Crop Parameters for Modeling Sugarcane under Rainfed Conditions in Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. The ALMANAC Model
2.2. Study Area
2.3. Sugarcane Crop-Management Databases
2.4. Climate and Soil Databases
2.5. Sugarcane Cultivar
2.6. Calibration of Crop Parameters
2.7. Validation of Crop Parameters in Three Regions
2.8. Statistical Analysis
3. Results
3.1. Sugarcane Crop Parameters
3.2. Validation of Parameters in Three Regions
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Lin, H.; Chen, J.; Pei, Z.; Zhang, S.; Hu, X. Monitoring sugarcane growth using ENVISAT ASAR data. Geoscience and Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2572–2580. [Google Scholar] [CrossRef]
- Matsuoka, S.; Stolf, R. Sugarcane tillering and ratooning: Key factors for a profitable cropping. In Sugarcane: Production, Cultivation and Uses; Goncalves, J., Correia, K., Eds.; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2012; pp. 137–157. [Google Scholar]
- Marin, F.R.; Thorburn, P.J.; Nassif, D.S.; Costa, L.G. Sugarcane model intercomparison: Structural differences and uncertainties under current and potential future climates. Environ. Model. Softw. 2015, 72, 372–386. [Google Scholar] [CrossRef]
- Ascencio, J.; Lazo, J.V. The Shade Avoidance Syndrome under the Sugarcane Crop; Intech Open Access Publisher: Rijeka, Croatia, 2012. [Google Scholar]
- Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Caubel, A.; Huth, N.; Marin, F.; Martiné, J.-F. Modeling sugarcane yield with a process-based model from site to continental scale: Uncertainties arising from model structure and parameter values. Geosci. Model Dev. 2014, 7, 1225–1245. [Google Scholar] [CrossRef]
- Valade, A.; Vuichard, N.; Ciais, P.; Ruget, F.; Viovy, N.; Gabrielle, B.; Huth, N.; Martiné, J.F. ORCHIDEE-STICS, a process-based model of sugarcane biomass production: Calibration of model parameters governing phenology. GCB Bioenergy 2014, 6, 606–620. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAO Statistics. Available online: http://www.fao.org/faostate (accessed on 12 July 2016).
- Marin, F.R.; Jones, J.W. Process-based simple model for simulating sugarcane growth and production. Sci. Agric. 2014, 7, 11–16. [Google Scholar] [CrossRef]
- Bravo-Mosqueda, E.; Baez-Gonzalez, A.D.; Tinoco-Alfaro, C.A.; Mariles-Flores, V.; Osuna-Ceja, E. Yield-gap analysis of a homogenous area and zonification of a sugarcane mill region in Oaxaca, Mexico. J. Crop Improv. 2014, 28, 772–794. [Google Scholar] [CrossRef]
- Andrade, A.S.; Santos, P.M.; Pezzopane, J.R.M.; de Araujo, L.C.; Pedreira, B.C.; Pedreira, C.G.S.; Marin, F.R.; Lara, M.A.S. Simulating tropical forage growth and biomass accumulation: An overview of model development and application. Grass Forage Sci. 2015, 71, 54–65. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Williams, J.R.; Gassman, P.W.; Debaeke, P. A General, Process-Oriented Model for Two Competing Plant Species. Trans. ASAE 1992, 3, 801–810. [Google Scholar]
- Williams, J.R.; Jones, C.A.; Dyke, P.T. The EPIC Model and Its Application. In Proceedings of the International Symposium on Minimum Data Sets for Agrotechnology Transfer, Andhra Pradeshe, India, 21–26 March 1983. [Google Scholar]
- Inman-Bamber, N. A growth model for sugar-cane based on a simple carbon balance and the CERES-Maize water balance. S. Afr. J. Plant Soil 1991, 8, 93–99. [Google Scholar] [CrossRef]
- Keating, B.A.; Robertson, M.J.; Muchow, R.C.; Huth, N.I. Modelling sugarcane production systems I. Development and performance of the sugarcane module. Field Crops Res. 1999, 61, 253–271. [Google Scholar] [CrossRef]
- Kucharik, C.J. Evaluation of a process-based agro-ecosystem model (Agro-IBIS) across the US corn belt: Simulations of the interannual variability in maize yield. Earth Interact. 2003, 7, 1–33. [Google Scholar] [CrossRef]
- Bondea, U.A.; Smith, P.C.; Zaehle, S.; Schaphof, S.; Lucht, W.; Cramer, W.; Gerten, D.; Lotze-Campen, H.; Muller, C.; Reichstein, M.; et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Chang. Biol. 2007, 13, 679–706. [Google Scholar] [CrossRef]
- O’Leary, G.J. A review of three sugarcane simulation models with respect to their prediction of sucrose yield. Field Crops Res. 2000, 68, 97–111. [Google Scholar] [CrossRef]
- Surendran, N.S.; Kang, S.; Zhang, X.; Miguez, F.E.; Izaurralde, R.C.; Post, W.M.; Dietze, M.C.; Lynd, L.R.; Wullschleger, S.D. Bioenergy crop models: Descriptions, data requirements, and future challenges. GCB Bioenergy 2012, 4, 620–633. [Google Scholar] [CrossRef]
- Baez-Gonzalez, A.D.; Kiniry, J.R.; Padilla, R.J.S.; Medina, G.G.; Ramos, G.J.L.; Osuna, C.E.S. Parametrization of ALMANAC Crop Simulation Model for Non-Irrigated Dry Bean in Semi-Arid Temperate Areas in Mexico. Interciencia 2015, 40, 185–189. [Google Scholar]
- Ahuja, L.R.; Ma, L. A synthesis of current parameterization approaches and needs for further improvements. In Methods of Introducing System Models into Agricultural Research; Ahuja, L.R., Ma, L., Eds.; American Society of Agronomy Inc.: Madison, WI, USA; Crop Science Society of America Inc.: Madison, WI, USA; Soil Science Society of America Inc.: Madison, WI, USA, 2011; pp. 427–440. [Google Scholar]
- Singels, M.J.; van den Berg, M. DSSAT v4.5—Canegro Sugarcane Plan Module. Scientific Documentation. International Consortium for Sugarcane Modelling (ICSM). Available online: http://sasri.sasa.org.za/misc/icsm.html (accessed on 14 November 2015).
- Ma, L.; Ahuja, L.R.; Saseendran, S.A.; Malone, R.W.; Green, T.R.; Nolan, B.T.; Bartling, P.N.S.; Flerchinger, G.N.; Boote, K.J.; Hoogenboom, G.A. Protocol for parameterization and calibration of RZWQM2 in field research. In Methods of Introducing System Models into Agricultural Research; Ahuja, L.R., Ma, L., Eds.; American Society of Agronomy Inc.: Madison, WI, USA; Crop Science Society of America Inc.: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 2011; pp. 1–64. [Google Scholar]
- Guo, L.P.; Kang, H.J.; Ouyang, Z.; Zhuang, W.; Yu, Q. Photosynthetic parameters estimations by considering interactive effects of light, temperature and CO2 concentration. Int. J. Plant Prod. 2015, 9, 321–345. [Google Scholar]
- Shimabuku, M. Studies on the yield of sugarcane varieties with particular reference to the efficiency structure and light extinction coefficient of communities of some sugarcane varieties. Jpn. J. Trop. Agric 1976, 19, 151–155. [Google Scholar]
- Hikosaka, K.; Hirose, T. Leaf angle as a strategy for light competition: Optimal and evolutionarily stable-extinction coefficient within a leaf canopy. Ecoscience 1997, 4, 501–507. [Google Scholar] [CrossRef]
- Singels, A.; Donaldson, R.A. A Simple Model of Unstressed Sugarcane Canopy Development. Proc. S. Afr. Sugar Technol. Assoc. 2000, 74, 151–154. [Google Scholar]
- Shimabuku, M.; Higa, K. Studies on the yield of sugarcane varieties with particular reference to the efficiency of the utilization on sunlight. Part 3. The effects of light extinction coefficient on some yield components in some sugarcane varieties. Congress of the International Society of Sugar Cane Technologists. Plant Breed. 1977, 16, 177–185. [Google Scholar]
- Xie, Y.; Kiniry, J.R.; Nedbalek, V.; Rosenthal, W.D. Maize and sorghum simulation with CEREs-Maize, SORKAM, and ALMANAC under water-limiting conditions. Agron. J. 2001, 93, 1148–1155. [Google Scholar] [CrossRef]
- Meki, M.N.; Snider, L.J.; Kiniry, J.R.; Raper, L.R.; Rocateli, C.A. Energy sorghum biomass harvest thresholds and tillage effects on soil organic carbon and bulk density. Ind. Crops Prod. 2013, 43, 172–182. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Jones, C.A.; O’toole, J.C.; Blanchet, R.; Cabelguenne, M.; Spanel, D.A. Radiation-use efficiency in biomass accumulation prior to grain-filling for five grain-crops species. Field Crops Res. 1989, 20, 51–64. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Burson, B.L.; Evers, G.W.; Williams, L.R.; Sanchez, H.; Wade, C.; Featherson, J.W.; Greenwade, J. Coastal bermudagrass, bahiagrass, and native range simulation at diverse sites in Texas. Agron. J. 2007, 99, 450–461. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Lynd, L.; Greene, N.; Johnson, M.V.; Casler, M.; Laster, M.S. Biofuels and water use: Comparison of maize and switchgrass and general perspectives. In New Research on Biofuels; Wright, J.H., Evans, D.A., Eds.; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2008; pp. 1–14. [Google Scholar]
- Kiniry, J.R.; Schmer, M.R.; Vogel, K.P.; Mitchell, R.B. Switchgrass biomass simulation at diverse sites in the Northern Great Plains of the U.S. Bioenergy Res. 2008, 1, 259–264. [Google Scholar] [CrossRef]
- Mclaughlin, B.S.; Kiniry, J.R.; Taliaferro, C.M.; De La Torre, U.D. Projecting yield and utilization potential of switch grass as an energy crop. Adv. Agron. 2006, 90, 267–297. [Google Scholar] [CrossRef]
- Woli, P.; Paz, J.O.; Lang, D.J.; Baldwin, B.S.; Kiniry, J.R. Soil and variety effects on the energy and carbon balances of switchgrass-derived ethanol. J. Sustain. Bionergy Syst. 2012, 2, 65–74. [Google Scholar] [CrossRef]
- Meki, M.N.; Kiniry, J.R.; Youkkhana, A.H.; Crow, S.E.; Ogashi, R.M.; Nakahata, M.H.; Tirado-Corba, L.R.; Anderson, R.G.; Osorio, J.; Jeong, J. Two-year growth cycle sugarcane crop parameters attributes and their application in modelling. Agron. J. 2015, 107, 1310–1320. [Google Scholar] [CrossRef]
- Behrman, D.K.; Kiniry, J.R.; Winchell, M.; Juenger, T.E.; Keitt, T.H. Spatial forecasting of switchgrass productivity under current and future climate change scenarios. Ecol. Appl. 2013, 23, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Kiniry, J.R. A general crop model. In Modeling and Remote Sensing Applied to Agriculture (U.S. and Mexico); Richardson, W.C., Baez-Gonzalez, A.D., Tiscareno-Lopez, M., Eds.; USDA-ARS: Washington, DC, USA; INIFAP Ciudad de Mexico, Mexico, 2006; pp. 1–12. [Google Scholar]
- Kiniry, J.R.; Blanchet, R.; Williams, J.R.; Texier, V.; Jones, C.A.; Cabelguenne, M. Simulating sunflower with the EPIC and ALMANAC models. Field Crops Res. 1992, 30, 403–423. [Google Scholar] [CrossRef]
- Williams, J.R.; Jones, C.A.; Kiniry, J.R.; Spanel, D.A. The EPIC crop growth model. Trans. ASAE 1989, 32, 497–511. [Google Scholar] [CrossRef]
- Kemanian, A.R.; Stockle, C.O.; Huggins, D.R. Variability of barley radiation-use efficiency. Crop Sci. 2004, 44, 1662–1672. [Google Scholar] [CrossRef]
- Stockle, C.A.; Kiniry, J.R. Variability in crop radiation use efficiency associated with vapor pressure deficit. Field Crops Res. 1990, 21, 171–181. [Google Scholar] [CrossRef]
- Official Journal of The Federation (Diario Oficial de la Federacion). Programa Nacional de la Agroindustria de la Caña de Azucar 2014–2018; Edicion Vespertina Mexico: Mexico City, Mexico, 2014. (In Spanish) [Google Scholar]
- SIAP (Servicio De Información Agroailmentaria Y Pesquera) Cierre de la Producción Agrícola Por Cultivo 2012. Available online: http://www.siap.gob.mx/index.php?option=com_wrapper&view=wrapper&Itemid=350 (accessed 21 November 2015). (In Spanish).
- Garcia, E. Modificaciones al Sistema de Clasificación Climática de Köppen, 2nd ed.; Instituto de Geografía, UNAM: Ciudad de Mexico, Mexico, 1973; p. 246. [Google Scholar]
- Mexican Sugarcane Manual (Manual Azucarero Mexicano). Cuadragésima Séptima Edición, 47th ed.; Compañía Editora del Manual Azucarero, S.A. de C.V.: Ciudad de Mexico, Mexico, 2004. (In Spanish) [Google Scholar]
- Magallanes, E.A.; Lopez, L.A.; Ramirez, G.R.A. Caracterizacion del Ingenio Plan de Ayala, San Luis Potosi. In Caracteristicas Climaticas y Edaficas de las Zonas de Abastecimiento de Ingenios Cañeros en Mexico. Climatic and Soil Characteristics of the Sugarcane Mill Supply Zones in Mexico; Baez-Gonzalez, A.D., Medina-Garcia, G., Ruiz-Corral, J.A., Ramos-Gonzalez, J.L., Eds.; Libro Tecnico No. 13; INIFAP-SAGARPA: Ciudad de Mexico, Mexico, 2012; pp. 269–302. (In Spanish) [Google Scholar]
- Richardson, C.W.; Nicks, A.D. Weather generator description. In EPIC—Erosion/Productivity Impact Calculator. 1. Model Documentation; Sharpley, A.N., Williams, J.R., Eds.; Technical Bulletin No. 1768; U.S. Department of Agriculture: Washington, DC, USA, 1990; pp. 93–103. [Google Scholar]
- Nicks, A.D.; Richardson, C.W.; Williams, J.R. Evaluation of the EPIC model generator. In EPIC—Erosion/Productivity Impact Calculator. 1. Model Documentation; Sharpley, A.N., Williams, J.R., Eds.; Technical Bulletin No. 1768; U.S. Department of Agriculture: Washington, DC, USA, 1990; pp. 105–124. [Google Scholar]
- Sharpley, A.N.; Williams, J.R. EPIC—Erosion/Productivity Impact Calculator. 1. Model Documentation; Technical Bulletin No. 1768; U.S. Department of Agriculture: Washington, DC, USA, 1990; p. 235.
- PRONAC (Programa Nacional de la Agroindustria de la Caña de Azucar). Digitalizacion del Campo Cañero en Mexico para Alcanzar la Agricultura de Precision de la Caña de Azucar. Desarrollo de un Modelo Integral de Sistema de Informacion Geografica y Edafica como Fundamento de la Agricultura de Precision en la Caña de Azucar en Mexico. Formato Digital. 2009. Digital Format. Available online: http://www.intechopen.com/books/crop-plant/the-shade-avoidance-syndrome-under-the-sugarcane-crop (accessed on 16 June 2015).
- Milanes-Ramos, N.; Ruvalcaba, V.E.; Caredo, M.B.; Barahona, P.O. Effects of Location and Time of Harvest on Yields of the Three Main Sugarcane Varieties in Mexico. Proc. Int. Soc. Sugar Cane Technol. 2010, 27, 1–10. [Google Scholar]
- Hussnain, S.-Z.; Afghan, S.; Road, T.; Haq, M.-I.; Mughal, S.-M.; Shahazad, A.; Hussain, K.; Nawaz, K.; Pan, Y.-B.; Batool, A.; et al. First report of ratoon stunt of sugarcane caused by Leifsoni xyli subsp. xyli in Pakistan. Plant Dis. 2011, 95, 1581. [Google Scholar] [CrossRef]
- Shoko, M.D.; Zhou, M.; Pieterse, P.J. The use of Soybean (Glycine max) as a break crop affect the cane and sugar yield of sugarcane (Saccharum officinarum) variety CP 72-2086 in Zimbabwe. World J. Agric. Sci. 2009, 5, 567–571. [Google Scholar]
- Sinclair, T.R.; Gilbert, R.A.; Perdomo, R.E.; Shine, J.M., Jr.; Powell, G.; Montes, G. Sugarcane leaf area development under field conditions in Florida, USA. Field Crops Res. 2004, 88, 171–178. [Google Scholar] [CrossRef]
- Rea, R.; De Souza, O.; Gonzalez, V. Caracterizacion de catorce variedades promisoras de caña de azucar en Venezuela Characterization of fourteen promising sugarcane varieties in Venezuela. Revista Cana de Azucar 1994, 12, 3–45. (In Spanish) [Google Scholar]
- Fermin, S.J. Calidad del jugo y contenido de fibra de tres variedades de caña de azucar en un ciclo de crecimiento en Guanacaste, Costa Rica Juice quality and fiber content of three varieties of sugarcane in one growth cycle in Guanacaste, Costa Rica. Agronomia Costarriciense 1998, 22, 173–184. (In Spanish) [Google Scholar]
- Chavarria, E.F.; Vega, S.J.; Ralda, G.; Glynn, N.C.; Comstock, J.C.; Castlebury, A. First report of orange rust of sugarcane caused by Puccinia kuehnii in Costa Rica and Nicaragua. Plant Dis. 2009, 93, 425. [Google Scholar] [CrossRef]
- Ovalle, W.; Comstock, J.C.; Glynn, N.C.; Castlebury, L.A. First Report of Puccinia kuehnii, Causau Agent of Orange Rust of Sugarcane, in Guatemala. Plant Dis. 2008, 92, 973. [Google Scholar] [CrossRef]
- Schuenneman, T.J.; Miller, J.D.; Gilbert, R.A.; Harrison, N.L. Sugarcane Cultivar CP 72-2086 Descriptive Fact Sheet; University of Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences: Gainesville, FL, USA, 2008; SSAG115; pp. 1–4. [Google Scholar]
- Todd, J.; Glaz, B.; Burner, D.; Kimbeng, C. Historical use of cultivars as parents in Florida and Louisiana sugarcane breeding programs. Hindawi Publishing Corporation. Int. Sch. Res. 2015, 2015, 257417. [Google Scholar] [CrossRef]
- Miller, J.D.; Tai, P.Y.P.; Glaz, B.; Dean, J.L.; Kang, M.S. Registration of CP 72-2086 sugarcane. Crop Sci. 1984, 24, 210. [Google Scholar] [CrossRef]
- Aguilar, N.; Debernardi, L. Efecto de la floracion en la calidad agroindustrial de la variedad de caña de azucar CP 72-2086 en Mexico. Effect of flowering on the agroindustrial quality of CP 72-2086 sugarcane in Mexico. Caña de Azucar 2004, 22, 19–37. (In Spanish) [Google Scholar]
- Skrehota, O. Quantitative Structure-Property Relationship Modeling Algorithms, Challenges and IT Solutions. Ph.D. Thesis, Masaryk University Faculty of Informatics, Brno, Czechoslovakia, 2010. [Google Scholar]
- Ko, J.; Piccinn, G.; Guo, W.; Steglich, E. Parameterization of EPIC crop model for simulation of cotton growth in South Texas. J. Agric. Sci. 2009, 147, 169–178. [Google Scholar] [CrossRef]
- Ahuja, L.R.; Ma, L. Parameterization of agricultural system models: Current approaches and future needs. In Agricultural Systems Models in Field Research and Technology Transfer; Ahuja, L.R., Ma, L., Howell, T.A., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2002; pp. 273–316. [Google Scholar]
- Driessen, P.M.; Konijn, N.T. Land-Use Systems Analysis; Wageningen Agricultural University, Department of Soil Science & Geology: Wageningen, The Netherlands, 1992; p. 230. [Google Scholar]
- Monteiro, L.A.; Sentelhas, P.C. Potential and actual sugarcane yields in southern Brazil as a function of climate conditions and crop management. Sugar Technol. 2013, 16, 264–276. [Google Scholar] [CrossRef]
- Odongo, V.; Onyando, J.; Mutua, B.; van Oel, P.R.; Becht, R. Sensitivity analysis and calibration of the Modified Universal Soil Loss Equation (MUSLE) for the Upper Malewa Catchment, Kenya. Int. J. Sediment Res. 2013, 28, 368–383. [Google Scholar] [CrossRef]
- Harley, P.C.; Tenhunen, J.D. Modeling the photosynthetic response of C3 leaves to environmental factors. In Modeling Crop Photosynthesis—From Biochemistry to Canopy; CSSA special publication No. 19; American Society of Agronomy and Crop Science of America: Madison, WI, USA, 1991; pp. 17–39. [Google Scholar]
- Inman-Bamber, N.G.; Thompson, G.D. Models of Dry Matter Accumulation by Sugarcane. Proc. S. Afr. Sugar Technol. Assoc. 1989, 63, 212–216. [Google Scholar]
- Kobayashi, K.; Salam, M.U. Comparing simulated and measured values using mean squared deviation and its components. Agron. J. 2000, 92, 345–352. [Google Scholar] [CrossRef]
- Bellocchi, G.; Rivington, M.; Donatelli, M.; Matthews, K. Validation of biophysical models: Issues and methodologies. A review. Agron. Sustain. Dev. 2010, 30, 109–130. [Google Scholar] [CrossRef]
- Netafim. Sugarcane. Available online: http://www.sugarcanecrops.com/climate/ (accessed on 15 July 2015).
- Jones, C.A.; Kiniry, J.R. CERES-Maize Model: A Simulation Model of Maize Growth and Development; Texas A&M University Press: College Station, TX, USA, 1986. [Google Scholar]
- Zhou, M.M.; Singels, A.; Savage, M.J. Physiological Parameters for Modeling Differences in Canopy Development between Sugarcane Cultivars. Proc. S. Afr. Sugar Technol. Assoc. 2002, 7, 610–621. [Google Scholar]
Study Phase | Mill, State and Sugarcane Region | Harvest Period | Farm Site Location | Soil Classification and Physical Description a | Climate b | |
---|---|---|---|---|---|---|
Calibration | Ingenio Plan de Ayala, San Luis Potosi, Northeast Region | 2008–2009 and 2009–2010 | 1 | 99°04′32.11′′ W, 22°37′10.70′′ N, 156 m a.s.l. | Vertisols, 36% clay, 34% silt, 1.86% SOC, 8.5 pH | 29.9 °C, 18.3 °C ,1188 mm, AW2 |
2 | 99°05′41.56′′ W, 22°38′16.5′′ N, 147 m a.s.l. | Vertisols, 36% clay, 34% silt, 1.86% SOC, 8.5 pH | 30.0 °C, 18.3 °C, 1172 mm, AW2 | |||
3 | 99°15′59′′ W, 22°07′49′′ N, 561 m a.s.l. | Rendzina, 32% clay, 34% Silt, 1.86% SOC, 8.5 pH | 29.3 °C, 17.2 °C, 1559 mm, (A)C(m) | |||
4 | 99°05′20.78′′ W, 22°30′07.60′′ N, 240 m a.s.l. | Calcaric Regosols, 56% clay, 20% Silt, 3.37% SOC, 7.4 pH | 29.2 °C, 17.6 °C, 1193 mm, AW2 | |||
Validation | Ingenio Plan de Ayala, San Luis Potosi, Northeastern Region | 2009–2010 | 1 | 99°03′04.17′′ W, 22°31′43.01′′ N, 243 m a.s.l. | Rendzina, 46% clay, 32% silt,1.22% SOC, 8.4 pH | 29.2 °C, 17.7 °C, 1218 mm, AW2 |
2 | 99°03′48.73′′ W, 22°24′11.92′′ N, 271 m a.s.l. | Vertisols, 56% clay, 20% silt,3.37% SOC, 7.4 pH | 28.8 °C, 17.3 °C, 1216 mm, AW2 | |||
3 | 99°50′46.01′′ W, 22°20′16.93′′ N, 259 m a.s.l. | Calcaric Regosols, 56% clay, 20% silt,3.37% SOC, 7.4 pH | 29.1 °C, 17.5 °C, 1208 mm, AW2 | |||
4 | 99°07′35.24′′ W, 22°21′25.52′′ N, 220 m a.s.l. | Litosol, 56% clay,20% silt,3.37% SOC, 7.4 pH | 28.5 °C, 17.0 °C, 1243 mm, AW2 | |||
5 | 99°04′32.89′′ W, 22°36′40.37′′ N, 168 m a.s.l. | Vertisols, 36% clay, 34% silt,1.86% SOC, 8.5 pH | 29.9 °C, 18.3 °C, 1191 mm, AW2 | |||
6 | 99°05′09.80′′ W, 22°26′11.45′′ N, 287 m a.s.l. | Calcaric Regosols, 56% clay, 20% silt, 3.37% SOC, 7.4 pH | 28.9 °C, 17.4 °C, 1207 mm, AW2 | |||
7 | 99°04′47.77′′ W, 22°31′07.12′′ N, 225 m a.s.l. | Calcaric Regosols, 34% clay, 26% silt, 0.70% SOC, 7.7 pH | 29.4 °C, 17.8 °C, 1199 mm, AW2 | |||
8 | 99°04′32.1′′ W, 22°25′10.23′′ N, 270 m a.s.l. | Vertisols, 56% clay, 20% silt, 3.37% SOC, 7.4 pH | 28.9 °C, 17.4 °C, 1208 mm, AW2 | |||
Ingenio Adolfo Lopez Mateos, Oaxaca, Gulf of Mexico Region | 2008–2009 | 1 | 96°14′22.07′′ W, 18°06′54.52′′ N, 52 m a.s.l. | Chromic Luvisols ,48% clay, 28% silt, 1.45% SOC, 6.8 pH | 30.0 °C, 20.3 °C, 2613 mm, Am | |
2 | 96°14′47.30′′ W, 18°07′55.28′′ N, 41 m a.s.l. | Chromic Luvisols, 48% clay, 28% silt, 1.45% SOC, 6.8 pH | 30.0 °C, 20.3 °C, 2560 mm, Am | |||
3 | 96°13′45.31′′ W, 18°08′10.97′′ N, 31 m a.s.l. | Chromic Luvisols, 48% clay, 28% silt, 1.45% SOC, 6.8 pH | 30.0 °C, 20.3 °C, 2458 mm, Am | |||
4 | 96°12′12.86′′ W, 18°08′49.68′′ N, 24 m a.s.l. | Chromic Luvisols, 48% clay, 28% silt, 1.45% SOC, 6.8 pH | 30.2 °C, 20.4 °C, 2279 mm, Am | |||
5 | 96°12′46.19′′ W, 18°09′33.92′′ N, 16 m a.s.l. | Chromic Luvisols, 48% clay, 28% silt, 1.45% SOC, 6.8 pH | 30.3 °C, 20.5 °C, 2193 mm, Am | |||
6 | 96°17′44.28′′ W, 18°07′10.88′′ N, 49 m a.s.l. | Luvic Phaeozems, 48% clay, 28% silt, 1.45% SOC, 6.8 pH | 30.0 °C, 20.3 °C, 2801 mm, Am | |||
7 | 96°11′39.50′′ W, 18°06′56.81′′ N, 29 m a.s.l. | Chromic Luvisols, 48% clay, 28% silt, 1.45% SOC, 6.8 pH | 30.1 °C, 20.3 °C, 2427 mm, Am | |||
Ingenio Jose Maria Morelos, Jalisco, Pacific Region | 2008–2009 | 1 | 104°28′58.32′′ W, 19°34′23.12′′ N, 289 m a.s.l. | Haplic Phaeozems, 36% clay, 18% silt, 0.64% SOC, 4.7 pH | 32.8 °C, 18.7 °C, 1430 mm, AW2 | |
2 | 104°27′48.84′′ W, 19°34′16.36′′ N, 300 m a.s.l. | Haplic Phaeozems, 36% clay, 18% silt, 0.64% SOC, 4.7 pH | 32.8 °C, 18.7 °C, 1458 mm, AW2 | |||
3 | 104°27′21.89′′ W, 19°38′22.70′′ N, 338 m a.s.l. | Haplic Phaeozems, 36% clay, 18% silt, 0.64% SOC, 4.7 pH | 32.9 °C, 18.4 °C, 1556 mm, AW2 | |||
4 | 104°31′19.56′′ W, 19°37′37.31′′ N, 285 m a.s.l. | Haplic Phaeozems, 36% clay, 18% silt, 0.64% SOC, 4.7 pH | 32.9 °C, 18.6 °C, 1457 mm, AW2 | |||
5 | 104°29′52.52′′ W,19°36′59.55′′ N, 287 m a.s.l. | Haplic Phaeozems, 36% clay, 18% silt, 0.64% SOC, 4.7 pH | 32.9 °C, 18.6 °C, 1458 mm, AW2 | |||
6 | 104°32′10.29′′ W, 19°36′41.92′′ N, 280 m a.s.l. | Haplic Phaeozems, 36% clay, 18% silt, 0.64% SOC, 4.7 pH | 32.8 °C, 18.6 °C, 1423 mm, AW2 | |||
7 | 104°37′04.69′′ W, 19°30′38.15′′ N, 257 m a.s.l. | Haplic Phaeozems, 44% clay, 28% silt, 2.21% SOC, 6.3 pH | 32.5 °C, 18.8 °C, 1196 mm, AW2 | |||
8 | 104°26′59.41′′ W, 19°36′15.36′′ N, 331 m a.s.l. | Haplic Phaeozems, 36% clay, 18% silt, 0.64% SOC, 4.7 pH | 32.9 °C, 18.3 °C, 1585 mm, AW1 | |||
9 | 104°31′00.62′′ W, 19°35′00.57′′ N, 279 m a.s.l. | Haplic Phaeozems, 36% clay, 18% silt, 0.64% SOC, 4.7 pH | 32.8 °C, 18.7 °C, 1391 mm, AW2 | |||
10 | 104°33′12.65′′ W, 19°31′04.30′′ N, 269 m a.s.l. | Haplic Phaeozems, 36% clay, 18% silt, 0.64% SOC, 4.7 pH | 32.5 °C, 18.8 °C, 1278 mm, AW1 | |||
11 | 104°32′50.04′′ W, 19°33′13.20′′ N, 262 m a.s.l. | Eutric Regosols, 44% clay, 28% silt, 2.21% SOC, 6.4 pH | 32.7 °C, 18.7 °C, 1327 mm, AW1 |
Management Practice | Ingenio Plan de Ayala, San Luis Potosi †. Northeastern Mexico | Ingenio Adolfo Lopez Mateos, Oaxaca †. Gulf of Mexico | Ingenio Jose Maria Morelos, Jalisco ‡. Pacific Mexico |
---|---|---|---|
Land Preparation | Subsoil: February, April or May | Subsoil: October–November | Subsoil: October, November and December |
First ripping: April | Ripping: October–November | Ripping (3 times): October–November | |
Second ripping and fallow: May | Fallow: October–November | Fallow: October–December | |
Herbicide application: June | Herbicide application: October–November | Herbicide application: June-July | |
Planting period | September–November | October–December | October–December |
Plant density | 6–8 Mg of seed billets/ha | 10 Mg of seed billets/ha | 10–12 Mg of seed billets/ha |
Planting method | Manual in inter-row furrows of 1.3 m | Manual in inter-row furrows of 1.2 m | Manual in inter-row furrows of 1.4 m |
Fertilization | First application: 100-50-100 Second application: 138-00-00 Applied manually in moist soil | Application: 102-102-102 Applied manually in moist soil | First application: 96-96-96 or 120-60-160 organic compost (2 Mg ha−1) Second application: 92-00-00 Applied manually in moist soil |
Harvesting | December–April | November–January | December–January |
Other practices | Weed and pest control | Weed and pest control | Weed and pest control |
Parameter Name | Units | Value |
---|---|---|
Biomass-energy ratio | g MJ−1 m−2 | 3.4 |
Optimal temperature | °C | 32 |
Minimum temperature | °C | 11 |
Maximum Leaf Area Index | 7.5 | |
Fraction of season when LAI starts to decline | 0.9 | |
Leaf area decline rate index | 0.3 | |
Light extinction coefficient for Beer’s Law | 0.69 | |
First point on optimal LAI curve | 25; 25 * | |
Second point on optimal LAI curve | 90; 95 * | |
Potential heat units | °C | 6000–7400 |
Maximum crop height | m | 4 |
Maximum root depth | m | 2 |
Dry matter decline rate index | 0.1 | |
Harvest index | 0.9 |
Harvest Period | Farm Site | Measured Yield (Mg ha−1) | Simulated Yield (Mg ha−1) with Crop Parameters * | ||||
---|---|---|---|---|---|---|---|
k 0.53 | k 0.56 | k 0.65 | k 0.67 | k 0.69 | |||
2008–2009 | 1 | 60 | 54.0 | 57.7 | 59.7 | 57.3 | 57.7 |
2 | 60 | 57.0 | 60.3 | 62.4 | 60.3 | 60.7 | |
3 | 40 | 28.2 | 28.9 | 30.7 | 31.1 | 31.5 | |
4 | 60 | 55.9 | 56.7 | 58.8 | 59.2 | 59.5 | |
2009–2010 | 1 | 55 | 56.8 | 60.3 | 61.8 | 58.9 | 59.2 |
2 | 65 | 60.6 | 64.5 | 66.6 | 64.0 | 64.4 | |
3 | 35 | 27.9 | 28.6 | 30.4 | 30.8 | 31.1 | |
4 | 60 | 58.5 | 59.2 | 61.3 | 61.7 | 62.0 | |
Mean | 54.4 | 49.9 | 52.0 | 54.0 | 52.9 | 53.3 | |
RMSD | 5.9 | 5.1 | 4.5 | 3.9 | 3.8 |
Sugarcane Region | Number of Farm Sites | RMSD (Mg ha−1) of Yield Simulation with Crop Parameters * | |||
---|---|---|---|---|---|
k 0.53 | k 0.65 | k 0.67 | k 0.69 | ||
Northeastern Mexico | 8 | 4.0 | 3.9 | 4.0 | 3.9 |
Gulf of Mexico | 7 | 11.4 | 10.1 | 9.8 | 9.4 |
Pacific Mexico | 11 | 11.4 | 9.1 | 8.9 | 8.7 |
Three regions combined | 26 | 9.7 | 8.2 | 8.0 | 7.8 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baez-Gonzalez, A.D.; Kiniry, J.R.; Meki, M.N.; Williams, J.; Alvarez-Cilva, M.; Ramos-Gonzalez, J.L.; Magallanes-Estala, A.; Zapata-Buenfil, G. Crop Parameters for Modeling Sugarcane under Rainfed Conditions in Mexico. Sustainability 2017, 9, 1337. https://doi.org/10.3390/su9081337
Baez-Gonzalez AD, Kiniry JR, Meki MN, Williams J, Alvarez-Cilva M, Ramos-Gonzalez JL, Magallanes-Estala A, Zapata-Buenfil G. Crop Parameters for Modeling Sugarcane under Rainfed Conditions in Mexico. Sustainability. 2017; 9(8):1337. https://doi.org/10.3390/su9081337
Chicago/Turabian StyleBaez-Gonzalez, Alma Delia, James R. Kiniry, Manyowa N. Meki, Jimmy Williams, Marcelino Alvarez-Cilva, Jose L. Ramos-Gonzalez, Agustin Magallanes-Estala, and Gonzalo Zapata-Buenfil. 2017. "Crop Parameters for Modeling Sugarcane under Rainfed Conditions in Mexico" Sustainability 9, no. 8: 1337. https://doi.org/10.3390/su9081337
APA StyleBaez-Gonzalez, A. D., Kiniry, J. R., Meki, M. N., Williams, J., Alvarez-Cilva, M., Ramos-Gonzalez, J. L., Magallanes-Estala, A., & Zapata-Buenfil, G. (2017). Crop Parameters for Modeling Sugarcane under Rainfed Conditions in Mexico. Sustainability, 9(8), 1337. https://doi.org/10.3390/su9081337