Predicting Foreign Tourists for the Tourism Industry Using Soft Computing-Based Grey–Markov Models
Abstract
:1. Introduction
2. NNGM(1,1) for Generating Predicted Values
3. The Proposed SC-MCGM(1,1) Model
3.1. Generating Transition Probability Matrices
3.2. Determining Centers for Individual States
3.3. Computing Predicted Residual Values
3.4. FLN for Determining New Predicted Values
4. A Genetic Algorithm for Constructing the SC-MCGM(1,1)
4.1. Selection
4.2. Crossover
4.3. Mutation
4.4. Algorithm for Constructing the Proposed Model
- Step 1.
- InitializationGenerate nsize chromosomes.
- Step 2.
- Compute fitness valuesCompute the fitness value of each chromosome in the current population.
- Step 3.
- Generate new chromosomesGenerate nsize new chromosomes from the current population using selection, crossover, and mutation.
- Step 4.
- Apply elitist strategyRandomly remove ndel strings from the newly generated nsize strings, and replace them with ndel best chromosomes in the current population.
- Step 5.
- Termination testReturn to Step 2 if the stopping condition is not satisfied.
5. Empirical Results
5.1. Prediction of Foreign Tourists for Taiwan
5.2. Prediction of Foreign Tourists for China
5.3. Statistical Analysis
6. Discussion and Conclusions
Acknowledgments
Conflicts of Interest
References
- Sun, X.; Sun, W.; Wang, J.; Gao, Y. Using a Grey-Markov model optimized by Cuckoo search algorithm to forecast the annual foreign tourist arrivals to China. Tour. Manag. 2016, 52, 369–379. [Google Scholar] [CrossRef]
- Deng, J.L. Control problems of grey systems. Syst. Control Lett. 1982, 1, 288–294. [Google Scholar]
- Liu, S.; Lin, Y. Grey Information: Theory and Practical Applications; Springer: Berlin, Germany, 2010. [Google Scholar]
- Liu, S.; Yang, Y.; Forrest, J. Grey Data Analysis: Methods, Models and Applications; Springer: Berlin, Germany, 2017. [Google Scholar]
- Suganthi, L.; Samuel, A.A. Energy models for demand forecasting—A review. Renew. Sust. Energ. Rev. 2012, 16, 1223–1240. [Google Scholar] [CrossRef]
- Cui, J.; Liu, S.F.; Zeng, B.; Xie, N.M. A novel grey forecasting model and its optimization. Appl. Math. Model. 2013, 37, 4399–4406. [Google Scholar] [CrossRef]
- Feng, S.J.; Ma, Y.D.; Song, Z.L.; Ying, J. Forecasting the energy consumption of China by the grey prediction model. Energ. Source Part B 2012, 7, 376–389. [Google Scholar] [CrossRef]
- Hsu, C.C.; Chen, C.Y. Applications of improved grey prediction model for power demand forecasting. Energy Convers. Manag. 2003, 44, 2241–2249. [Google Scholar]
- Hu, Y.C.; Chiu, Y.J.; Liao, Y.L.; Li, Q. A fuzzy similarity measure for collaborative filtering using nonadditive grey relational analysis. J. Grey. Syst. 2015, 27, 93–103. [Google Scholar]
- Lee, Y.S.; Tong, L.I. Forecasting energy consumption using a grey model improved by incorporating genetic programming. Energy Convers. Manag. 2011, 52, 147–152. [Google Scholar] [CrossRef]
- Li, D.C.; Chang, C.J.; Chen, C.C.; Chen, W.C. Forecasting short-term electricity consumption using the adaptive grey-based approach-An Asian case. Omega 2012, 40, 767–773. [Google Scholar] [CrossRef]
- Mao, M.Z.; Chirwa, E.C. Application of grey model GM(1,1) to vehicle fatality risk estimation. Technol. Forecast. Soc. Chang. 2006, 73, 588–605. [Google Scholar] [CrossRef]
- Wei, J.; Zhou, L.; Wang, F.; Wu, D. Work safety evaluation in Mainland China using grey theory. Appl. Math. Model. 2015, 39, 924–933. [Google Scholar] [CrossRef]
- Hu, Y.C.; Jiang, P. Forecasting energy demand using neural-network-based grey residual modification models. J. Oper. Res. Soc. 2017, 68, 556–565. [Google Scholar] [CrossRef]
- He, Y.; Bao, Y.D. Grey-Markov forecasting model and its application. Syst. Eng.-Theory Pract. 1992, 9, 59–63. [Google Scholar]
- Hsu, Y.T.; Liu, M.C.; Yeh, J.; Hung, H.F. Forecasting the turning time of stock market based on Markov-Fourier grey model. Expert Syst. Appl. 2009, 36, 8597–8603. [Google Scholar] [CrossRef]
- Wang, C.N.; Phan, V.T. An improved nonlinear grey Bernoulli model combined with Fourier series. Math. Probl. Eng. 2015. [Google Scholar] [CrossRef]
- Kumar, U.; Jain, V.K. Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India. Energy 2010, 35, 1709–1716. [Google Scholar] [CrossRef]
- Li, G.D.; Masuda, S.; Nagai, M. The prediction model for electrical power system using an improved hybrid optimization model. Int. J. Electr. 2013, 44, 981–987. [Google Scholar] [CrossRef]
- Xie, N.M.; Yuan, C.Q.; Yang, Y.J. Forecasting China’s energy demand and self-sufficiency rate by grey forecasting model and Markov model. Int. J. Electr. 2015, 66, 1–8. [Google Scholar] [CrossRef]
- Hsu, C.I.; Wen, Y.U. Improved Grey prediction models for trans-Pacific air passenger market. Transport Plan. Technol. 1998, 22, 87–107. [Google Scholar] [CrossRef]
- Hsu, L.C. Applying the grey prediction model to the global integrated circuit industry. Technol. Forecast Soc. Chang. 2003, 70, 563–574. [Google Scholar] [CrossRef]
- Mao, Z.L.; Sun, J.H. Application of Grey-Markov model in forecasting fire accidents. Procedia Eng. 2011, 11, 314–318. [Google Scholar]
- Wang, C.H. Predicting tourism demand using fuzzy time-series and hybrid grey theory. Tour. Manag. 2004, 25, 367–374. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley: Boston, MA, USA, 1989. [Google Scholar]
- Ishibuchi, H.; Nakashima, T.; Nii, M. Classification and Modeling with Linguistic Information Granules: Advanced Approaches to Linguistic Data Mining; Springer: Heidelberg, Germany, 2004. [Google Scholar]
- Kuncheva, L.I. Fuzzy Classifier Design; Physica-Verlag: Heidelberg, Germany, 2000. [Google Scholar]
- Osyczka, A. Evolutionary Algorithms for Single and Multicriteria Design Optimization; Physica-Verlag: Heidelberg, Germany, 2003. [Google Scholar]
- Hu, Y.C. Functional-link nets with genetic-algorithm-based learning for robust nonlinear interval regression analysis. Neurocomputing 2009, 72, 1808–1816. [Google Scholar] [CrossRef]
- Pao, Y.H. Adaptive Pattern Recognition and Neural Networks; Addison-Wesley: Boston, MA, USA, 1989. [Google Scholar]
- Pao, Y.H. Functional-link net computing: Theory, system architecture, and functionalities. Computer 1992, 25, 76–79. [Google Scholar] [CrossRef]
- Park, G.H.; Pao, Y.H. Unconstrained word-based approach for off-line script recognition using density-based random-vector functional-link net. Neurocomputing 2000, 31, 45–65. [Google Scholar] [CrossRef]
- Hu, Y.C. Electricity consumption forecasting using a neural-network-based grey prediction approach. J. Oper. Res. Soc. 2016. [Google Scholar] [CrossRef]
- Imbusch, G.F.; Yen, W.M. The McCumber and sturge formula. J. Lumin. 2000, 85, 177–179. [Google Scholar] [CrossRef]
- Hu, Y.C. Grey prediction with residual modification using functional-link net and its application to energy demand forecasting. Kybernetes 2017, 46, 349–363. [Google Scholar] [CrossRef]
- Hu, Y.C. A multicriteria collaborative filtering approach using the indifference relation and its application to initiator recommendation for group-buying. Appl. Artif. Intell. 2014, 28, 992–1008. [Google Scholar] [CrossRef]
- Murata, T.; Ishibuchi, H.; Tanaka, H. Multi-objective genetic algorithm and its applications to flowshop scheduling. Comput. Ind. Eng. 1989, 30, 957–968. [Google Scholar] [CrossRef]
- Friedman, M. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 1940, 11, 86–92. [Google Scholar] [CrossRef]
- Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
- Iman, R.L.; Davenport, J.M. Approximations of the critical region of the Friedman statistic. Commun. Stat. 1980, 9, 571–595. [Google Scholar] [CrossRef]
- Lin, C.J.; Chen, H.F.; Lee, T.S. Forecasting tourism demand using time series, artificial neural networks and multivariate adaptive regression splines: Evidence from Taiwan. Int. J. Bus. Adm. 2011, 2, 14–24. [Google Scholar]
- Jang, J.S.R; Sun, C.T.; Mizutani, E. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence; Prentice-Hall, Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Hu, Y.C.; Tseng, F.M. Functional-link net with fuzzy integral for bankruptcy prediction. Neurocomputing 2007, 70, 2959–2968. [Google Scholar] [CrossRef]
- Hu, Y.C. Nonadditive grey single-layer perceptron with Choquet integral for pattern classification problems using genetic algorithms. Neurocomputing 2008, 72, 332–341. [Google Scholar] [CrossRef]
- Onisawa, T.; Sugeno, M.; Nishiwaki, M.Y.; Kawai, H.; Harima, Y. Fuzzy measure analysis of public attitude towards the use of nuclear energy. Fuzzy Set Syst. 1986, 20, 259–289. [Google Scholar] [CrossRef]
- Wang, Z.; Leung, K.S.; Klir, G.J. Applying fuzzy measures and nonlinear integrals in data mining. Fuzzy Set. Syst. 2005, 156, 371–380. [Google Scholar] [CrossRef]
- Wang, Z.; Leung, K.S.; Wang, J. A genetic algorithm for determining nonadditive set functions in information fusion. Fuzzy Set. Syst. 1999, 102, 463–469. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Z.; Klir, G.J. Genetic algorithms for determining fuzzy measures from data. J. Intell. Fuzzy Syst. 1998, 6, 171–183. [Google Scholar]
Year | Japan | Hong Kong/Macao | Korea | China | USA | Southeast Asia |
---|---|---|---|---|---|---|
2001 | 976,750 | 435,164 | 85,744 | 348,808 | 488,968 | |
2002 | 998,497 | 456,554 | 83,624 | 377,470 | 530,319 | |
2003 | 657,053 | 323,178 | 92,893 | 272,858 | 457,103 | |
2004 | 887,311 | 417,087 | 148,095 | 382,822 | 568,269 | |
2005 | 1,124,334 | 432,718 | 182,517 | 390,929 | 636,925 | |
2006 | 1,161,489 | 431,884 | 196,260 | 394,802 | 643,338 | |
2007 | 1,166,380 | 491,437 | 225,814 | 397,965 | 700,287 | |
2008 | 1,086,691 | 618,667 | 252,266 | 329,204 | 387,197 | 725,751 |
2009 | 1,000,661 | 718,806 | 167,641 | 972,123 | 369,258 | 689,027 |
2010 | 1,080,153 | 794,362 | 216,901 | 1,630,735 | 395,729 | 911,174 |
2011 | 1,294,758 | 817,944 | 242,902 | 1,784,185 | 412,617 | 1,071,975 |
2012 | 1,432,315 | 1,016,356 | 259,089 | 2,586,428 | 411,416 | 1,132,592 |
2013 | 1,421,550 | 1,183,341 | 351,301 | 2,874,702 | 414,060 | 1,261,596 |
2014 | 1,634,790 | 1,375,770 | 527,684 | 3,987,152 | 458,691 | 1,388,305 |
2015 | 1,627,229 | 1,513,597 | 658,757 | 4,184,102 | 479,452 | 1,425,485 |
2016 | 1,895,702 | 1,614,803 | 884,397 | 3,511,734 | 523,888 | 1,653,908 |
Economy | GM(1,1) | MCGM(1,1) | SGM(1,1) | MCSGM(1,1) | CMCSGM(1,1) |
---|---|---|---|---|---|
Japan | 11.01 | 12.41 | 6.50 | 5.62 | 4.27 |
Hong Kong/Macao | 2.40 | 6.58 | 6.36 | 6.83 | 7.40 |
Korea | 33.35 | 17.96 | 0.47 | 1.21 | 3.76 |
China | 58.05 | 61.54 | 45.79 | 49.32 | 50.19 |
USA | 11.40 | 13.18 | 0.88 | 0.45 | 0.10 |
Southeast Asia | 3.44 | 1.16 | 7.59 | 7.13 | 6.52 |
Economy | SC-MCGM(1,1) | |||
---|---|---|---|---|
m = 1 | m = 2 | m = 3 | m = 4 | |
Japan | 6.41 | 1.31 | 3.72 | 2.96 |
Hong Kong/Macao | 5.52 | 5.36 | 4.71 | 4.60 |
Korea | 3.47 | 0.38 | 0.46 | 0.05 |
China | 40.58 | 41.60 | 41.91 | 40.91 |
USA | 0.78 | 0.30 | 0.36 | 0.59 |
Southeast Asia | 6.94 | 5.03 | 4.95 | 4.78 |
Economy | GM(1,1) | MCGM(1,1) | SGM(1,1) | MCSGM(1,1) | CMCSGM(1,1) |
---|---|---|---|---|---|
Korea | 35.90 | 30.38 | 0.84 | 1.32 | 0.97 |
Japan | 39.57 | 15.26 | 20.93 | 21.02 | 15.69 |
Russia | 44.13 | 36.42 | 2.72 | 3.05 | 2.90 |
USA | 20.5 | 13.68 | 5.22 | 2.95 | 2.92 |
Malaysia | 28.81 | 27.81 | 11.73 | 11.50 | 7.24 |
Mongolia | 1.39 | 3.12 | 0.79 | 1.62 | 1.82 |
Philippines | 10.16 | 7.63 | 0.67 | 0.69 | 0.91 |
Singapore | 31.68 | 18.92 | 12.85 | 5.83 | 8.03 |
Economy | SC-MCGM(1,1) | |||
---|---|---|---|---|
m = 1 | m = 2 | m = 3 | m = 4 | |
Korea | 0.47 | 0.72 | 0.77 | 0.77 |
Japan | 21.08 | 20.74 | 20.17 | 20.83 |
Russia | 1.01 | 1.63 | 0.67 | 3.40 |
USA | 5.36 | 0.90 | 2.38 | 1.36 |
Malaysia | 10.79 | 9.86 | 7.03 | 7.62 |
Mongolia | 0.16 | 0.11 | 0.27 | 0.23 |
Philippines | 0.23 | 0.07 | 1.66 | 1.00 |
Singapore | 11.04 | 5.22 | 6.74 | 6.54 |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.-C. Predicting Foreign Tourists for the Tourism Industry Using Soft Computing-Based Grey–Markov Models. Sustainability 2017, 9, 1228. https://doi.org/10.3390/su9071228
Hu Y-C. Predicting Foreign Tourists for the Tourism Industry Using Soft Computing-Based Grey–Markov Models. Sustainability. 2017; 9(7):1228. https://doi.org/10.3390/su9071228
Chicago/Turabian StyleHu, Yi-Chung. 2017. "Predicting Foreign Tourists for the Tourism Industry Using Soft Computing-Based Grey–Markov Models" Sustainability 9, no. 7: 1228. https://doi.org/10.3390/su9071228
APA StyleHu, Y. -C. (2017). Predicting Foreign Tourists for the Tourism Industry Using Soft Computing-Based Grey–Markov Models. Sustainability, 9(7), 1228. https://doi.org/10.3390/su9071228