The Potential of Animal By-Products in Food Systems: Production, Prospects and Challenges
Abstract
:1. Introduction
2. Classification of Animal By-Products
3. Consumption and Nutritional Composition of Edible By-Products
4. Factors Influencing the Yield and Quality of Edible and Inedible Animal By-Products
4.1. Edible By-Products
4.2. Effect of Thermal Processing and Preservation Methods on Quality of Edible By-Products
5. Utilization of Inedible By-Products
6. Industrial Usage of IEBPs
6.1. Biogas Industry
6.2. Cosmetic and Fabric Industry
6.3. Pharmaceutical Industry
7. Utilization of Blood and Dried Rumen Digesta as Feed Ingredient
8. Nutritional Benefits of Feeding Rumen Content to Livestock
8.1. Broilers and Layers
8.2. Sheep
8.3. Cattle
8.4. Lamb
8.5. Quail
8.6. Rabbit
8.7. Goat
9. Concerns Associated with the Use of Inedible By-Products
Heavy Metal Accumulation with the Use of Rumen Digesta
10. Conclusions and Future Perspectives
Supplementary Materials
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Byers, T.; Nestle, M.; Mctiernan, A.; Doyle, C.; Currie-Williams, A.; Gansler, T.; Thun, M. American Cancer Society Guidelines on Nutrition and Physical Activity for Cancer Prevention: Reducing the Risk of Cancer with Healthy Food Choices and Physical Activity. CA Cancer J. Clin. 2002, 52, 92–119. [Google Scholar] [CrossRef] [PubMed]
- Chikwanha, O.C.; Vahmani, P.; Muchenje, V.; Dugan, M.E.; Mapiye, C. Nutritional enhancement of sheep meat fatty acid profile for human health and wellbeing. Food Res. Int. 2017. [Google Scholar] [CrossRef]
- Sans, P.; Combris, P. World meat consumption patterns: An overview of the last fifty years (1961–2011). Meat Sci. 2015, 109, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.-C. Better Utilization of By-Products from the Meat Industry; Food and Fertilizer Technology Center: Taipei, Taiwan, 2002. [Google Scholar]
- Irshad, A.; Sharma, B.D. Abattoir By-Product Utilization for Sustainable Meat Industry: A Review. J. Anim. Prod. Adv. 2015, 6, 681–696. [Google Scholar]
- Fayemi, P.O.; Muchenje, V.; Yetim, H.; Abdulatef, A. Targeting the Pains of Food Insecurity and Malnutrition Among Internally Displaced Persons with Nutrient Synergy and Analgesics in Organ Meat. Food Res. Int. 2016. [Google Scholar] [CrossRef]
- Sheehy, J.; Elmido, A.; Centeno, G.; Pablico, P. Searching for New Plants for Climate Change. J. Agric. Meteorol. 2005, 60, 463–468. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Meat Consumption. 2014. Available online: http://www.fao.org/ag/againfo/themes/en/meat/background.html (accessed on 25 November 2014).
- Rosa, G.T.; Pires, C.C.; da Silva, J.H.S.; da Motta, O.S. Proporções E Coeficientes De Crescimento Dos Não-Componentes Da Carcaça De Cordeiros E Cordeirasemdiferentesmétodos De Alimentação. Revistabrasileira De Zootecnia 2002, 31, 2290–2298. [Google Scholar] [CrossRef]
- Ockerman, H.W.; Basu, L. By-Products. In Encyclopedia of Meat Sciences, 2nd ed.; Devine, C., Dikeman, M., Eds.; Elsevier Academic Press: Amsterdam, The Netherlands; London, UK, 2004; pp. 104–112. [Google Scholar]
- Elfaki, M.O.A.; Abdelatti, K.A.; Malik, H.E.E. Effect of Dietary Dried Rumen Content on Broiler Performance, Plasma Constituents and Carcass Characteristics. Glob. J. Anim. Sci. Res. 2014, 3, 264–270. [Google Scholar]
- Marti, D.L.; Johnson, R.J.; Mathews, K.H., Jr. Where’s The (Not) Meat? By-Products from Beef and Pork Production. J. Curr. Issues Glob. 2012, 4, 397. [Google Scholar]
- Pérez-Alvarez, J.A.; Sayas-Barberá, M.E.; Sendra, E.; Fernández-López, J. Color Measurements on Edible Animal By-Products and Muscle Based Foods. In Handbook of Analysis of Edible Animal By-Products; Nollet, L.M.L., Toldrá, F., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 87–102. [Google Scholar]
- Alexandre, G.; Liméa, L.; Nepos, A.; Fleury, J.; Lallo, C.; Archimede, H. The Offal Components and Carcass Measurements of Creole Kids of Guadeloupe under Various Feeding Regimes. Development 2010, 22, 5. [Google Scholar]
- Yibar, A.; Selcuk, O.; Senlik, B. Major Causes of Organ/Carcass Condemnation and Financial Loss Estimation in Animals Slaughtered At Two Abattoirs in Bursa Province, Turkey. Prev. Vet. Med. 2015, 118, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Gonulalan, Z.; Kose, A.; Yetim, H. Effects of Liquid Smoke on Quality Characteristics of Turkish Standard Smoked Beef Tongue. Meat Sci. 2004, 66, 165–170. [Google Scholar] [CrossRef]
- Nollet, L.M.; Toldrá, F. Handbook of Analysis of Edible Animal By-Products; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Toldrá, F.; Aristoy, M.C.; Mora, L.; Reig, M. Innovations in Value-Addition of Edible Meat By-Products. Meat Sci. 2012, 92, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Vanheerden, S.M.; Morey, L. Nutrient Content of South African C2 Beef Offal. J. Food Meas. Charact. 2014, 8, 249–258. [Google Scholar] [CrossRef]
- Masese, L.; Waweru, J. Knowledge, Attitudes and Practices Study on Offal Consumption among the Somali Population. Available online: http://www.ennonline.net/fex/41/knowledge (accessed on 9 May 2017).
- Abu-Salem, F.M.; Abou Arab, E.A. Chemical Properties, Microbiological Quality and Sensory Evaluation of Chicken and Duck Liver Paste (Foiegras). Grasas Y Aceites 2010, 61, 126–135. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Pateiro, M. Influence of Fat Content on Physico-Chemical and Oxidative Stability of Foal Liver Pâté. Meat Sci. 2013, 95, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; Han, M.; Kang, Z.; Zhao, Y.; Xu, X.; Zhu, Y. Evaluation of Protein Structural Changes and Water Mobility in Chicken Liver Paste Batters Prepared With Plant Oil Substituting Pork Back-Fat Combined With Pre-Emulsification. Food Chem. 2016, 196, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.K.; Rigby, D.; Burton, M.; Millman, C.; Williams, N.J.; Jones, T.R.; Wigley, P.; O’Brien, S.J.; Cross, P.; Consortium, E. Restaurant Cooking Trends and Increased Risk for Campylobacter Infection. Emerg. Infect. Dis. 2016, 22, 1208. [Google Scholar] [CrossRef] [PubMed]
- Ercan, P.; El, S.N. Changes in Content of Coenzyme Q10 in Beef Muscle, Beef Liver and Beef Heart with Cooking and In Vitro Digestion. J. Food Compos. Anal. 2011, 24, 1136–1140. [Google Scholar] [CrossRef]
- Li, R.R.; Yu, Q.L.; Han, L.; Cao, H. Nutritional Characteristics and Active Components in Liver from Wagyu × Qinchuan Cattle. Korean J. Food Sci. Anim. Resour. 2014, 32, 214. [Google Scholar] [CrossRef] [PubMed]
- Chan, W. (Ed.) Meat Poultry and Game. In Fifth Supplement to the Fifth Edition of McCance and Widdowson’s. The Composition of Foods; Royal Society of Chemistry: London, UK, 1995. [Google Scholar]
- Enser, M.; Hallett, K.G.; Hewett, B.; Fursey, G.A.J.; Wood, J.D.; Harrington, G. The Polyunsaturated Fatty Acid Composition of Beef and Lamb Liver. Meat Sci. 1998, 49, 321–327. [Google Scholar] [CrossRef]
- Seong, P.N.; Park, K.M.; Cho, S.H.; Kang, S.M.; Kang, G.H.; Park, B.Y.; Moon, S.S.; Ba, H.V. Characterization of Edible Pork By-Products By Means of Yield and Nutritional Composition. Korean J. Food Sci. Anim. Resour. 2014, 34, 297. [Google Scholar] [CrossRef] [PubMed]
- Zouari, N.; Fakhfakh, N.; Amara-Dali, W.B.; Sellami, M.; Msaddak, L.; Ayadi, M.A. Turkey Liver: Physicochemical Characteristics and Functional Properties of Protein Fractions. Food Bioprod. Process. 2011, 89, 142–148. [Google Scholar] [CrossRef]
- Steen, L.; Glorieux, S.; Goemaere, O.; Brijs, K.; Paelinck, H.; Foubert, I.; Fraeye, I. Functional Properties of Pork Liver Protein Fractions. Food Bioprocess Technol. 2016, 9, 970–980. [Google Scholar] [CrossRef]
- Purchas, R.W.; Aungsupakorn, R. Further Investigations into the Relationship between Ultimate Ph and Tenderness for Beef Samples from Bulls and Steers. Meat Sci. 1993, 34, 163–178. [Google Scholar] [CrossRef]
- Miller, J.L. Iron Deficiency Anemia: A Common and Curable Disease. Cold Spring Harb. Perspect. Med. 2013, 3, 011866. [Google Scholar] [CrossRef] [PubMed]
- Gaudy, N.; Landis, J. Effect of Different Heat Treatments of Some Carcasses Parts on the Total Amino Acids Content and that in Enzyme Hydrolysates. Mitteilungen-aus-dem-Gebiete-der-Lebensmitteluntersuchung-und-Hyg. 1973, 64, 133–138. [Google Scholar]
- Arafa, A.S. Pickled Chicken Gizzards 1. Acceptability and Proximate Analysis. Poult. Sci. 1977, 56, 1014–1017. [Google Scholar] [CrossRef]
- Daniel, I.E. Proximate Composition and Levels of Trace Metals in Chicken Meat Consumed in Uyo Metropolis, Akwaibom State. Ann. Food Sci. Technol. 2015, 16, 262–266. [Google Scholar]
- Byun, M.W.; Lee, J.W.; Jo, C.; Yook, H.S. Quality Properties of Sausage Made With Gamma-Irradiated Natural Pork and Lamb Casing. Meat Sci. 2001, 59, 223–228. [Google Scholar] [CrossRef]
- Nakyinsige, K.; Man, Y.B.C.; Sazili, A.Q. Halal Authenticity Issues in Meat and Meat Products. Meat Sci. 2012, 91, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Madruga, M.S.; Dos Santos, M.N.; Costa, R.G.; De Medeiros, A.N.; Do Egypto, R.Q.; Schuller, A.R.; Albuquerque, C.L.C.; Galvão, M.S.; Cavalcanti, R.N.; Campos, R.A. Fat Components from Precooked “Buchada”: An Edible Goat Meat By-Product Componentes De La Grasa De “Buchada” Precocida: Un Subproducto Comestible De La Carne De Cabra. CYTA J. Food 2007, 5, 265–270. [Google Scholar] [CrossRef]
- Tremblay, S. The Advantages of Eating Cow Tongue. 2011. Available online: http://www.livestrong.com/article/441526-how-to-cook-with-lamb-tongue/ (accessed on 18 July 2016).
- Ranken, M.D. Handbook of Meat Product Technology; Blackwell Science: Oxford, UK, 2000. [Google Scholar]
- Holman, R.T.; Hofstetter, H.H. The Fatty Acid Composition of the Lipids from Bovine and Porcine Reproductive Tissues. J. Am. Oil Chem. Soc. 1965, 42, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Pucciarelli, D.L.; Friesen, C.A.; Schroeder, A.L. New Culinary Uses for Pork Testicles from Immunologically Castrated Male Pigs. FASEB J. 2012, 26, 636–646. [Google Scholar]
- Rotenberg, R. Udders, Penises, and Testicles. Ethnology 2008, 47, 123–128. [Google Scholar]
- Florek, M.; Litwińczuk, Z.; Skałecki, P.; Kędzierska-Matysek, M.; Grodzicki, T. Chemical Composition and Inherent Properties of Offal from Calves Maintained Under Two Production Systems. Meat Sci. 2012, 90, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.C.; Laubscher, L.L.; Leisegang, K. Nutritional Value of Cooked Offal Derived from Free-Range Rams Reared in South Africa. Meat Sci. 2013, 93, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Puschner, B.; Thurmond, M.C.; Choi, Y.K. Influence of Age and Production Type on Liver Copper Concentrations in Calves. J. Vet. Diagn. Investig. 2004, 16, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Zawacka, M.; Murawska, D.; Gesek, M. The Effect of Age and Castration on the Growth Rate, Blood Lipid Profile, Liver Histology and Feed Conversion in Green-Legged Partridge Cockerels and Capons. Animal 2016, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Abdelmageed, M.E.I.; Sulieman, A.M.E.; Abdalla, H.O.; Salih, G.E. Effects of Incorporating Chicken’s Gizzards and Abdominal Fat in the Quality of Burger Meat Product. J. Microbiol. Res. 2014, 2, 68–71. [Google Scholar]
- Meatupdate, Storage Life of Meat. 2002. Available online: http://www.meatupdate.csiro.au/storage-life-of-meat.pdf (accessed on 18 May 2016).
- Cohen, N.; Ennaji, H.; Hassa, M.; Karib, H. The Bacterial Quality of Red Meat and Offal in Casablanca (Morocco). Mol. Nutr. Food Res. 2006, 50, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Brasil, L.; Queiroz, A.; Silva, J.; Bezerra, T.; Arcanjo, N.; Magnani, M.; Souza, E.; Madruga, M. Microbiological and Nutritional Quality of the Goat Meat By-Product “Sarapatel”. Molecules 2014, 19, 1047–1059. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Lee, Y.J. The Bacterial Quality and Prevalence of Foodborne Pathogens of Edible Offals from Slaughterhouses in Gyeongsangbuk-Do. J. Prev. Vet. Med. 2016, 40, 53–58. [Google Scholar] [CrossRef]
- Kijlstra, A.; Jongert, E. Control of the Risk of Human Toxoplasmosis Transmitted By Meat. Int. J. Parasitol. 2008, 38, 1359–1370. [Google Scholar] [CrossRef] [PubMed]
- Falowo, A.B.; Muchenje, V.; Hugo, A. Accepted Author Version of the Manuscript: Effect of Sous-Vide Technique on Fatty Acid and Mineral Compositions of Beef and Liver from Bonsmara and Non-Descript Cattle. Ann. Anim. Sci. 2017, 17, 565–580. [Google Scholar] [CrossRef]
- Sharma, H.; Giriprasad, R.; Goswami, M. Animal Fat-Processing and Its Quality Control. J. Food Process. Technol. 2013, 4, 252. [Google Scholar]
- Department of Agriculture, Forestry and Fisheries (DAFF). A Profile of the South African Hides, Skins and Leather Market Value Chain. 2012. Available online: http://www.nda.agric.za/docs/amcp/skins2012.pdf (accessed on 28 August 2016).
- Aberle, E.D.; Forrest, J.C.; Gerrard, D.E.; Mills, E.W.; Hedrick, H.B.; Judge, M.D.; Merkel, R.A. Conversion of Muscle to Meat and Development of Meat Quality. In Principles of Meat Science, 4th ed.; Kendall and Hunt: Dubuque, IA, USA, 2001; pp. 83–107. [Google Scholar]
- Costa-Neto, E.M. Animal-Based Medicines: Biological Prospection and the Sustainable Use of Zootherapeutic Resources. An. Acad. Bras. Ciênc. 2005, 77, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Wismer-Pedersen, J. Use of Haemoglobin in Foods: A Review. Meat Sci. 1988, 24, 31–45. [Google Scholar] [CrossRef]
- Bah, C.S.; Bekhit, A.E.D.A.; Carne, A.; Mcconnell, M.A. Slaughterhouse Blood: An Emerging Source of Bioactive Compounds. Compr. Rev. Food Sci. Food Saf. 2013, 12, 314–331. [Google Scholar] [CrossRef]
- Davidson, A. The Oxford Companion to Food, 3rd ed.; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Ofori, J.A.; Hsieh, Y.H.P. Issues Related to the Use of Blood in Food and Animal Feed. Crit. Rev. Food Sci. Nutr. 2014, 54, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.H.P.; Ofori, J.A. Blood-Derived Products for Human Consumption. Revel. Sci. 2011, 1, 14–21. [Google Scholar]
- Bah, C.S.; Bekhit, A.E.D.A.; Carne, A.; Mcconnell, M.A. Composition and Biological Activities of Slaughterhouse Blood from Red Deer, Sheep, Pig and Cattle. J. Sci. Food Agric. 2016, 96, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Möller, K. Assessment of Alternative Phosphorus Fertilizers for Organic Farming: Meat and Bone Meal. Available online: https://shop.fibl.org/chde/mwdownloads/download/link/id/738/ (accessed on 20 February 2017).
- Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S. Utilization of Byproducts and Waste Materials from Meat, Poultry and Fish Processing Industries: A Review. J. Food Sci. Technol. 2012, 49, 278–293. [Google Scholar] [CrossRef] [PubMed]
- Deivasigamani, B.; Alagappan, K.M. Industrial Application of Keratinase and Soluble Proteins from Feather Keratins. J. Environ. Biol. 2008, 29, 933–936. [Google Scholar] [PubMed]
- Dios, D. Fishmeal Replacement with Feather-Enzymatic Hydrolyzates Co-Extruded with Soya-Bean Meal in Practical Diets for the Pacific White Shrimp (Litopenaeus vannamei). Aquac. Nutr. 2001, 19, 143–151. [Google Scholar]
- Davidson, I. Diverse Uses of Feathers With Emphasis on Diagnosis of Avian Viral Infections and Vaccine Virus Monitoring. Revistabrasileira De Ciênciaavícola 2009, 11, 139–148. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, A. Sustainable Management of Keratin Waste Biomass: Applications and Future Perspectives. Braz. Arch. Biol. Technol. 2016, 59, e16150684. [Google Scholar] [CrossRef]
- Cuadros, F.; López-Rodríguez, F.; Ruiz-Celma, A.; Rubiales, F.; González-González, A. Recycling, Reuse and Energetic Valuation of Meat Industry Wastes in Extremadura (Spain). Resour. Conserv. Recycl. 2011, 55, 393–399. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Ladas, D. Meat Waste Treatment Methods and Potential Uses. Int. J. Food Sci. Technol. 2008, 43, 543–559. [Google Scholar] [CrossRef]
- Ur Rahman, U.; Sahar, A.; Khan, M.A. Recovery and Utilization of Effluents from Meat Processing Industries. Food Res. Int. 2014, 65, 322–328. [Google Scholar] [CrossRef]
- Virmond, E.; Schacker, R.L.; Albrecht, W.; Althoff, C.A.; De Souza, M.; Moreira, R.F.; José, H.J. Organic Solid Waste Originating from the Meat Processing Industry as an Alternative Energy Source. Energy 2011, 36, 3897–3906. [Google Scholar] [CrossRef]
- Benjakul, S.; Oungbho, K.; Visessanguan, W.; Thiansilakul, Y.; Roytrakul, S. Characteristics of Gelatin from the Skins of Bigeye Snapper, Priacanthustayenus and Priacanthusmacracanthus. Food Chem. 2009, 116, 445–451. [Google Scholar] [CrossRef]
- Tesfaye, J.; Dubie, T.; Terefe, G. Evaluation of Hide and Skin Market Chains in and around Shashemene Town. Scientia 2015, 10, 119–126. [Google Scholar]
- Hekal, S.A. Histological Study of the Skin and Leather Characteristics in Two Types of Arabian Camels (Camelus dromedarius). J. Am. Sci. 2014, 10, 41–48. [Google Scholar]
- Department of Agriculture Forestry and Fisheries (DAFF). A Profile of the South African Hides. Skins and Leather Market Value Chain. 2011. Available online: http://www.daff.gov.za/docs/amcp/hidesskinamvcp2010-11.pdf (accessed on 27 November 2016).
- Omole, D.O.; Ogbiye, A.S. An Evaluation of Slaughterhouse Wastes in South-West Nigeria. Am. J. Environ. Prot. 2013, 2, 85–89. [Google Scholar] [CrossRef]
- Karthikeyan, R.; Balaji, S.; Sehgal, P.K. Industrial Applications of Keratins—A Review. Am. J. Sci. Ind. Res. 2007, 66, 710. [Google Scholar]
- Gue, D.E. Guidelines for Livestock Marketing and Processing Component in Bank Funded Projects; World Bank: Washington, DC, USA, 1998. [Google Scholar]
- Nhari, R.M.H.R.; Ismail, A.; Man, C.; Yaakob, B. Analytical Methods for Gelatin Differentiation from Bovine and Porcine Origins and Food Products. J. Food Sci. 2012, 77, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Quality Meat Scotland (QMS). Recovering Value from the 5th Quarter and Reducing Waste. 2010. Available online: www.qmscotland.co.uk/sites/default/files/Added+Value+Topic+3+Edible+Offals.pdf (accessed on 17 January 2017).
- Hyun, C.K.; Shin, H.K. Utilization of Bovine Blood Plasma Proteins for the Production of Angiotensin I Converting Enzyme Inhibitory Peptides. Process Biochem. 2000, 36, 65–71. [Google Scholar] [CrossRef]
- Bhaskar, N.; Modi, V.K.; Govindaraju, K.; Radha, C.; Lalitha, R.G. Utilization of Meat Industry By-Products: Protein Hydrolysate from Sheep Visceral Mass. Bioresour. Technol. 2007, 98, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Deveau, I.; Dabbah, R.; Sutton, S. The USP Perspective to Minimize the Potential Risk of TSE Infectivity in Bovine-Derived Article Used in the Manufacture of Medical Products. Pharmacop. Forum 2004, 30, 1911–1921. [Google Scholar]
- Scobie, D.R.; Grosvenor, A.J.; Bray, A.R.; Tandon, S.; Meade, W.J.; Cooper, A.M.B.A. Review of Wool Fibre Variation Across the Body of Sheep and the Effects on Wool Processing. Small Rumin. Res. 2015, 133, 43–53. [Google Scholar] [CrossRef]
- Patrucco, A.; Cristofaro, F.; Simionati, M.; Zoccola, M.; Bruni, G.; Fassina, L.; Visai, L.; Magenes, L.; Mossotti, R.; Montarsolo, A.; et al. Wool Fibril Sponges with Perspective Biomedical Applications. Mater. Sci. Eng. 2016, 61, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Phua, S.H.; Cullen, N.G.; Dodds, K.G.; Scobie, D.R.; Bray, A.R. An Ovine Quantitative Trait Locus Affecting Fibre Opacity in Wool. Small Rumin. Res. 2015, 130, 122–126. [Google Scholar] [CrossRef]
- Liu, H.; Ning, W.; Cheng, P.; Zhang, J.; Wang, Y.; Zhang, C. Evaluation of Animal Hairs-Based Activated Carbon for Sorption of Norfloxacin and Acetaminophen By Comparing With Cattail Fiber-Based Activated Carbon. J. Anal. Appl. Pyrolysis 2013, 101, 156–165. [Google Scholar] [CrossRef]
- Amata, I.A. The Use of Non-Conventional Feed Resources (NCFR) for Livestock Feeding in the Tropics: A Review. J. Glob. Biosci. 2014, 3, 604–613. [Google Scholar]
- Adedipe, N.O.; Sridhar, M.K.C.; Verma, M.; Wagner, A. Waste Management, Processing, and Detoxification. Ecosyst. Hum. Well-Being Policy Responses 2005, 3, 313–334. [Google Scholar]
- Togun, V.A.; Farinu, G.O.; Ojebiyi, O.O.; Awotunde, A.I. Effect of Replacing Maize with a Mixture of Rumen Content and Blood Meal on the Performances of Growing Rabbits: Initial Study with Mash Feed. World Rabbit Sci. 2010, 17, 21–26. [Google Scholar] [CrossRef]
- Mondal, S.; Haldar, S.; Samanta, I.; Samanta, G.; Ghosh, T.K. Exploring Nutritive Potential of Undigested Rumen Contents as an Ingredient in Feeding of Goats. Anim. Nutr. Feed Technol. 2013, 13, 79–88. [Google Scholar]
- Osman, A.A.; Elimam, M.E. Processed Animal Waste as a Feed for Sudanese Desert Lamb. Int. J. Adv. Multidiscip. Res. 2015, 2, 12–17. [Google Scholar]
- Ørskov, E.R. Animals in Natural Interaction with Soil, Plants, and People in Asia. Dev. Pract. 2007, 17, 272–278. [Google Scholar] [CrossRef]
- Yitbarek, M.B.; Mersso, B.T.; Wosen, A.M. Effect of Dried Blood-Rumen Content Mixture (DBRCM) on Feed Intake, Body Weight Gain, Feed Conversion Ratio and Mortality Rate of SASSO C44 Broiler Chicks. J. Livest. Sci. 2016, 7, 139–149. [Google Scholar]
- Dairo, F.A.S.; Aina, O.O.; Asafa, A.R. Performance Evaluation of Growing Rabbits Fed Varying Levels of Rumen Content and Blood Rumen Content Mixture. Niger. J. Anim. Prod. 2005, 32, 67–72. [Google Scholar]
- Adeniji, A.A.; Balogun, O.O. Evaluation of Blood-Rumen Content Mixture in the Diets of Starter Chicks. Niger. J. Anim. Prod. 2001, 28, 153–157. [Google Scholar]
- Adeniji, A.A.; Balogun, O.O. Utilisation of Flavour Treated Blood-Rumen Content Mixture in the Diets of Laying Hens. Niger. J. Anim. Prod. 2002, 29, 34–39. [Google Scholar]
- Cherdthong, A.; Wanapat, M.; Saenkamsorn, A.; Waraphila, N.; Khota, W.; Rakwongrit, D.; Anantasook, N.; Gunun, N. Effects of Replacing Soybean Meal with Dried Rumen Digesta on Feed Intake, Digestibility of Nutrients, Rumen Fermentation and Nitrogen Use Efficiency in Thai Cattle Fed on Rice Straw. Livest. Sci. 2014, 169, 71–77. [Google Scholar] [CrossRef]
- Mishra, J.; Abraham, R.J.; Rao, V.A.; Rajini, R.A.; Mishra, B.P.; Sarangi, N.R. Chemical Composition of Solar Dried Blood and the Ruminal Content and Its Effect on Performance of Japanese Quails. Vet. World 2015, 8, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Makinde, O.A.; Sonaiya, E.B. Determination of Water, Blood and Rumen Fluid Absorbencies of Some Fibrous Feedstuffs. Livest. Res. Rural Dev. 2007, 19, 156. [Google Scholar]
- Agbabiaka, L.A.; Madubuike, F.N.; Amadi, S.A. Studies on Nutrients and Anti-Nutrients of Rumen Digesta from Three Most Domesticated Ruminants in Nigeria. Pak. J. Nutr. 2012, 11, 580. [Google Scholar]
- Wilson, D. Methods of Disposal of Paunch Contents with Emphasis on Composting. In Inedible Meat By-Products; Pearson, A.M., Dutson, T.R., Eds.; Springer: Dordrecht, The Netherlands, 1992; pp. 265–281. [Google Scholar]
- Colette, N.T.; Fotsa, J.C.; Etchu, K.A.; Ndamukong, K.J. Effects of Dried Rumen Content and Castor Oil Seed Cake Diets on Haematological Indices, Serum Biochemistry and Organoleptic Properties of Broiler Birds. Energy 2013, 43, 57–58. [Google Scholar]
- Said, I.F.; Elkhair, R.M.A.; Shawky, S.M.; Abdelrahman, H.A.; Elfeki, M.A. Impact of Feeding Dried Rumen Content and Olive Pulp With Or Without Enzymes on Growth Performance, Carcass Characteristics and Some Blood Parameters of Molar Ducks. Int. J. Agric. Innov. Res. 2015, 4, 2319–2473. [Google Scholar]
- Uchegbu, M.C.; Etuk, E.B.; Udedibie, A.B.I. Evaluation of Performance, Organ Characteristics and Economic Analysis of Broiler Finisher Fed Dried Rumen Digesta. Int. J. Poult. Sci. 2006, 5, 1116–1118. [Google Scholar]
- Abouheif, M.A.; Kraidees, M.S.; Al-Selbood, B.A. The Utilization of Rumen Content-Barley Meal in Diets of Growing Lambs. Asian-Aust. J. Anim. Sci. 1999, 12, 1234–1240. [Google Scholar] [CrossRef]
- Esonu, B.O.; Azubuike, J.C.; Udedibie, A.B.I.; Emenalom, O.O.; Iwuji, T.C.; Odoemenam, V. Evaluation of the Nutritive Value of Mixture of Fermented Bovine Blood and Rumen Digesta for Broiler Finisher. J. Nat. Sci. Res. 2011, 4, 2224–3186. [Google Scholar]
- Makinde, O.; Sonaiya, B.; Adeyeye, S. Conversion of Abattoir Wastes into Livestock Feed: Chemical Composition of Sun-Dried Rumen Content Blood Meal and Its Effect on Performance of Broiler Chickens. Int. J. Poult. Sci. 2008, 12, 875–882. [Google Scholar]
- Gebrehawariat, E.; Animut, G.; Urge, M.; Mekasha, Y. Sun-Dried Bovine Rumen Content (SDRC) as an Ingredient of A Ration for White Leghorn Layers. East Afr. J. Sci. 2016, 10, 29–40. [Google Scholar]
- Onu, P.N.; Otuma, M.O.; Odukwe, C.A.; Aniebo, A.O. Effects of Different Levels of Bovine Blood/Rumen Content Mixture on Productive Performance, Carcass Characteristics and Economics of Production of Finisher Broilers. Int. J. Food Agric. Vet. Sci. 2011, 1, 10–16. [Google Scholar]
- Oluwafemi, R.A.; Iliyasu, A. Effects of Graded Levels of Rumen Digesta Based Diets With or Without Enzyme Supplementation on the Blood Chemistry of Weaner Rabbits. Int. J. Vet. Sci. Anim. Husb. 2016, 1, 43–46. [Google Scholar]
- Mohammed, G.; Igwebuike, J.U.; Alade, N.K. Performance of Growing Rabbits Fed Graded Levels of Bovine Blood-Rumen Content Mixture. Agric. Biol. J. N. Am. 2011, 2, 720–723. [Google Scholar] [CrossRef]
- Abbator, F.I.; Kolo, U.M.; Taimako, A.R.; Kwaghe, A.L. Performance of Goats Fed Bovine Rumen Content and Wheat Offal as Supplement to Groundnut Haulms. Glob. J. Agric. Res. 2016, 4, 9–16. [Google Scholar]
- Khattab, H.M.; Abdelmawla, S.M.; Singer, A.M. Nutritional Evaluation of Rumen Contents as a Slaughterhouse Waste in Sheep Rations. Egypt. J. Anim. Prod. 1996, 33, 173. [Google Scholar]
- Bhattacharya, A.N.; Taylor, J.C. Recycling Animal Waste as a Feedstuff: A Review. J. Anim. Sci. 1975, 41, 1438–1457. [Google Scholar] [CrossRef]
- Sapkota, A.R.; Lefferts, L.Y.; Mckenzie, S.; Walker, P. What Do We Feed to Food-Production Animals? A Review of Animal Feed Ingredients and Their Potential Impacts on Human Health. Environ. Health Perspect. 2007, 115, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Onodera, T.; Kim, C.K. BSE Situation and Establishment of Food Safety Commission in Japan. J. Vet. Sci. 2006, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dormont, D. Prions, BSE and Food. Int. J. Food Microbiol. 2002, 78, 181–189. [Google Scholar] [CrossRef]
- Doyle, M.E. Bovine Spongiform Encephalopathy: A Review of the Scientific Literature; Food Research Institute, University of Wisconsin: Madison, WI, USA, 2002. [Google Scholar]
- Zafar, S.; Von Ahsen, N.; Oellerich, M.; Zerr, I.; Schulz-Schaeffer, W.J.; Armstrong, V.W.; Asif, A.R. Proteomics Approach to Identify the Interacting Partners of Cellular Prion Protein and Characterization of Rab7a Interaction in Neuronal Cells. J. Proteom. Res. 2011, 10, 3123–3135. [Google Scholar] [CrossRef] [PubMed]
- Glatzel, M.; Aguzzi, A. Prpc Expression in the Peripheral Nervous System Is a Determinant of Prion Neuroinvasion. J. Gen. Virol. 2000, 81, 2813–2821. [Google Scholar] [CrossRef] [PubMed]
- Kaatz, M.; Fast, C.; Ziegler, U.; Balkema-Buschmann, A.; Hammerschmidt, B.; Keller, M.; Oelschlegel, A.A.; Mcintyre, L.; Groschup, M.H. Spread of Classic BSE Prions from the Gut Via the Peripheral Nervous System to the Brain. Am. J. Pathol. 2012, 181, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Collinge, J. Prion Diseases of Humans and Animals: Their Causes and Molecular Basis. Ann. Rev. Neurosci. 2001, 24, 519–550. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.F.; Collinge, J. Subclinical Prion Infection in Humans and Animals. Br. Med. Bull. 2003, 66, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Houston, F.; Goldmann, W.; Chong, A.; Jeffrey, M.; González, L.; Foster, J.; Parnham, D.; Hunter, N. Prion Diseases: BSE in Sheep Bred for Resistance to Infection. Nature 2003, 423, 498. [Google Scholar] [CrossRef] [PubMed]
- Collinge, J. Molecular Neurology of Prion Disease. J. Neurol. Neurosurg. Psychiatry 2005, 76, 906–919. [Google Scholar] [CrossRef] [PubMed]
- Mathiason, C.K. Silent Prions and Covert Prion Transmission. Plospathog 2015, 11, 249. [Google Scholar] [CrossRef] [PubMed]
- Momcilovic, D.; Rasooly, A. Detection and Analysis of Animal Materials in Food and Feed. J. Food Prot. 2000, 63, 1602–1609. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Health and Human Services. Substances Prohibited from Use in Animal Food or Feed; Final Rule. Fed. Regist. 2008, 73, 22720–22758. [Google Scholar]
- Arduini, I.; Masoni, A.; Mariotti, M.; Ercoli, L. Low Cadmium Application Increase Miscanthus Growth and Cadmium Translocation. Environ. Exp. Bot. 2004, 52, 89–100. [Google Scholar] [CrossRef]
- Mantovi, P.; Bonazzi, G.; Maestri, E.; Marmiroli, N. Accumulation of Copper and Zinc from Liquid Manure in Agricultural Soils and Crop Plants. Plant Soil 2003, 250, 249–257. [Google Scholar] [CrossRef]
- Taggart, M.A.; Reglero, M.M.; Camarero, P.R.; Mateo, R. Should Legislation Regarding Maximum Pb and Cd Levels in Human Food Also Cover Large Game Meat? Environ. Int. 2011, 37, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Schrenk, D. Chemical Contamination of Red Meat. In Chemical Contaminants and Residues in Food; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2012; pp. 447–468. [Google Scholar]
- Nicholson, F.A.; Chambers, B.J.; Williams, J.R.; Unwin, R.J. Heavy Metal Contents of Livestock Feeds and Animal Manures in England and Wales. Bioresour. Technol. 1999, 70, 23–31. [Google Scholar] [CrossRef]
- Loutfy, N.; Fuerhacker, M.; Tundo, P.; Raccanelli, S.; El Dien, A.G.; Ahmed, M.T. Dietary Intake of Dioxins and Dioxin-Like Pcbs, Due to the Consumption of Dairy Products, Fish/Seafood and Meat from Ismailia City, Egypt. Sci. Total Environ. 2006, 370, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Demirezen, D.; Uruç, K. Comparative Study of Trace Elements in Certain Fish, Meat and Meat Products. Meat Sci. 2006, 74, 255–260. [Google Scholar] [CrossRef] [PubMed]
Animal By-Products | Reprocessed Products | Major Uses | References |
---|---|---|---|
Hides and Skin | Cured hides & skin. | Leather clothes, belts, car and household upholsteries, bags, footwear, drums, luggage, wallets, sports goods, gelatine etc. | [5,67,74,77,78,79] |
Leather & Textiles | |||
Hoof and horns | Hoof & horn meal | Combs, buttons, plates, souvenirs, | [67,80,81] |
Gelatin and keratin extraction | Fertilizer, Collagen, glue, gelled food products, foaming in fire extinguishers | ||
Bone | Extraction of collagen | Cutlery handles, Shortening, bone gelatine, bone meal, Collagen | [5,74,82,83] |
Bone meal | |||
Blood | Pharmaceutical products | Catgut, tennis strips, blood sausages or pudding, fertilisers, animal feeds, emulsifier and stabilizer | [5,61,74,79,84,85] |
Blood meal | |||
Intestine | Sausage casings | Sports guts, musical strings, prosthetic materials, collagen sheets, burn dressing, strings for musical instruments, sausage casings, human food, pet food, meat meal, tallow, casings | [5,12,18,84,86] |
Surgical sutures | |||
Musical instruments | |||
Organs & Glands | Pharmaceuticals | Heart stimulant, heparin, corticotrophins, enzymes, steroids, oestrogen, progesterone, insulin, trypsin, parathyroid hormone | [5,12,58,67,74,87] |
Medicinal | |||
Xenotransplantation | |||
Hair/Wool | Textiles | Cloths or woven fabrics, mattress, keratin, carpets, knitted apparels, insulators | [88,89,90,91] |
Extraction of keratin |
Country | Animal Type | DM % | CP % | EE % | CF % | ASH % | NFE % | NDF % | ADF % | CA % | P % | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cameroon | Broiler | 92.44 | 15.21 | 7.81 | 41.84 | 9.25 | - | - | - | - | - | [107] |
Egypt | Duck | 91.3 | 18.53 | 7.81 | 28.28 | 9.25 | 35.97 | - | - | 0.7 | 0.69 | [108] |
India A | Quail | 92.64 | 18.26 | 3.6 | 24.99 | 14.47 | - | - | - | - | - | [103] |
India B | Goat | 90.5 | 12.8 | - | - | - | - | 78.7 | −54.5 | - | - | [95] |
Nigeria A | Rabbit | 91.8 | 11.38 | 6.1 | 24 | 8.11 | 42.21 | - | - | - | - | [94] |
Nigeria B | Broiler | 81.8 | 18.52 | 8.79 | 15.3 | 7.6 | 38.39 | - | - | - | - | [109] |
Saudi Arabia | Lamb | 13.36 | 14.2 | 1.7 | - | 11.6 | - | 59.2 | 36.7 | - | - | [110] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alao, B.O.; Falowo, A.B.; Chulayo, A.; Muchenje, V. The Potential of Animal By-Products in Food Systems: Production, Prospects and Challenges. Sustainability 2017, 9, 1089. https://doi.org/10.3390/su9071089
Alao BO, Falowo AB, Chulayo A, Muchenje V. The Potential of Animal By-Products in Food Systems: Production, Prospects and Challenges. Sustainability. 2017; 9(7):1089. https://doi.org/10.3390/su9071089
Chicago/Turabian StyleAlao, Babatunde O., Andrew B. Falowo, Amanda Chulayo, and Voster Muchenje. 2017. "The Potential of Animal By-Products in Food Systems: Production, Prospects and Challenges" Sustainability 9, no. 7: 1089. https://doi.org/10.3390/su9071089
APA StyleAlao, B. O., Falowo, A. B., Chulayo, A., & Muchenje, V. (2017). The Potential of Animal By-Products in Food Systems: Production, Prospects and Challenges. Sustainability, 9(7), 1089. https://doi.org/10.3390/su9071089