Yield Perceptions, Determinants and Adoption Impact of on Farm Varietal Mixtures for Common Bean and Banana in Uganda
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mixtures Adoption
3.2. Effect of Mixtures on Perceived Yield
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Coomes, O.T.; McGuire, S.; Garine, E.; Caillon, S.; McKey, D.; Demeulenaere, E.; Jarvis, D.; Aistara, G.; Barnaud, A.; Clouvel, P.; et al. Farmer seed networks make a limited contribution to agriculture? Four common misconceptions. Food Policy 2015, 56, 41–50. [Google Scholar] [CrossRef] [Green Version]
- López-Noriega, I.; Dawson, I.K.; Vernooy, R.; Köhler-Rollefson, I.; Halewood, M. Agricultural diversification as an adaptation strategy. Agric. Dev. 2017, 30, 25–28. [Google Scholar]
- Jarvis, D.I.; Hodgkin, T.; Sthapit, B.R.; Fadda, C.; Lopez-Noriega, I. A Heuristic Framework for Identifying Multiple Ways of Supporting the Conservation and Use of Traditional Crop Varieties within the Agricultural Production System. Crit. Rev. Plant Sci. 2011, 30, 301–349. [Google Scholar] [CrossRef]
- Finckh, M.R.; Wolfe, M.S. Diversification strategies. In The Epidemiology of Plant Disease; Cooke, B.M., Gareth Jones, D., Kaye, B., Eds.; Springer: New York, NY, USA, 2006; pp. 269–308. [Google Scholar]
- Mulumba, J.W.; Nankya, R.; Adokorach, J.; Kiwuka, C.; Fadda, C.; De Santis, P.; Jarvis, D.I. A risk-minimizing argument for traditional crop varietal diversity use to reduce pest and disease damage in agricultural ecosystems of Uganda. Agric. Ecosyst. Environ. 2012, 157, 70–86. [Google Scholar] [CrossRef]
- Tooker, J.F.; Frank, S.D. Genotypicaly diverse cultivar mixtures for insect pest management and increased crop yields. J. Appl. Ecol. 2012, 49, 974–985. [Google Scholar] [CrossRef]
- Bellon, M.R.; Gotor, E.; Caracciolo, F. Assessing the effectiveness of projects supporting on-farm conservation of native crops: Evidence from the High Andes of South America. World Dev. 2015, 70, 162–176. [Google Scholar] [CrossRef]
- Schumann, G.L. Plant Diseases: Their Biology and Social Impact; APS Press: St. Paul, MN, USA, 1991. [Google Scholar]
- Marshall, D.R. The advantages and hazards of genetic homogeneity [Plant resistance to diseases]. Ann. N. Y. Acad. Sci. 1997, 287, 1–20. [Google Scholar] [CrossRef]
- Lin, B.B. Resilience in agriculture through crop diversification: Adaptive management for environmental change. BioScience 2011, 61, 183–193. [Google Scholar] [CrossRef]
- Buitatti, M.; Ingram, D.S. Phytotoxins as tools in breeding and selection of disease-resistant plants. Cell. Mol. Life Sci. 1991, 47, 811–819. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change (UNFCCC). Report of the Conference of the Parties on Its Twenty-first Session, Held in Paris from 30 November to 13 December 2015. Decision 17/CP.21; UNFCCC: New York, NY, USA, 2015. [Google Scholar]
- Adamo, S.B. About mitigation, adaptation and the UNFCCC’s 21st Conference of the Parties. Rev. Bras. Estud. Popul. 2015, 32, 609–618. [Google Scholar] [CrossRef]
- Hedger, M.; Campbell, B.M.; Wamukoya, G.; Kinyangi, J.; Verchot, L.; Wollenberg, L.; Loboguerrero, A.M. Progress on Agriculture in the UN Climate Talks: How COP21 Can Ensure a Food-Secure Future. 2015. Available online: https://ccafs.cgiar.org/publications/progress-agriculture-un-climate-talks-how-cop21-can-ensure-food-secure-future#.WXfjaKKL64s (accessed on 26 July 2017).
- Mäder, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil fertility and biodiversity in organic farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef] [PubMed]
- Giller, K.E.; Witter, E.; Corbeels, M.; Tittonell, P. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Res. 2009, 114, 23–34. [Google Scholar] [CrossRef]
- Caracciolo, F.; Lombardi, P. A new-institutional framework to explore the trade-off between Agriculture, Environment and Landscape. Econ. Policy Energy Environ. 2012, 3, 135–154. [Google Scholar]
- Bryan, E.; Ringler, C.; Okoba, B.; Koo, J.; Herrero, M.; Silvestri, S. Can agriculture support climate change adaptation, greenhouse gas mitigation and rural livelihoods? Insights from Kenya. Clim. Chang. 2013, 118, 151–165. [Google Scholar] [CrossRef]
- Wolfe, M.S.; Finckh, M.R. Diversity of host resistance within the crop: Effects on host, pathogen and disease. In Plant Resistance to Fungal Diseases; Hartleb, H., Heitefuss, R., Hoppe, H.H., Eds.; Fischer Verlag: Jena, Germany, 1997; pp. 378–400. [Google Scholar]
- Finckh, M.R. Evolutionsverbot per Gesetz, oder: Die Konsequenzen der Verhinderung der Ko-Evolution in der Landwirtschaft. In Kant, das Prinzip “Vorsorge” und die Wiederentdeckung der “Allmende”; Lange, B., Ed.; Ergon Verlag: Würzburg, Germany, 2000; pp. 109–120. [Google Scholar]
- Finckh, M.R.; Wolfe, M.S. The Use of Biodiversity to Restrict Plant Diseases and Some Consequences for Farmers and Society. In Ecology in Agriculture; Jackson, L.E., Ed.; Academic Press: San Diego, CA, USA, 1997; pp. 203–237. [Google Scholar]
- Abate, T.; van Huis, A.; Ampofo, J.K.O. Pest management strategies in traditional agriculture: An African perspective. Ann. Rev. Entomol. 2000, 45, 631–659. [Google Scholar] [CrossRef] [PubMed]
- Garrett, K.A.; Mundt, C.C. Epidemiology in mixed host populations. Phytopathology 1999, 89, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Mundt, C.C.; Leonard, K.J. Analysis of factors affecting disease increase and spread in mixtures of immune and susceptible plants in computer simulated epidemics. Phytopathology 1986, 76, 832–840. [Google Scholar] [CrossRef]
- Pyndji, M.M.; Trutmann, P. Managing angular leaf spot on common bean in Africa by supplementing farmer mixtures with resistant varieties. Plant Dis. 1992, 76, 1144–1147. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, H.; Fan, J.; Wang, Y.; Li, Y.; Chen, J.; Yang, S.; Hu, L.; Leung, H.; Mew, T.W.; et al. Genetic diversity and disease control in rice. Nature 2000, 406, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Bowden, R.; Shroyer, J.; Roozeboom, K.; Claassen, M.; Evans, P.; Gordon, B.; Heer, B.; Janssen, K.; Long, J.; Martin, J.; et al. Performance of Wheat Variety Blends in KANSAS; Keeping Up with Research 128; Kansas State University Agricultural Experiment Station and Cooperative Extension Service: Manhattan, KS, USA, 2001. [Google Scholar]
- Ssekandi, W.; Mulumba, J.W.; Nankya, R.; Karungi, J.; Otim, M.; Fadda, C.; Jarvis, I.D. The use of common bean (Phaseolus vulgaris) traditional varieties and their mixtures with commercial varieties to manage bean fly (Ophiomyia spp.) infestations in Uganda. J. Pest Sci. 2016, 89, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Beddington, J.R. The Future of Food and Farming: Challenges and Choices for Global Sustainability; Final Project Report of the UK Government Foresight Global Food and Farming Futures; Government Office for Science: London, UK, 2011.
- Regmi, A.; Rojas, T.; Kleinwechter, U.; Conwell, A.; Gotor, E. Integrating biodiversity and ecosystem services into the economic analysis of agricultural systems. Biovers. Int. 2016. [Google Scholar] [CrossRef]
- Hajjar, R.; Jarvis, D.I.; Gemmill-Herren, B. The utility of crop genetic diversity in maintaining ecosystem services. Agric. Ecosyst. Environ. 2008, 123, 261–270. [Google Scholar] [CrossRef]
- De Vallavieille-Pope, C. Management of disease resistance diversity of cultivars of a species in single fields: Controlling epidemics. C. R. Biol. 2004, 327, 611–620. [Google Scholar]
- Mundt, C.C. Use of multiline cultivars and cultivar mixtures for disease management. Ann. Rev. Phytopathol. 2002, 40, 381–410. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, M.S. The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annu. Rev. Phytopathol. 1985, 23, 251–273. [Google Scholar] [CrossRef]
- Martinelli, J.A.; Brown, J.K.M.; Wolfe, M.S. Effects of barley genotype on induced resistance to powdery mildew. Plant Pathol. 1993, 42, 195–202. [Google Scholar] [CrossRef]
- Smithson, J.B.; Lenne, J. Varietal mixtures: A viable strategy for sustainable productivity in subsistence agriculture. Ann. Appl. Biol. 1996, 128, 127–158. [Google Scholar] [CrossRef]
- Utz, R.J. Tanzania: Sustaining and Sharing Economic Growth; World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Pretty, J.; Toulmin, C.; Williams, S. Sustainable intensification in African agriculture. Int. J. Agric. Sustain. 2011, 9, 5–24. [Google Scholar] [CrossRef]
- Bonabana-Wabbi, J. Assessing Factors Affecting Adoption of Agricultural Technologies: The Case of Integrated Pest Management (IPM) in Kumi District, Eastern Uganda. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2002. [Google Scholar]
- Bekunda, M.A.; Woomer, P.L. Organic resource management in banana-based cropping systems of the Lake Victoria Basin, Uganda. Agric. Ecosyst. Environ. 1996, 59, 171–180. [Google Scholar] [CrossRef]
- Olango, N.; Tusiime, G.; Mulumba, J.W.; Nankya, R.; Fadda, C.; Jarvis, I.D.; Paparu, P. Response of Ugandan common bean varieties to Pseudocercospora griseola and Angular leaf spot disease development in varietal mixtures. Int. J. Pest Manag. 2016, 63, 201. [Google Scholar] [CrossRef]
- Letourneau, D.K.; Armbrecht, I.; Rivera, B.S.; Lerma, J.M.; Carmona, E.J.; Daza, M.C.; Escobar, S.; Galindo, V.; Gutierrez, C.; Lo´pez, S.D.; et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 2011, 21, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Tushemereirwe, W.K.; Kashaija, I.N.; Tinzara, W.; Nankinga, C. A Guide to Successful Banana Production in Uganda: Banana Production Manual, New 2nd ed.; NARO: Kampala, Uganda, 2003. [Google Scholar]
- Buah, S. Genetic Diversity of Common Beans as Impacted on by Farmer Variety Selection for the Management of Bean Root Rots in South Western Uganda. Master’s Thesis, Makerere University, Kampala, Uganda, 2010. [Google Scholar]
- Kimani, P.M.; Buruchara, R.; Ampofo, K.; Pyndji, M.; Chirwa, R.M.; Kirkby, R. Breeding beans for smallholder farmers in Eastern, Central, and Southern Africa: Constraints, achievements, and potential. In Pan-African Bean Research Network (PABRA) Millennium Workshop, Novotel Mount Meru, Arusha, Tanzania, 28 May–1 June 2001; CIAT: Kampala, Uganda, 2005. [Google Scholar]
- Wortman, C.S.; Kirkby, R.A.; Aledu, C.A.; Allen, D.J. Atlas of Common Bean (Phaseolus vulgaris L.) Production in Africa; Centro Internacional de Agricultura Tropica (CIAT): Cali, Columbia, 1998. [Google Scholar]
- Singh, S.P. Broadening the genetic base of common bean cultivars: A review. Crop Sci. 2001, 41, 1659–1675. [Google Scholar] [CrossRef]
- Nantale, G.; Kakudidi, D.A.; Karamura, E.; Karamura, D.; Soka, G. Scientific basis for banana cultivar proportions on-farm in East Africa. Afr. Crop Sci. J. 2008, 16, 41–49. [Google Scholar] [CrossRef]
- Gotor, E.; Caracciolo, F.; Cantoa, G.M.B.; Al Nassiri, M. Improving rural livelihoods through the conservation and use of underutilized species: Evidence from a community research project in Yemen. Int. J. Agric. Sustain. 2013, 11, 347–362. [Google Scholar] [CrossRef]
- Adesina, A.; Baidu-Forson, J. Farmers perceptions of new agricultural technology– evidence from analysis in Burkina Faso and Guinea, West Africa. Agric. Econ. 1995, 13, 1–9. [Google Scholar] [CrossRef]
- Negatu, W.; Parikh, A. The impact of perception and other factors on the adoption of agricultural technology in the Moret and Jiru Woreda (district) of Ethiopia. Agric. Econ. 1999, 21, 205–216. [Google Scholar] [CrossRef]
- Mwaura, F. Effect of farmer group membership on agriculture technology adoption and crop productivity in Uganda. Afr. Crop Sci. J. 2014, 22, 917–927. [Google Scholar]
- Gotland, E.M.; Sadoulet, E.; De Janvry, A.; Murgai, R.; Ortiz, O. The impact of farmer field schools on knowledge and productivity: A study of potato farmers in the Peruvian Andes. Econ. Dev. Cult. Chang. 2004, 53, 63–92. [Google Scholar] [CrossRef]
- Jarvis, D.I.; Brown, A.H.D.; Cuong, P.H.; Collado-Panduro, L.; Latourniere-Moreno, L.; Gaywali, S.; Tanto, T.; Sawadogo, M.T.; Mar, I.; Sadiki, M.; et al. A global perspective of the richness and evenness of traditional crop variety diversity maintained by farming communities. Proc. Natl. Acad. Sci. USA 2008, 108, 5326–5331. [Google Scholar] [CrossRef] [PubMed]
- Shiferaw, B.; Holden, S.T. Resource degradation and adoption of land conservation technologies in the Ethiopian Highlands: A case study in Andit Tid, North Shewa. Agric. Econ. 1998, 18, 233–247. [Google Scholar] [CrossRef]
- Asiedu-Darko, E. Effects of gender, education and age on the adoption of agricultural technologies in Ashanti, Northern and Eastern regions of Ghana. J. Appl. Sci. Res. 2014, 2, 112–118. [Google Scholar]
- Döring, T.F.; Knapp, S.; Kovacs, G.; Murphy, K.M.; Wolfe, M.S. Evolutionary Plant Breeding in Cereals—Into a New Era. Sustainability 2011, 3, 1944–1971. [Google Scholar] [CrossRef]
- Andow, D.A. Vegetational diversity and arthropod population response. Ann. Rev. Entomol. 1991, 36, 561–586. [Google Scholar] [CrossRef]
- Baggen, L.R.; Gurr, G.M. The influence of food on Copidosoma koehleri (Hymenoptera: Encyrtidae), and the use of flowering plants as a habitat management tool to enhance biological control of potato moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). Biol. Control 1998, 11, 9–17. [Google Scholar] [CrossRef]
- Wilhoit, L.R. Evolution of herbivore virulence to plant resistance: Influence of variety mixtures. In Plant Resistance to Herbivores and Pathogens: Ecology, Evolution and Genetics, 3rd ed.; Fritz, R.S., Simms, E.L., Eds.; University of Chicago Press: Chicago, IL, USA, 1992; pp. 91–119. [Google Scholar]
- Edmeades, S.; Smale, M.; Karamura, D. Biodiversity of bananas on farms in Uganda; In Promising crop biotechnologies for smallholder farmers in East Africa: Bananas and maize. In Genetic Resource Policies 2006; Brief 24; International Food Policy Research Institute and the International Plant Genetic Resources Institute: Washington, DC, USA, 2006. [Google Scholar]
- Sheppard, A.W.; Gillespie, I.; Hirsch, M.; Begley, C. Biosecurity and sustainability within the growing global bio economy. Curr. Opin. Environ. Sustain. 2011, 3, 4–10. [Google Scholar] [CrossRef]
- Zilberman, D.; Kim, E.; Kirschner, S.; Kaplan, S.; Reeves, J. Technology and the future bio economy. Agric. Econ. 2013, 44, 95–102. [Google Scholar] [CrossRef]
Variable Name | Type | Variable Description |
---|---|---|
M-Dependent Variable | Binary | Adoption of mixtures [1 = yes; 0 = No] |
d_age1 | Binary | Age [1 if famers age >40 & <61; 0 otherwise] |
d_age2 | Binary | Age [1 if famers age >60; 0 otherwise] |
Gender | Binary | gender of respondent [1 = Male; 2 = Female] |
Householdsize | Continuous | the number of components in the household |
Agr_income | Binary | the major source of income [1 crop farming; 0 = other activity] |
Cultivated_area | Continuous | total area cultivated with bean & bananas (acres) |
Belongtofarmergroup | Binary | participation to farmer group [1 = yes; 2 = no] |
site_1 | Binary | geographical area where the household is [1 = Nakaseke; 0 otherwise] |
site_2 | Binary | geographical area where the household is [1 = Kabwohe; 0 otherwise] |
Ban_producer | Binary | Producer of bananas [1 = yes; 0 = No] |
Bean&ban | Binary | Joint producer of Bananas & Beans [1 = yes; 0 = No] |
Variable | Bean a | Banana b | ||||||
---|---|---|---|---|---|---|---|---|
Mean | Std.dev | Min | Max | Mean | Std.dev | Min | Max | |
Perceived Yield Change (%) | 20.48 | 45.90 | −100 | 100 | 26.25 | 53.03 | −100 | 100 |
d_age1—Age: [1 if famers age >40 & <61; 0 otherwise] | 0.45 | N.A | 0 | 1 | 0.45 | N.A | 0 | 1 |
d_age2—Age: [1 if famers age >60; 0 otherwise] | 0.15 | N.A | 0 | 1 | 0.18 | N.A | 0 | 1 |
Gender—Gender of respondent [1 = Male; 2 = Female] | 1.60 | N.A | 1 | 2 | 1.63 | N.A | 1 | 2 |
Household Size—The number of components in the household | 6.46 | 2.89 | 1 | 24 | 7.20 | 3.11 | 1 | 24 |
Agr_income—The major source of income [1 = crop farming; 0 = other activity] | 0.93 | N.A | 0 | 1 | 0.95 | N.A | 0 | 1 |
Cultivated_area—Total area cultivated with bean & bananas (acres) | 0.81 | 0.61 | 0 | 4 | 1.54 | 1.45 | 0.13 | 7 |
Belong to farmer group—Participation to farmer group [1 = yes; 2 = no] | 1.05 | 0.21 | 1 | 2 | ||||
Bean & banana—[1 if famers grow both Bean and Banana; 0 otherwise] | 0.61 | N.A | 0 | 1 | 0.97 | N.A | 0 | 1 |
Site_1—[1 = Nakaseke; 0 otherwise] | 0.32 | N.A | 0 | 1 | 0.46 | N.A | 0 | 1 |
Site_2—[1 = Kabwohe; 0 otherwise] | 0.34 | N.A | 0 | 1 | 0.54 | N.A | 0 | 1 |
Site_3—[1 = Rubaya; 0 otherwise] | 0.34 | N.A | 0 | 1 | ||||
Past experience—Farmers experience in cultivating the crops [years] | 21.31 | 14.36 | 0 | 60 | 21.51 | 14.98 | 0 | 60 |
sh_mixtures—Incidence of varieties cultivated as varietal mixtures over the total varieties | 0.45 | 0.42 | 0 | 1 | 0.86 | 0.25 | 0 | 1 |
sh_localvarieties—Incidence of local varieties cultivated over the total varieties | 0.46 | 0.36 | 0 | 1 | 0.52 | 0.32 | 0 | 1 |
total_varieties—Total number of used varieties | 3.97 | 2.06 | 1 | 12 | 6.11 | 2.64 | 2 | 16 |
Variable | Coef. | Std.dev | p-Value |
---|---|---|---|
d_age1 | 0.421 | 0.450 | 0.350 |
d_age2 | 1.107 | 0.781 | 0.156 |
Gender | 0.701 | 0.433 | 0.106 |
Household Size | −0.146 | 0.078 | 0.062 * |
Agriculture income | 1.744 | 0.830 | 0.036 ** |
Cultivated area | 0.083 | 0.228 | 0.716 |
Belong to farmer group | 1.983 | 1.067 | 0.063 * |
site_1 | −1.087 | 0.897 | 0.225 |
site_2 | 0.144 | 0.964 | 0.882 |
Banana producer | 2.661 | 1.590 | 0.094 * |
Bean &banana | −0.097 | 1.526 | 0.949 |
_cons | −4.061 | 1.888 | 0.031 ** |
Parameters | Beans a | Banana b | ||||||
---|---|---|---|---|---|---|---|---|
Coef. | Std.dev * | t-Stat | p-Value | Coef. | Std.dev * | t-Stat | p-Value | |
β parameters | ||||||||
d_age1 | 1.18 | 4.97 | 0.24 | 0.813 | 18.81 | 7.14 | 2.64 | 0.009 |
d_age2 | 5.49 | 8.82 | 0.62 | 0.534 | 15.17 | 10.01 | 1.52 | 0.131 |
Gender | −2.95 | 4.14 | −0.71 | 0.477 | 9.73 | 6.38 | 1.52 | 0.128 |
Household Size | −0.30 | 0.86 | −0.35 | 0.724 | −0.42 | 0.96 | −0.44 | 0.659 |
Agr_income | −8.40 | 6.92 | −1.21 | 0.226 | −10.02 | 13.46 | −0.74 | 0.457 |
Cultivated_area | 13.87 | 5.19 | 2.67 | 0.008 | 12.61 | 11.27 | 1.12 | 0.264 |
Belongtofarmergroup | 20.31 | 6.50 | 3.12 | 0.002 | −6.19 | 14.19 | −0.44 | 0.663 |
bean&ban | −17.07 | 11.51 | −1.48 | 0.139 | −8.00 | 16.78 | −0.48 | 0.634 |
Past experience (years cultivating the crop) | −0.04 | 0.24 | −0.16 | 0.869 | 0.25 | 0.66 | 0.38 | 0.706 |
Site_2 | −15.21 | 6.83 | −2.23 | 0.026 | −22.76 | 7.76 | −2.93 | 0.004 |
Site_3 | −26.77 | 11.80 | −2.27 | 0.024 | ||||
γ parameters | ||||||||
sh_mixtures (incidence of varieties in mixt.) | 3.85 | 2.13 | 1.81 | 0.071 | 11.09 | 4.83 | 2.3 | 0.022 |
sh_locvarieties (incidence of loc. var.) | 1.60 | 1.82 | 0.88 | 0.378 | 1.00 | 3.58 | 0.28 | 0.779 |
total_varieties (total of varieties) | −0.35 | 0.29 | −1.24 | 0.215 | −0.42 | 0.39 | −1.09 | 0.278 |
Interaction terms | ||||||||
sh_mixtures × sh_loc. Varieties | −0.92 | 11.21 | −0.08 | 0.935 | −36.39 | 15.16 | −2.4 | 0.017 |
sh_mixtures × Cultivated Area | −1.93 | 7.67 | −0.25 | 0.801 | −3.33 | 11.74 | −0.28 | 0.777 |
sh_mixtures × Past experience | −0.40 | 0.30 | −1.32 | 0.186 | −1.06 | 0.68 | −1.55 | 0.122 |
θ parameters | ||||||||
T3 | 9.25 | 6.01 | 1.54 | 0.125 | −7.36 | 12.97 | −0.57 | 0.571 |
T5 | 20.95 | 7.51 | 2.79 | 0.005 | −24.61 | 22.80 | −1.08 | 0.281 |
A | 17.70 | 18.02 | 0.98 | 0.326 | 51.94 | 31.21 | 1.66 | 0.097 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nankya, R.; Mulumba, J.W.; Caracciolo, F.; Raimondo, M.; Schiavello, F.; Gotor, E.; Kikulwe, E.; Jarvis, D.I. Yield Perceptions, Determinants and Adoption Impact of on Farm Varietal Mixtures for Common Bean and Banana in Uganda. Sustainability 2017, 9, 1321. https://doi.org/10.3390/su9081321
Nankya R, Mulumba JW, Caracciolo F, Raimondo M, Schiavello F, Gotor E, Kikulwe E, Jarvis DI. Yield Perceptions, Determinants and Adoption Impact of on Farm Varietal Mixtures for Common Bean and Banana in Uganda. Sustainability. 2017; 9(8):1321. https://doi.org/10.3390/su9081321
Chicago/Turabian StyleNankya, Rose, John W. Mulumba, Francesco Caracciolo, Maria Raimondo, Francesca Schiavello, Elisabetta Gotor, Enoch Kikulwe, and Devra I. Jarvis. 2017. "Yield Perceptions, Determinants and Adoption Impact of on Farm Varietal Mixtures for Common Bean and Banana in Uganda" Sustainability 9, no. 8: 1321. https://doi.org/10.3390/su9081321
APA StyleNankya, R., Mulumba, J. W., Caracciolo, F., Raimondo, M., Schiavello, F., Gotor, E., Kikulwe, E., & Jarvis, D. I. (2017). Yield Perceptions, Determinants and Adoption Impact of on Farm Varietal Mixtures for Common Bean and Banana in Uganda. Sustainability, 9(8), 1321. https://doi.org/10.3390/su9081321