Classification of Global Land Development Phases by Forest and GDP Changes for Appropriate Land Management in the Mid-Latitude
Abstract
:1. Introduction
2. The Relationship between Ecosystem and Socio-Economic Status
3. Classification of Global Land Development Phases
3.1. LDPs Based on Forest Stock Changes
3.2. LDPs Based on Forest Area and GDP Changes
4. Relationship between LDPs and WFE Indices
5. Implementation of LDPs with the WFE Nexus in the Mid-Latitude Region
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stern, D.I.; Common, M.S.; Barbier, E.B. Economic growth and environmental degradation: The environmental Kuznets curve and sustainable development. World Dev. 1996, 24, 1151–1160. [Google Scholar] [CrossRef]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed]
- Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Öhman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kaine, N.; Noble, I. Policy: Sustainable development goals for people and planet. Nature 2013, 495, 305–307. [Google Scholar] [CrossRef] [PubMed]
- United Nations. The Sustainable Development Agenda. Available online: http://www.un.org/sustainabledevelopment/development-agenda/ (accessed on 15 March 2017).
- Bazilian, M.; Rogner, H.; Howells, M.; Hermann, S.; Arent, D.; Gielen, D.; Steduto, P.; Mueller, A.; Komor, P.; Tol, R.S.J.; et al. Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy 2011, 39, 7896–7906. [Google Scholar] [CrossRef]
- Scott, C.A.; Pierce, S.A.; Pasqualetti, M.J.; Jones, A.L.; Montz, B.E.; Hoover, J.H. Policy and institutional dimensions of the water-energy nexus. Energy Policy 2011, 39, 6622–6630. [Google Scholar] [CrossRef]
- Ringler, C.; Bhaduri, A.; Lawford, R. The nexus across water, energy, land and food (WELF): Potential for improved resource use efficiency? Curr. Opin. Environ. Sustain. 2013, 5, 617–624. [Google Scholar] [CrossRef]
- Allan, T.; Keulertz, M.; Woertz, E. The water-food-energy nexus: An introduction to nexus concepts and some conceptual and operational problems. Int. J. Water Resour. Dev. 2015, 31, 301–311. [Google Scholar] [CrossRef]
- Gallagher, L.; Dalton, J.; Brethaut, C.; Allan, T.; Bellfield, H.; Crilly, D.; Cross, K.; Gyawali, D.; Klein, D.; Kaine, S.; et al. The critical role of risk in setting directions for water, food and energy policy and research. Curr. Opin. Environ. Sustain. 2016, 23, 12–16. [Google Scholar] [CrossRef]
- Biggs, E.M.; Bruce, E.; Boruff, B.; Duncan, J.M.; Horsley, J.; Pauli, N.; Pauli, N.; McNeill, K.; Neef, A.; Ogtrop, F.V.; et al. Sustainable development and the water-energy-food nexus: A perspective on livelihoods. Environ. Sci. Policy 2015, 54, 389–397. [Google Scholar] [CrossRef]
- Rasul, G. Managing the food, water, and energy nexus for achieving the Sustainable Development Goals in South Asia. Environ. Dev. 2016, 18, 14–25. [Google Scholar] [CrossRef]
- Rasul, G.; Sharma, B. The nexus approach to water-energy-food security: An option for adaptation to climate change. Clim. Policy 2016, 16, 682–702. [Google Scholar] [CrossRef]
- Giddings, B.; Hopwood, B.; O’brien, G. Environment, economy and society: Fitting them together into sustainable development. Sustain. Dev. 2012, 10, 187–196. [Google Scholar] [CrossRef]
- Conway, D.; Van Garderen, E.A.; Deryng, D.; Dorling, S.; Krueger, T.; Landman, W.; Lankford, B.; Lebek, K.; Osborn, T.; Ringler, C.; et al. Climate and southern Africa’s water-energy-food nexus. Nat. Clim. Chang. 2015, 5, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Crasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–360. [Google Scholar] [CrossRef]
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef]
- Feld, C.K.; Martins da Silva, P.; Paulo Sousa, J.; de Bello, F.; Bugter, R.; Grandin, U.; Hering, D.; Lavorel, S.; Mountford, O.; Pardo, I.; et al. Indicators of biodiversity and ecosystem services: A synthesis across ecosystems and spatial scales. Oikos 2009, 118, 1862–1871. [Google Scholar] [CrossRef]
- Karlberg, L.; Hoff, H.; Amsalu, T.; Andersson, K.; Binnington, T.; Flores-López, F.; de Bruin, A.; Gebrehiwot, S.G.; Gedif, B.; zur Heide, F.; et al. Tackling complexity: Understanding the food-energy-environment nexus in Ethiopia’s Lake Tana sub-basin. Water Altern. 2015, 8, 710–734. [Google Scholar]
- Newbold, T.; Hudson, L.N.; Hill, S.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porter, J.; Costanza, R.; Sandhu, H.; Sigsgaard, L.; Wratten, S. The value of producing food, energy, and ecosystem services within an agro-ecosystem. Ambio 2009, 38, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Socolow, R.; Foley, J.A.; Hill, J.; Larson, E.; Lynd, L.; Pacala, S.; Reilly, J.; Searchinger, T.; Somerville, C.; et al. Beneficial biofuels—The food, energy, and environment trilemma. Science 2009, 325, 270–271. [Google Scholar] [CrossRef] [PubMed]
- Biba, S. The goals and reality of the water-food-energy security nexus: The case of China and its southern neighbours. Third World Q. 2016, 37, 51–70. [Google Scholar] [CrossRef]
- Smajgl, A.; Ward, J.; Pluschke, L. The water-food-energy Nexus-Realising a new paradigm. J. Hydrol. 2016, 533, 533–540. [Google Scholar] [CrossRef]
- Fu, Q.; Johanson, C.M.; Wallace, J.M.; Reichler, T. Enhanced mid-latitude tropospheric warming in satellite measurements. Science 2006, 312, 1179. [Google Scholar] [CrossRef] [PubMed]
- Coumou, D.; Robinson, A. Historic and future increase in the global land area affected by monthly heat extremes. Environ. Res. Lett. 2013, 8, 034018. [Google Scholar] [CrossRef]
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Proxy global assessment of land degradation. Soil Use Manag. 2008, 24, 223–234. [Google Scholar] [CrossRef]
- Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.D.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D.C.; et al. Climate extremes and the carbon cycle. Nature 2013, 500, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Kummu, M.; Varis, O. The world by latitudes: A global analysis of human population, development level and environment across the north-south axis over the past half century. Appl. Geogr. 2011, 31, 495–507. [Google Scholar] [CrossRef]
- Moon, J.; Lee, W.K.; Song, C.; Lee, S.G.; Heo, S.B.; Shvidenko, A.; Kraxner, F.; Lamchin, M.; Lee, E.J.; Zhu, Y.; et al. An introduction to Mid-Latitude ecotone: Sustainability and environmental challenges. Sib. J. For. Sci. in press.
- Brand, F. Critical natural capital revisited: Ecological resilience and sustainable development. Ecol. Econ. 2009, 68, 605–612. [Google Scholar] [CrossRef]
- Deudney, D. The case against linking environmental degradation and national security. Millennium 1990, 19, 461–476. [Google Scholar] [CrossRef]
- Fodha, M.; Zaghdoud, O. Economic growth and pollutant emissions in Tunisia: An empirical analysis of the environmental Kuznets curve. Energy Policy 2010, 38, 1150–1156. [Google Scholar] [CrossRef]
- Arrow, K.; Bolin, B.; Costanza, R.; Dasgupta, P.; Folke, C.; Holling, C.S.; Jansson, B.; Levin, S.; Mäler, K.; Perrings, C.; et al. Economic growth, carrying capacity, and the environment. Ecol. Econ. 1995, 15, 91–95. [Google Scholar] [CrossRef]
- Magnani, E. The Environmental Kuznets Curve, environmental protection policy and income distribution. Ecol. Econ. 2000, 32, 431–443. [Google Scholar] [CrossRef]
- Feiock, R.C.; Stream, C. Environmental Protection Versus Economic Development: A False Trade-Off? Public Adm. Rev. 2001, 61, 313–321. [Google Scholar] [CrossRef]
- Cui, G.; Lee, W.K.; Kim, D.; Lee, E.J.; Kwak, H.; Choi, H.A.; Kwak, D.A.; Jeon, S. Estimation of forest carbon budget from land cover change in South and North Korea between 1981 and 2010. J. Plant Biol. 2014, 57, 225–238. [Google Scholar] [CrossRef]
- Kim, D.; Lim, C.H.; Song, C.; Lee, W.K.; Piao, D.; Heo, S.; Jeon, S. Estimation of future carbon budget with climate change and reforestation scenario in North Korea. Adv. Space Res. 2016, 58, 1002–1016. [Google Scholar] [CrossRef]
- Kang, S.; Choi, W. Forest cover changes in North Korea since the 1980s. Reg. Environ. Chang. 2014, 14, 347–354. [Google Scholar] [CrossRef]
- Bae, J.S.; Joo, R.W.; Kim, Y.S. Forest transition in South Korea: Reality, path and drivers. Land Use Policy 2012, 29, 198–207. [Google Scholar] [CrossRef]
- Song, M.K.; Park, K.S. North Korea Forestry Technology. In Forest and Forestry Trends and Technology; Research Report 702; Korea National Institute of Forest Science: Seoul, Korea, 2017; pp. 123–183. [Google Scholar]
- World Bank. GDP per capita, PPP. Available online: http://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD?view=chart (accessed on 10 February 2017).
- Hengeveld, G.M.; Gunia, K.; Didion, M.; Zudin, S.; Clerkx, A.P.P.M.; Schelhaas, M.J. Global 1-Degree Maps of Forest Area, Carbon Stocks, and Biomass, 1950–2010; ORNL DAAC: Oak Ridge, TN, USA; Available online: http://dx.doi.org/10.3334/ORNLDAAC/1296 (accessed on 28 July 2017).
- Kubiszewski, I.; Costanza, R.; Franco, C.; Lawn, P.; Talberth, J.; Jackson, T.; Aylmer, C. Beyond GDP: Measuring and achieving global genuine progress. Ecol. Econ. 2013, 93, 57–68. [Google Scholar] [CrossRef]
- De Jong, W. Forest rehabilitation and its implication for forest transition theory. Biotropica 2010, 42, 3–9. [Google Scholar] [CrossRef]
- Rudel, T.K.; Schneider, L.; Uriarte, M. Forest transitions: An introduction. Land Use Policy 2010, 27, 95–97. [Google Scholar] [CrossRef]
- Hosonuma, N.; Herold, M.; De Sy, V.; De Fries, R.S.; Brockhaus, M.; Verchot, L.; Angelsen, A.; Romijn, E. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 2012, 7, 044009. [Google Scholar] [CrossRef]
- Kauppi, P.E.; Ausubel, J.H.; Fang, F.; Mather, A.S.; Sedjo, R.A.; Waggoner, P.E. Returning forests analyzed with the forest identity. Proc. Natl. Acad. Sci. USA 2006, 103, 17574–17579. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO). Managing forests for climate change. In FAO, Working with Countries to Tackle Climate Change through Sustainable Forest Management; FAO: Rome, Italy, 2010; pp. 1–20. [Google Scholar]
- Kraxner, F.; Schepaschenko, D.; Fuss, S.; Lunnan, A.; Kindermann, G.; Aoki, K.; Dürauer, M.; Shvidenko, A.; See, L. Mapping certified forests for sustainable management-A global tool for information improvement through participatory and collaborative mapping. For. Policy Econ. 2017, 83, 10–18. [Google Scholar] [CrossRef]
- World Bank. How Does the World Bank Classify Countries? Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/378834-how-does-the-world-bank-classify-countries (accessed on 28 July 2017).
- Baek, J.; Kim, H.S. Is economic growth good or bad for the environment? Empirical evidence from Korea. Energy Econ. 2013, 36, 744–749. [Google Scholar] [CrossRef]
- Barbati, A.; Marchetti, M.; Chirici, G.; Corona, P. European forest types and forest Europe SFM indicators: Tools for monitoring progress on forest biodiversity conservation. For. Ecol. Manag. 2014, 321, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Yang, Y.; Zhang, Y. Economic development, rural livelihoods, and ecological restoration: Evidence from China. Ambio 2011, 40, 78–87. [Google Scholar] [CrossRef] [PubMed]
- El Gafy, I.; Grigg, N.; Reagan, W. Dynamic Behaviour of the Water-Food-Energy Nexus: Focus on Crop Production and Consumption. Irrig. Drain. 2017, 66, 19–33. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). AQUASTAT Main Database. Available online: http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en (accessed on 10 March 2017).
- Organization for Economic Co-operation and Development (OECD) Database. Available online: https://data.oecd.org/water/water-withdrawals.htm (accessed on 9 March 2017).
- The International Food Policy Research Institute (IFPRI) Hunger Index. Available online: http://ghi.ifpri.org/ (accessed on 11 March 2017).
- Food and Agriculture Organization of the United Nations (FAO). Global Forest Resources Data, Biodiversity and Conservation. Available online: http://www.fao.org/forest-resources-assessment/explore-data/flude/en/ (accessed on 2 March 2017).
- Rudel, T.K.; Coomes, O.T.; Moran, E.; Achard, F.; Angelsen, A.; Xu, J.; Lambin, E. Forest transitions: Towards a global understanding of land use change. Glob. Environ. Chang. 2005, 15, 23–31. [Google Scholar] [CrossRef]
- Ewers, R.M. Interaction effects between economic development and forest cover determine deforestation rates. Glob. Environ. Chang. 2006, 16, 161–169. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Karabulut, A.; Egoh, B.N.; Lanzanova, D.; Grizzetti, B.; Bidoglio, G.; Pagliero, L.; Bouraoui, F.; Aloe, A.; Reynaud, A.; Maes, J.; et al. Mapping water provisioning services to support the ecosystem-water-food-energy nexus in the Danube river basin. Ecosyst. Serv. 2016, 17, 278–292. [Google Scholar] [CrossRef]
- Hák, T.; Janoušková, S.; Moldan, B. Sustainable Development Goals: A need for relevant indicators. Ecol. Indic. 2016, 60, 565–573. [Google Scholar] [CrossRef]
- Chazdon, R.L. Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science 2008, 320, 1458–1460. [Google Scholar] [CrossRef] [PubMed]
- Benayas, J.M.R.; Newton, A.C.; Diaz, A.; Bullock, J.M. Enhancement of biodiversity and ecosystem services by ecological restoration: A meta-analysis. Science 2009, 325, 1121–1124. [Google Scholar] [CrossRef] [PubMed]
- Bullock, J.M.; Aronson, J.; Newton, A.C.; Pywell, R.F.; Rey-Benayas, J.M. Restoration of ecosystem services and biodiversity: Conflicts and opportunities. Trends Ecol. Evol. 2011, 26, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Li, M.S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. Sci. Total Environ. 2016, 357, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Erb, K.H.; Fetzel, T.; Plutzar, C.; Kastner, T.; Lauk, C.; Mayer, A.; Niedertscheider, M.; Körner, C.; Haberl, H. Biomass turnover time in terrestrial ecosystems halved by land use. Nat. Geosci. 2016, 9, 674–678. [Google Scholar] [CrossRef]
- Baral, H.; Guariguata, M.R.; Keenan, R.J. A proposed framework for assessing ecosystem goods and services from planted forests. Ecosyst. Serv. 2016, 22, 260–268. [Google Scholar] [CrossRef]
- Ciccarese, L.; Mattsson, A.; Pettenella, D. Ecosystem services from forest restoration: Thinking ahead. New For. 2012, 43, 543–560. [Google Scholar] [CrossRef]
LDPs Classification | Degradation Phase Based on Forest Stock Change | Restoration Phase Based on Forest Stock Change | Sustainability Phase Based on Forest Stock Change |
---|---|---|---|
Degradation phase based on GDP and GDP per capita with forest area change | Afghanistan, Albania, Angola, Armenia, Colombia, Congo, Dominica, El Salvador, Gambia, Ghana, Grenada, Guyana, Jamaica, Kazakhstan, Laos, Lesotho, Macedonia, Maldives, Mali, Myanmar, Namibia, Nicaragua, Niger, North Korea, Peru, South Africa, Sri Lanka, Sudan, Swaziland, Tajikistan, Tanzania, Tonga, Tunisia, Turkmenistan, Uganda, Western Sahara, Yemen | Bangladesh, Bolivia, Burundi, Cambodia, Central African Republic, Chad, Equatorial Guinea, Eritrea, Ethiopia, Georgia, Guinea-Bissau, Kyrgyzstan, Madagascar, Malawi, Mauritania, Moldova, Mongolia, Nepal, Papua New Guinea, Rwanda, Senegal, Serbia, Sierra Leone, Somalia, Suriname, Kenya, Syria, Jordan, Uzbekistan, Zambia, Zimbabwe | Belize, Benin, Bhutan, Bosnia and Herzegovina, Botswana, Bulgaria, Burkina Faso, Cameroon, Congo, Djibouti, Ecuador, Guatemala, Guinea, Haiti, Honduras, Ivory Coast, Liberia, Mozambique, Nigeria, Pakistan, Panama, Paraguay, Togo |
Restoration phase based on GDP and GDP per capita with forest area change | Azerbaijan, Bahrain, Brunei, Egypt, Iceland, Iran, Portugal, Thailand, Uruguay, Vietnam | Belarus, Brazil, Chile, China, Cyprus, Estonia, Faroe Islands, Gabon, Greenland, Indonesia, Iraq, Latvia, Lebanon, Libya, Lithuania, Malaysia, Malta, Mexico, Monaco, Morocco, Oman, Philippines, Qatar, Romania, Singapore, Taiwan, Trinidad and Tobago, Ukraine, Venezuela | Algeria, Andorra, Argentina, Costa Rica, Croatia, Cuba, Dominican Republic, Hungary, India, Liechtenstein, Luxembourg, Montenegro, Norway, Poland, San Marino, Slovakia, Slovenia |
Sustainability phase based on GDP and GDP per capita with forest area change | Greece, Iceland, Kuwait, Saudi Arabia, United Arab Emirates | Australia, Israel, Russia | Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Germany, Italy, Japan, Netherlands, New Zealand, Puerto Rico, South Korea, Spain, Sweden, Switzerland, Turkey, United Kingdom, United States |
Indices (Year) | Degradation | Restoration | Sustainability | Source |
---|---|---|---|---|
TWW (2007) | 713.85 | 479.36 | 547.69 | FAO, 2016 |
TWW (2012) | 1322.81 | 383.64 | 508.62 | FAO, 2016 |
TRWR (2002) | 29,274.82 | 19,041.87 | 22,972.90 | FAO, 2016 |
TRWR (2007) | 27,712.10 | 17,619.84 | 20,937.94 | FAO, 2016 |
TWW/TRWR × 100 (2007) | 2.58 | 2.72 | 2.62 | FAO, 2016 |
TWW/TRWR × 100 (2012) | 5.13 | 2.34 | 2.65 | FAO, 2016 |
GHI (2008) | 20.97 | 22.04 | 23.39 | IFPRI, 2017 |
GHI (2016) | 17.84 | 18.50 | 21.63 | IFPRI, 2017 |
FPI (2007) | 105.44 | 103.25 | 102.46 | World Bank, 2017 |
FPI (2012) | 115.96 | 118.54 | 111.45 | World Bank, 2017 |
Biodiversity Conservation (2010) | 1998.51 | 4443.94 | 3231.39 | FAO, 2017 |
Protected Forest Area (2010) | 1856.10 | 7753.06 | 3088.32 | FAO, 2017 |
CCPI (2008) | 51.11 | 50.85 | 52.21 | Germanwatch, 2007 |
CCPI (2012) | 51.96 | 55.32 | 55.77 | Germanwatch, 2011 |
Indices (Year) | Degradation | Restoration | Sustainability | Source |
---|---|---|---|---|
TWW (2007) | 510.13 | 571.63 | 691.53 | FAO, 2016 |
TWW (2012) | 450.14 | 789.23 | 607.45 | FAO, 2016 |
TRWR (2007) | 23,889.85 | 23,855.83 | 12,063.90 | FAO, 2016 |
TRWR (2012) | 21,795.38 | 22,600.55 | 11,565.08 | FAO, 2016 |
TWW/TRWR × 100 (2007) | 2.14 | 2.34 | 5.73 | FAO, 2016 |
TWW/TRWR × 100 (2012) | 2.07 | 3.49 | 5.25 | FAO, 2016 |
GHI (2008) | 25.53 | 13.22 | 7.17 | IFPRI, 2017 |
GHI (2016) | 21.40 | 11.47 | 6.80 | IFPRI, 2017 |
FPI (2007) | 105.42 | 102.16 | 100.15 | World Bank, 2017 |
FPI (2012) | 120.40 | 112.36 | 104.47 | World Bank, 2017 |
Biodiversity Conservation (2010) | 1900.28 | 3749.67 | 7087.29 | FAO, 2017 |
Protected Forest Area (2010) | 2045.21 | 8332.06 | 4854.10 | FAO, 2017 |
CCPI (2008) | 49.87 | 53.30 | 49.94 | Germanwatch, 2007 |
CCPI (2012) | 47.60 | 56.37 | 54.43 | Germanwatch, 2011 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.; Kim, S.J.; Moon, J.; Lee, S.J.; Lee, W.; Kim, N.; Wang, S.W.; Lee, W.-K. Classification of Global Land Development Phases by Forest and GDP Changes for Appropriate Land Management in the Mid-Latitude. Sustainability 2017, 9, 1342. https://doi.org/10.3390/su9081342
Song C, Kim SJ, Moon J, Lee SJ, Lee W, Kim N, Wang SW, Lee W-K. Classification of Global Land Development Phases by Forest and GDP Changes for Appropriate Land Management in the Mid-Latitude. Sustainability. 2017; 9(8):1342. https://doi.org/10.3390/su9081342
Chicago/Turabian StyleSong, Cholho, Sea Jin Kim, Jooyeon Moon, Soo Jeong Lee, Wona Lee, Nahui Kim, Sonam Wangyel Wang, and Woo-Kyun Lee. 2017. "Classification of Global Land Development Phases by Forest and GDP Changes for Appropriate Land Management in the Mid-Latitude" Sustainability 9, no. 8: 1342. https://doi.org/10.3390/su9081342
APA StyleSong, C., Kim, S. J., Moon, J., Lee, S. J., Lee, W., Kim, N., Wang, S. W., & Lee, W. -K. (2017). Classification of Global Land Development Phases by Forest and GDP Changes for Appropriate Land Management in the Mid-Latitude. Sustainability, 9(8), 1342. https://doi.org/10.3390/su9081342