Comparative Performance of Various Disc-Type Furrow Openers in No-Till Paddy Field Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area Description
2.2. Measurements of Soil Properties
2.3. Specifications ofTest Rigand Disc Furrow Openers
2.4. Test Procedure
2.5. Data Recording
2.6. Data Analysis
3. Results and Discussion
3.1. Draft Force (Fh) Requirement of Furrow Openers
3.2. Vertical Force Performance (Fv) of Furrow Openers
3.3. Straw Cutting Efficiency of Various Disc-Type Furrow Openers
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.A.; Foster, B.L.; Ramspott, M.E.; Price, K.P. Effects of cultivation history and current grassland management on soil quality in northeastern Kansas. J. Soil Water Conserv. 2006, 61, 1–10. [Google Scholar]
- Farooq, M.; Flower, K.C.; Jabran, K.; Wahid, A.; Siddique, K.H.M. Crop yield and weed management in rainfed conservation agriculture. Soil Tillage Res. 2011, 117, 172–183. [Google Scholar] [CrossRef]
- Lal, R. Tillage effects on soil degradation, soil resilience, soil quality, and sustainability. Soil Tillage Res. 1993, 27, 1–8. [Google Scholar] [CrossRef]
- Marcela, Q. Effect of Conservation Tillage in Soil Carbon Sequestration and Net Revenues of Potato-Based Rotations in the Colombian Andes. Master’s Thesis, University of Florida, Gainesville, FL, USA, 2009. [Google Scholar]
- Bianchini, A.; Magalhães, P.S.G. Evaluation of coulters for cutting sugar cane residue in a soil bin. Biosyst. Eng. 2008, 100, 370–375. [Google Scholar] [CrossRef]
- Farooq, M.; Nawaz, A. Weed dynamics and productivity of wheat in conventional and conservation rice-based cropping systems. Soil Tillage Res. 2014, 141, 1–9. [Google Scholar] [CrossRef]
- Lahmar, R. Adoption of conservation agriculture in Europe. Land Use Policy 2010, 27, 4–10. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Q.; Lü, Y.; Sun, X.; Jia, S.; Zhang, X.; Liang, W. Conservation tillage positively influences the microflora and microfauna in the black soil of Northeast China. Soil Tillage Res. 2015, 149, 46–52. [Google Scholar] [CrossRef]
- Derpsch, R.; Franzluebbers, A.J.; Duiker, S.W.; Reicosky, D.C.; Koeller, K.; Friedrich, T.; Sturny, W.G.; Sá, J.C.M.; Weiss, K. Why do we need to standardize no-tillage research? Soil Tillage Res. 2014, 137, 16–22. [Google Scholar] [CrossRef]
- Sprague, M.A.; Triplett, G.B. No-Tillage and Surface-Tillage Agriculture: The Tillage Revolution; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Boone, F.R. Weather and other environmental factors influencing the crop responses to tillage and traffic. Soil Tillage Res. 1988, 11, 283–324. [Google Scholar] [CrossRef]
- Gupta, R.; Seth, A. A review of resource conserving technologies for sustainable management of the rice-wheat cropping systems of the Indo-Gangetic plains (IGP). Crop Prot. 2007, 26, 436–447. [Google Scholar] [CrossRef]
- Erenstein, O.; Laxmi, V. Zero tillage impacts in India’s rice-wheat systems: A review. Soil Tillage Res. 2008, 100, 1–14. [Google Scholar] [CrossRef]
- Erenstein, O.; Farosoq, U.; Malik, R.K.; Sharif, M. On-farm impacts of zero tillage wheat in South Asia’s rice-wheat systems. Field Crops Res. 2008, 105, 240–252. [Google Scholar] [CrossRef]
- Jabran, K.; Farooq, M.; Hussain, M.; Dogan, M.N.; Yasin, M.; Aulakh, A.M. Aerobic rice in reduced tilled fields fetches higher yield and net economic returns. Proceedings of 3rd International Conference ‘Frontiers in Agriculture’, Dankook University, Cheonansi, Korea, 3–5 October 2012. [Google Scholar]
- Carter, M.R. A review of conservation tillage strategies for humid temperate regions. Soil Tillage Res. 1994, 31, 289–301. [Google Scholar] [CrossRef]
- Tagar, A.A.; Ji, C.; Ding, Q.; Adamowski, J.; Chandio, F.A.; Mari, I.A. Soil failure patterns and draft as influenced by consistency limits: An evaluation of the remolded soil cutting test. Soil Tillage Res. 2014, 137, 58–66. [Google Scholar] [CrossRef]
- Farooq, M.; Basra, S.M.A. Resolving the edaphic conflict in rice-wheat system. In Proceedings of the 14th Australian Agronomy Conference, Global Issues Paddock Action, Adelaide, Australia, 21–25 September 2008. [Google Scholar]
- Farooq, M.; Basra, S.M.A.; Asad, S.A. Comparison of conventional puddling and dry tillage in rice-wheat system. Paddy Water Environ. 2008, 6, 397–404. [Google Scholar] [CrossRef]
- Carter, M.R. Soil quality for sustainable land management: Organic matter and aggregation interactions that maintain soil functions. Agron. J. 2002, 94, 10–18. [Google Scholar] [CrossRef]
- Janelle, L.; Tessier, S.; Lague, C. Seeding Tool Design for No-Tillage Conditions in North-Eastern America; ASAE: St. Joseph, MI, USA, 1995. [Google Scholar]
- Parent, G.; Tessier, S.; Allard, G.; Angers, D.A. Seedbed Characteristics for Forages and Cereals with No-Tillage in the Northeast; ASAE: St. Joseph, MI, USA, 1993. [Google Scholar]
- Chaudhuri, D. Performance evaluation of various types of furrow openers on seed drills—A review. J. Agric. Eng. Res. 2001, 79, 125–137. [Google Scholar] [CrossRef]
- Chen, Y.; Tessier, S.; Irvine, B. Drill and crop performances as affected by different drill configurations for no-till seeding. Soil Tillage Res. 2004, 77, 147–155. [Google Scholar] [CrossRef]
- Doan, V.; Chen, Y.; Irvine, B. Effect of residue type on the performance of no-till seeder openers. Can. Biosyst. Eng. 2005, 47, 229–235. [Google Scholar]
- Karayel, D.; Özmerzi, A. Comparison of vertical and lateral seed distribution of furrow openers using a new criterion. Soil Tillage Res. 2007, 95, 69–75. [Google Scholar] [CrossRef]
- Karayel, D.; Šarauskis, E. Effect of down force on the performance of no-till disc furrow openers for clay-loam and loamy soils. Agric. Eng. 2011, 43, 16–24. [Google Scholar]
- Doan, V.; Chen, Y.; Irvine, B. Effect of oat stubble height on the performance of no-till seeder openers. Can. Biosyst. Eng. 2005, 47, 237–244. [Google Scholar]
- Vamerali, T.; Bertocco, M.; Sartori, L. Effects of a new wide-sweep opener for no-till planter on seed zone properties and root establishment in maize (Zea mays, L): A comparison with double-disk opener. Soil Tillage Res. 2006, 89, 196–209. [Google Scholar] [CrossRef]
- Iqbal, M.; Muneer, A.M.; Hussain, K.A.; Umair, M. Evaluation of the energy efficientzone disk drill for sowing of wheat after harvesting paddy crop. Int. J. Agric. Biol. 2012, 14, 633–636. [Google Scholar]
- Muneer, A.M.; Iqbal, M.; Miran, S. Evaluation of three seed furrow openers mounted on a zone disk tiller drill for residue management, soil physical properties and crop parameters. Pak. J. Agric. Sci. 2012, 49, 349–355. [Google Scholar]
- Altikat, S.; Celik, A.; Gozubuyuk, Z. Effects of various no-till seeders and stubble conditions on sowing performance and seed emergence of common vetch. Soil Tillage Res. 2013, 126, 72–77. [Google Scholar] [CrossRef]
- Kushwaha, R.L.; Vaishnav, A.S.; Zoerb, G.C. Performance of powered-disc coulters under no-till crop residue in the soil bin. Can. Agric. Eng. 1986, 28, 85–90. [Google Scholar]
- Hasimu, A.; Chen, Y. Soil disturbance and draft force of selected seed openers. Soil Tillage Res. 2014, 140, 48–54. [Google Scholar] [CrossRef]
- Conte, O.; Levien, R.; Debiasi, H.; Sturmer, S.L.K.; Mazurana, M.; Muller, J. Soil disturbance index as an indicator of seed drill efficiency in no-tillage agrosys-tems. Soil Tillage Res. 2011, 114, 37–42. [Google Scholar] [CrossRef]
- Endrerud, H.C. Dynamic performance of drill coulters in a soil bin. J. Agric. Eng. Res. 1999, 74, 391–401. [Google Scholar] [CrossRef]
- Magalhães, P.S.G.; Bianchini, A.; Braunbeck, O.A. Simulated and Experimental Analyses of a Toothed Rolling Coulter for Cutting Crop Residues. Biosyst. Eng. 2007, 96, 193–200. [Google Scholar] [CrossRef]
- Sarauskis, E.; Masilionyte, L.; Romaneckas, K.; Kriauciuniene, Z.; Jasinskas, A. The effect of the disc coulters forms and speed ratios on cutting of crop residues in no-tillage system. Bulg. J. Agric. Sci. 2013, 19, 620–624. [Google Scholar]
- Choi, C.H.; Erbach, D.C. Cornstalk residue shearing by rolling coulter. Trans. Am. Soc. Agric. Eng. 1986, 29, 1530–1535. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1986. [Google Scholar]
- Fredlund, D.G.; Vanapalli, S.K. Methods of Soil Analysis: Part 4. Physical Methods; Soil Science Society of America: Madison, WI, USA, 2002. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biometric Approach, 3rd ed.; McGraw Hill Book Co., Inc.: New York, NY, USA, 1996. [Google Scholar]
- McKyes, E. Soil Cutting and Tillage; Elsevier: New York, NY, USA, 1985. [Google Scholar]
- Darmora, D.P.; Pandey, K.P. Evaluation of performance of furrow openers of combined seed and fertiliser drills. Soil Tillage Res. 1995, 34, 127–139. [Google Scholar] [CrossRef]
- Kukal, S.S.; Aggarwal, G.C. Puddling depth and intensity effects in rice-wheat system on a sandy loam soil: I. Development of subsurface compaction. Soil Tillage Res. 2003, 72, 1–8. [Google Scholar] [CrossRef]
- Tavakoli, H.; Mohtasebi, S.S.; Jafari, A. Physical and mechanical properties of wheat straw as influenced by moisture content. Int. Agrophys. 2009, 23, 175–181. [Google Scholar]
Soil Parameter | Value |
---|---|
Bulk density | 1.28 g cm−3 |
Wet density | 1.7 g cm−3 |
Soil texture | Clay loam |
Moisture content | 33.3% |
Internal friction angle | 12.7°, 7.7°, 8.5° at depth of 0–2, 4–6 and 8–10 cm. |
Soil cohesion | 42.1, 52.1, and 61.7 kPa at depth of 0–2, 4–6 and 8–10 cm. |
Soil cone index | 682, 1280, 1000, 1185, 1212 kPa at 0, 2.5,5, 7.5, and 10 cm depth. |
Parameters | Single Disc | Notched-Type | Toothed-Type | Double Disc |
---|---|---|---|---|
Weight with connecting rod (kg) | 10.68 | 10.4 | 10.74 | 19.96 |
Weight of connecting rod (kg) | 6.88 | 6.88 | 6.88 | - |
Weight of disc (kg) | 3.8 | 3.52 | 3.86 | - |
Thickness (mm) | 5 | 5 | 5 | 5 |
External diameter (mm) | - | 450 | 450 | 450 |
Internal diameter (mm) | - | 420 | 390 | - |
Notch height (mm) | - | 15 | 30 | - |
Number of notches per teeth | - | 20 | 16 | - |
Distance between consecutive teeth (mm) | - | - | 5.2 | - |
Edge thickness (mm) | 1.25 | 2 | 1.51 | 1.25 |
Disc inclined angle (degrees) | 0 | 0 | 0 | 7 |
Factor | Levels | Draft (N) | Vertical Force (N) | Straw Cutting Efficiency (%) |
---|---|---|---|---|
Furrow Opener | Smooth-type | 481.3 b | 923 c | 11.4 d |
Toothed-type | 421.0 c | 903.7 c | 46.2 b | |
Notched-type | 444.3 c | 1105.3 b | 12.4 c | |
Double disc | 737.3 a | 1533.9 a | 78.5 a | |
Operating Depth (mm) | 30 | 284.2 a | 722.5 a | 28.3 c |
60 | 470.3 b | 1025.8 b | 38.7 b | |
90 | 808.5 c | 1601.1 c | 44.4 a | |
Travelling Speed (m s−1) | 0.1 | 427.9 a | 943.6 a | 34.3 c |
0.2 | 519.8 b | 1114.4 b | 36.3 b | |
0.3 | 615.30 c | 1291.4 c | 40.7 a |
Furrow Opener | Draft (N) | Vertical Force (N) | ||||
---|---|---|---|---|---|---|
30 mm | 60 mm | 90 mm | 30 mm | 60 mm | 90 mm | |
Smooth-Type | 266.9 h | 450.7 e | 726.4 b | 660.5 a,b | 875.5 d | 1241.0 f |
Toothed-Type | 218.2 j | 390.7 f | 654.2 c | 589.3 a | 826.1 c,d | 1295.6 f |
Notched-Type | 238.6 h,j | 416.4 e,f | 678.0 c | 757.2 b,c | 1072.8 e | 1486.0 g |
Double Disc | 413.3 g | 623.3 d | 1175.2 a | 883.1 d | 1336.7 f | 2381.8 h |
Furrow Opener | Draft (N) | Vertical Force(N) | ||||
---|---|---|---|---|---|---|
0.1 m s−1 | 0.2 m s−1 | 0.3 m s−1 | 0.1 m s−1 | 0.2 m s−1 | 0.3 m s−1 | |
Smooth-Type | 394.86 h,j | 468.56 e,f | 580.6 c | 825.7 a | 931.7 b,c | 1011.6 c,d |
Toothed-Type | 354.11 j | 409.55 g,h | 499.3 d,e | 811.2 a | 894.1 a,b | 1005.8 c,d |
Notched-Type | 364.19 j | 440.74 f,g | 528.10 d | 863.3 a,b | 1081.1 d | 1371.5 e |
Double Disc | 598.53 c | 760.15 b | 853.13 a | 1274.2 e | 1550.7 f | 1776.7 g |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, F.; Weimin, D.; Qishou, D.; Rehim, A.; Jabran, K. Comparative Performance of Various Disc-Type Furrow Openers in No-Till Paddy Field Conditions. Sustainability 2017, 9, 1143. https://doi.org/10.3390/su9071143
Ahmad F, Weimin D, Qishou D, Rehim A, Jabran K. Comparative Performance of Various Disc-Type Furrow Openers in No-Till Paddy Field Conditions. Sustainability. 2017; 9(7):1143. https://doi.org/10.3390/su9071143
Chicago/Turabian StyleAhmad, Fiaz, Ding Weimin, Ding Qishou, Abdur Rehim, and Khawar Jabran. 2017. "Comparative Performance of Various Disc-Type Furrow Openers in No-Till Paddy Field Conditions" Sustainability 9, no. 7: 1143. https://doi.org/10.3390/su9071143
APA StyleAhmad, F., Weimin, D., Qishou, D., Rehim, A., & Jabran, K. (2017). Comparative Performance of Various Disc-Type Furrow Openers in No-Till Paddy Field Conditions. Sustainability, 9(7), 1143. https://doi.org/10.3390/su9071143