by Natural Ecosystems; Issues in Ecology, No. 2; Ecological Society of America: Washington, DC, USA, 1997. [Google Scholar]
- Spangenberg, J.H.; Görg, C.; Truong, D.T.; Tekken, V.; Bustamante, J.V.; Settele, J. Provision of ecosystem services is determined by human agency, not ecosystem functions. Four case studies. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2014, 10, 40–53. [Google Scholar] [CrossRef]
- Potschin, M.B.; Haines-Young, R.H. Ecosystem services exploring a geographical perspective. Prog. Phys. Geogr. 2011, 35, 575–594. [Google Scholar] [CrossRef]
- Creutzig, F.; Baiocchi, G.; Bierkandt, R.; Pichler, P.-P.; Seto, K.C. Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proc. Natl. Acad. Sci. USA 2015, 112, 6283–6288. [Google Scholar] [CrossRef] [PubMed]
- Seto, K.C.; Dhakal, S.; Bigio, A.; Blanco, H.; Delgado, G.C.; Dewar, D.; Huang, L.; Inaba, A.; Kansal, A.; Lwasa, S.; et al. Human Settlements, Infrastructure and Spatial Planning. In Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the IPCC Fifth Assessment Report (AR5) of the Intergovernmental Panel for Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambride University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 923–1000. [Google Scholar]
- CIESIN. Gridded Population of the World (GPW), v3. SEDAC; Center for International Earth Science Information Network: New York, NY, USA, 2016. [Google Scholar]
- Goldewijk, K.K. Estimating global land use change over the past 300 years: The HYDE Database. Glob. Biogeochem. Cycles 2001, 15, 417–433. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Bounoua, L.; Ricketts, T.; Loucks, C.; Harriss, R.; Lawrence, W.T. Global patterns in human consumption of net primary production. Nature 2004, 429, 870–873. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, E.W.; Jaiteh, M.; Levy, M.A.; Redford, K.H.; Wannebo, A.V.; Woolmer, G. The Human Footprint and the Last of the Wild. BioScience 2002, 52, 891–904. [Google Scholar] [CrossRef]
- Chen, X.; Nordhaus, W.D. Using luminosity data as a proxy for economic statistics. Proc. Natl. Acad. Sci. USA 2011, 108, 8589–8594. [Google Scholar] [CrossRef] [PubMed]
- Jean, N.; Burke, M.; Xie, M.; Davis, W.M.; Lobell, D.B.; Ermon, S. Combining satellite imagery and machine learning to predict poverty. Science 2016, 353, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Wint, W.; Robinson, T. Gridded Livestock of the World 2007; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2007. [Google Scholar]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow, Environmental Issues and Options; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2006. [Google Scholar]
- Herrero, M.; Havlik, P.; Valin, H.; Notenbaert, A.; Rufino, M.C.; Thornton, P.K.; Blummel, M.; Weiss, F.; Grace, D.; Obersteiner, M. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. Acad. Sci. USA 2013, 110, 20888–20893. [Google Scholar] [CrossRef] [PubMed]
- Baiocchi, G.; Creutzig, F.; Minx, J.; Pichler, P.-P. A spatial typology of human settlements and their CO2 emissions in England. Glob. Environ. Chang. 2015, 34, 13–21. [Google Scholar] [CrossRef]
- Weisz, H.; Steinberger, J.K. Reducing energy and material flows in cities. Curr. Opin. Environ. Sustain. 2010, 2, 185–192. [Google Scholar] [CrossRef]
- Gately, C.K.; Hutyra, L.R.; Sue Wing, I. Cities, traffic, and CO2: A multidecadal assessment of trends, drivers, and scaling relationships. Proc. Natl. Acad. Sci. USA 2015, 112, 4999–5004. [Google Scholar] [CrossRef] [PubMed]
- Gardner, G.T.; Prugh, T.; Renner, M.; Mastny, L. State of the World: Can a City Be Sustainable? Worldwatch Institute: Washington, DC, USA, 2016. [Google Scholar]
- Kennedy, C.A.; Stewart, I.; Facchini, A.; Cersosimo, I.; Mele, R.; Chen, B.; Uda, M.; Kansal, A.; Chiu, A.; Kim, K.; et al. Energy and material flows of megacities. Proc. Natl. Acad. Sci. USA 2015, 112, 5985–5990. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.; Kammen, D.M. Spatial Distribution of U.S. Household Carbon Footprints Reveals Suburbanization Undermines Greenhouse Gas Benefits of Urban Population Density. Environ. Sci. Technol. 2014, 48, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Wiedenhofer, D.; Lenzen, M.; Steinberger, J.K. Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications. Energy Policy 2013, 63, 696–707. [Google Scholar] [CrossRef]
- Heinonen, J.; Jalas, M.; Juntunen, J.K.; Ala-Mantila, S.; Junnila, S. Situated lifestyles: I. How lifestyles change along with the level of urbanization and what the greenhouse gas implications are—A study of Finland. Environ. Res. Lett. 2013, 8, 025003. [Google Scholar] [CrossRef]
- Minx, J.; Baiocchi, G.; Wiedmann, T.; Barrett, J.; Creutzig, F.; Feng, K.; Förster, M.; Pichler, P.-P.; Weisz, H.; Hubacek, K. Carbon footprints of cities and other human settlements in the UK. Environ. Res. Lett. 2013, 8, 035039. [Google Scholar] [CrossRef]
- Anderson, J.E.; Wulfhorst, G.; Lang, W. Energy analysis of the built environment—A review and outlook. Renew. Sustain. Energy Rev. 2015, 44, 149–158. [Google Scholar] [CrossRef]
- Yetano Roche, M.; Lechtenböhmer, S.; Fischedick, M.; Gröne, M.-C.; Xia, C.; Dienst, C. Concepts and Methodologies for Measuring the Sustainability of Cities. Annu. Rev. Environ. Resour. 2014, 39, 519–547. [Google Scholar] [CrossRef]
- Ottelin, J.; Heinonen, J.; Junnila, S. New Energy Efficient Housing Has Reduced Carbon Footprints in Outer but Not in Inner Urban Areas. Environ. Sci. Technol. 2015, 49, 9574–9583. [Google Scholar] [CrossRef] [PubMed]
- Athanassiadis, A.; Bouillard, P.; Crawford, R.H.; Khan, A.Z. Towards a Dynamic Approach to Urban Metabolism: Tracing the Temporal Evolution of Brussels’ Urban Metabolism from 1970 to 2010. J. Ind. Ecol. 2016. [Google Scholar] [CrossRef]
- Reyna, J.L.; Chester, M.V. The Growth of Urban Building Stock: Unintended Lock-in and Embedded Environmental Effects: Urban Buildings, Lock-in, and Environmental Effects. J. Ind. Ecol. 2015, 19, 524–537. [Google Scholar] [CrossRef]
- Chabrol, M. Re-examining historical energy transitions and urban systems in Europe. Energy Res. Soc. Sci. 2016, 13, 194–201. [Google Scholar] [CrossRef]
- Liang, H.; Dong, L.; Tanikawa, H.; Zhang, N.; Gao, Z.; Luo, X. Feasibility of a new-generation nighttime light data for estimating in-use steel stock of buildings and civil engineering infrastructures. Resour. Conserv. Recycl. 2016, 123, 11–23. [Google Scholar] [CrossRef]
- Mayer, A.; Haas, W.; Wiedenhofer, D. How Countries’ Resource Use History Matters for Human Well-being—An Investigation of Global Patterns in Cumulative Material Flows from 1950 to 2010. Ecol. Econ. 2017, 134, 1–10. [Google Scholar] [CrossRef]
- UNEP; Schandl, H.; Fischer-Kowalski, M.; West, J.; Giljum, S.; Dittrich, M.; Eisenmenger, N.; Geschke, A.; Lieber, M.; Wieland, H.; et al. Global Material Flows and Resource Productivity. An Assessment Study of the UNEP International Resource Panel; United Nations Environment Programme: Paris, France, 2016. [Google Scholar]
- Haberl, H.; Krausmann, F. Changes in Population, Affluence, and Environmental Pressures during Industrialization: The Case of Austria 1830–1995. Popul. Environ. 2001, 23, 49–70. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Clarke, L.; Jiang, K.; Akimoto, K.; Babiker, M.; Blanford, G.; Fisher-Vanden, K.; Hourcade, J.-C.; Krey, V.; Kriegler, E.; Löschel, A.; et al. Assessing Transformation Pathways. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 413–511. [Google Scholar]
- IPCC. Climate Change 2014: Mitigation of Climate Change, Working Group III contribution to the IPCC Fifth Assessment Report (AR5), Summary for Policy Makers; Intergovernmental Panel for Climate Change; Cambridge University Press: Geneva, Switzerland; Cambridge, UK, 2014. [Google Scholar]
- Geels, F.W. Technological transitions as evolutionary reconfiguration processes: A multi-level perspective and a case-study. Res. Policy 2002, 31, 1257–1274. [Google Scholar] [CrossRef]
- Grin, J.; Rotmans, J.; Schot, J. Transitions to Sustainable Development: New Directions in the Study of Long Term transformative Change; Routledge: New York, NY, USA, 2010. [Google Scholar]
- Geels, F.W. Technological Transitions and System Innovation: A Co-Evolutionary and Socio-Technical Analysis; Edward Elgar: Cheltenham, UK; Northampton, MA, USA, 2005. [Google Scholar]
- Grübler, A.; Nakićenović, N.; Victor, D.G. Dynamics of energy technologies and global change. Energy Policy 1999, 27, 247–280. [Google Scholar] [CrossRef]
- Stirling, A. Transforming power: Social science and the politics of energy choices. Energy Res. Soc. Sci. 2014, 1, 83–95. [Google Scholar] [CrossRef]
- Grübler, A. Technology and Global Change; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Nakicenovic, N.; Grübler, A.; McDonald, A. Global Energy: Perspectives; Cambridge University Press: New York, NY, USA, 1998. [Google Scholar]
- Niewöhner, J. Infrastructures of Society (Anthropology of). In International Encyclopedia of the Social & Behavioral Sciences; Elsevier: Amsterdam, The Netherlands, 2015; pp. 119–125. [Google Scholar]
- Hertwich, E.G.; Gibon, T.; Bouman, E.A.; Arvesen, A.; Suh, S.; Heath, G.A.; Bergesen, J.D.; Ramirez, A.; Vega, M.I.; Shi, L. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl. Acad. Sci. USA 2015, 112, 6277–6282. [Google Scholar] [CrossRef] [PubMed]
- Falcone, P.M. Sustainability Transitions: A Survey of an Emerging Field of Research. Environ. Manag. Sustain. Dev. 2014, 3, 61–83. [Google Scholar] [CrossRef]
- Polanyi, K. The Great Transformation; Farrar and Reinhart: New York, NY, USA, 1944. [Google Scholar]
- Sovacool, B.K. How long will it take? Conceptualizing the temporal dynamics of energy transitions. Energy Res. Soc. Sci. 2016, 13, 202–215. [Google Scholar] [CrossRef]
- Fischer-Kowalski, M.; Haberl, H. Socioecological Transitions and Global Change. Trajectories of Social Metabolism and Land Use; Advances in Ecological Economics (series editor: Jeroen van den Bergh); Edward Elgar: Cheltenham, UK; Northampton, UK, 2007. [Google Scholar]
- Haberl, H.; Erb, K.-H.; Krausmann, F. Human Appropriation of Net Primary Production: Patterns, Trends, and Planetary Boundaries. Annu. Rev. Environ. Resour. 2014, 39, 363–391. [Google Scholar] [CrossRef]
- Lutz, W.; Sanderson, W.C.; Scherbov, S. The End of World Population Growth in the 21st Century: New Challenges for Human Capital Formation and Sustainable Development; Routledge: Oxfordshire, UK, 2013. [Google Scholar]
- Krausmann, F.; Weisz, H.; Eisenmenger, N. Transitions in Socio-Metabolic Regimes through Human History. In Social Ecology: Society-Nature Relations Across Time And Space; Haberl, H., Fischer-Kowalski, M., Krausmann, F., Winiwarter, V., Eds.; Springer: Cham, Switzerland, 2016; pp. 63–92. [Google Scholar]
- Sieferle, R.-P. The Subterranean Forest: Energy Systems and the Industrial Revolution; The White Horse Press: Cambridge, UK, 2001. [Google Scholar]
- Görg, C.; Brand, U.; Haberl, H.; Hummel, D.; Jahn, T.; Liehr, S. Challenges for Social-Ecological Transformations, Contributions from Social and Political Ecology. Sustainability 2017, in press. [Google Scholar]
- Winiwarter, V.; Schmid, M.; Haberl, H.; Singh, S.J. Why Legacies Matter: Merits of a Long-Term Perspective. In Social Ecology, Society-Nature Interaction across Space and Time; Haberl, H., Fischer-Kowalski, M., Krausmann, F., Winiwarter, V., Eds.; Springer International: Cham, Switzerland, 2016; pp. 149–168. [Google Scholar]
Empirical Content Generated | Questions Addressed | References |
---|---|---|
Analyses of long-term changes of material and energy flows on national and other levels | Changes in supply and demand of biophysical resources and related sustainability problems | [62,63,64,65,66,67] |
Assessment of material and energy flows in different regions | Cross-country comparison of resource demand related to production and consumption | [17,64,68,69,70] |
Establishment of physical trade data bases, including upstream requirements | Analysis of unequal exchange and problem shifting between regions | [71,72,73] |
Creation of databases of flows of specific chemical elements such as metals, carbon or plant nutrients | Analysis of specific problems such as eutrophication, toxic emissions, scarcity or climate change | [46,74,75,76,77,78] |
Indicators relating material or energy flows and land use, e.g., the ecological footprint or the human appropriation of net primary production | Evaluation of the role of land as a resource; Analysis of land-use competition; Data basis for analysis of land grabbing; Clarification of the role of land as limited resource | [79,80,81,82] |
Investigation of specific material cycles through socio-ecological systems, mainly for stocks and flows of metals | Materials management potentials in material cycles and potential future secondary resources and wastes | [31,83,84,85,86,87] |
Linking cycles of material stocks and flows through society to energy use and GHG implications | Investigation of stock accumulation patterns during economic development and subsequent GHG implications due to life cycle emissions | [26,28,88,89,90] |
Quantification of stocks and flows related with building dynamics and construction minerals at various scales | Recycling potentials in the building sector, resource demands for expansion | [32,91,92,93,94] |
Dynamic modeling of stocks for scenarios of stocks and flows | Forecasting of potentials for improved loop closing due to growing secondary resource supply from obsolete stocks | [29,75,86,89,91,95] |
Spatially explicit databases of in-use stocks for various scales | Spatial optimization of waste management strategies, investigations of urbanization dynamics | [27,96,97,98,99] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haberl, H.; Wiedenhofer, D.; Erb, K.-H.; Görg, C.; Krausmann, F. The Material Stock–Flow–Service Nexus: A New Approach for Tackling the Decoupling Conundrum. Sustainability 2017, 9, 1049. https://doi.org/10.3390/su9071049
Haberl H, Wiedenhofer D, Erb K-H, Görg C, Krausmann F. The Material Stock–Flow–Service Nexus: A New Approach for Tackling the Decoupling Conundrum. Sustainability. 2017; 9(7):1049. https://doi.org/10.3390/su9071049
Chicago/Turabian StyleHaberl, Helmut, Dominik Wiedenhofer, Karl-Heinz Erb, Christoph Görg, and Fridolin Krausmann. 2017. "The Material Stock–Flow–Service Nexus: A New Approach for Tackling the Decoupling Conundrum" Sustainability 9, no. 7: 1049. https://doi.org/10.3390/su9071049