Mapping Urban Expansion and Exploring Its Driving Forces in the City of Praia, Cape Verde, from 1969 to 2015
Abstract
:1. Introduction
2. Study Area, Materials and Methods
2.1. Study Area: The Praia City
2.2. Materials and Methods
2.2.1. Cartographic Data
2.2.2. Population Data
2.3. Delineation of Urban Areas and Mapping Urban Expansion
2.4. Urban Expansion and Its Candidate Driving Forces
2.5. OLS Regression Requirements
3. Results
3.1. Assessment of Urban Expansion
3.2. Driving Forces of Urban Expansion in the Study Area
3.3. OLS Results Interpretation and Validation
3.4. Historic Driving Forces of Urban Expansion
4. Discussion
4.1. Urban Expansion and Comparison with Other Studies
4.2. Historical Driving Forces and Comparison with Other Studies
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Calculation of Explanatory Variables
Variables | Description | |
---|---|---|
Socioeconomics variables | Socioeconomic variables are the average of percentage of population in each zone living in the following conditions (based on our calculation): Source of water resources: Domiciliary water connection and auto-tank; Source of energy for cooking: Gas, electricity; Source of energy for illumination: Electricity (2003 and 2010) Sanitation: domiciliary connection to septic tanks or sewage system (2003); Possession of goods and services: Refrigerator, television (2003) in addition to stove, washing machine, air conditioning, automobile, telephone, computer, cable TV, Internet (2010); and level of education: High school, higher education, (2003); Comfort level: Median, high and very high (2010). We considered these variables as indicators of level of social life in each zone. | |
Average price of soil | A shapefile that includes the delimitation of price of soil in the city of Praia, was intersected with the administrative zonal boundaries to calculate the average price of soil for each zone using the right formula: Where, ASP is the average of price of soil in zone i; SP1 is the soil price in the zone i; ASP1 is the area occupied by the soil price i; AZ is the area of the zone (or changed urban area) where ASP1 is located. | |
Avg. number of floors | The number of floors shapefile were intersected with the administrative zones of Praia (2015) or patches grown for the year 2010 and then we summarized the average number of floors for each zone using ArcGIS. | |
Number of infrastructure | The number of infrastructure was obtained by georeferencing and digitizing the map of infrastructure (CMP, 2014). | |
Land available | For the calculation of land available for future urban expansion, we excluded the areas considered as not feasible for the construction of buildings. Such areas include geophysical limitations: mountains, water streams, slope steeper than 45ᴼ. | |
Road density | The roads were classified as arterial roads, main roads, and secondary roads. Arterial roads are the highways. Main roads include arterial roads and all the roads that give access to each zone in particular. | |
Secondary roads are roads that allow the circulation inside each zone. So, the density of roads for each zone was calculated by area weighted by type of roads (70% for main roads and 30% for secondary roads). Where, Drd is road density index, AMrd is the area (m2) of the main roads in zone i, ASrd is the area (m2) of secondary roads in the zone i and AZ is the size of zone. |
Appendix B. OLS Model Results
Summary OLS—1993 (B2) n = 32; variable = 3 | |||||
Variable | Coefficient | Std-error | t-statistic | Robust_Pr | VIF |
Intercept | 65,668.825059 | 18,085.944265 | 3.630932 | 0.006256 * | |
Population | 36.541527 | 3.944321 | 9.264340 | 0.000000 * | 1.049561 |
Distance to coast | −8.731622 | 6.129818 | −1.424450 | 0.043948 * | 1.009154 |
Mean slope | −3185.661099 | 1808.962638 | −1.761043 | 0.023930 * | 1.053457 |
Adjusted R2 | 0.759034 | ||||
R2 | 0.782354 | ||||
AICc | 777.949357 | ||||
F-statistic | 33.549664 | Prob(>F), (3, 28) degrees of freedom: | 0.000000 * | ||
Wald statistic | 63.931454 | Prob(>chi-squared), (3) degrees of freedom: | 0.000000 * | ||
Koenker (BP) statistic | 8.321808 | Prob(>chi-squared), (3) degrees of freedom: | 0.039809 * | ||
Jarque-Bera statistic | 2.419131 | Prob(>chi-squared), (2) degrees of freedom: | 0.298327 | ||
Summary OLS—2003 (C2) n = 38; variable = 4 | |||||
Variable | Coefficient | Std-error | t-statistic | Robust_Pr | VIF |
Intercept | 3547.167864 | 25,570.606772 | 0.138721 | 0.810405 | |
Population | 84.047560 | 8.371864 | 10.039288 | 0.000001 * | 1.034508 |
Distance from industrial zone | 51.133256 | 17.881194 | 2.859611 | 0.018732 * | 1.146617 |
Mean slope | −7786.452316 | 2664.749176 | −2.922021 | 0.004443 * | 1.131716 |
Socioeconomic factors | 9851.451136 | 4694.156520 | 2.098663 | 0.005870 * | 1.058790 |
Adjusted R2 | 0.777430 | ||||
R2 | 0.801492 | ||||
AICc | 945.164522 | ||||
F-statistic | 33.309981 | Prob(>F), (4, 33) degrees of freedom: | 0.000000 * | ||
Wald statistic | 51.611040 | Prob(>chi-squared), (4) degrees of freedom: | 0.000000 * | ||
Koenker (BP) statistic | 16.308520 | Prob(>chi-squared), (4) degrees of freedom: | 0.002632 * | ||
Jarque-Bera statistic | 0.211597 | Prob(>chi-squared), (2) degrees of freedom: | 0.899606 | ||
Summary OLS—2003 (C3) n = 38; variable = 4 | |||||
Variable | Coefficient | Std-error | t-statistic | Robust_Pr | VIF |
Intercept | 12,879.160852 | 23,960.185097 | 0.537523 | 0.410583 | |
Population | 88.365231 | 8.423218 | 10.490674 | 0.000001 * | 1.031689 |
Age of Zone | 568.907423 | 289.978593 | 1.961895 | 0.001423 * | 1.131379 |
Distance from industrial zone | 53.393931 | 18.336335 | 2.911919 | 0.011392 * | 1.187829 |
Mean slope | −8310.379996 | 2737.885508 | −3.035328 | 0.003002 * | 1.176952 |
Adjusted R2 | 0.774076 | ||||
R2 | 0.798500 | ||||
AICc | 945.732950 | ||||
F-statistic | 32.692927 | Prob(>F), (4, 33) degrees of freedom: | 0.000000 * | ||
Wald statistic | 53.192196 | Prob(>chi-squared), (4) degrees of freedom: | 0.000000 * | ||
Koenker (BP) statistic | 17.325807 | Prob(>chi-squared), (4) degrees of freedom: | 0.001671 * | ||
Jarque-Bera statistic | 0.526457 | Prob(>chi-squared), (2) degrees of freedom: | 0.768566 | ||
Summary OL—2003 (C4) n = 38; variable = 3 | |||||
Variable | Coefficient | Std-error | t-statistic | Robust_Pr | VIF |
Intercept | 37,457.392394 | 24,768.187780 | 1.512319 | 0.061513 | |
Population | 89.306533 | 9.296813 | 9.606145 | 0.000001 * | 1.030170 |
Age of zone | 341.587770 | 308.464408 | 1.107381 | 0.032554 * | 1.049383 |
Mean slope | −5556.040099 | 2837.863428 | −1.957825 | 0.033879 * | 1.036475 |
Adjusted R2 | 0.724377 | ||||
R2 | 0.746725 | ||||
AICc | 951.588354 | ||||
F-statistic | 33.413816 | Prob(>F), (3, 34) degrees of freedom: | 0.000000 * | ||
Wald statistic | 41.233657 | Prob(>chi-squared), (3) degrees of freedom: | 0.000000 * | ||
Koenker (BP) statistic | 13.505063 | Prob(>chi-squared), (3) degrees of freedom: | 0.003662 * | ||
Jarque-Bera statistic | 3.505962 | Prob(>chi-squared), (2) degrees of freedom: | 0.173257 | ||
Summary OLS—2003 (C5) n = 38; variable = 2 | |||||
Variable | Coefficient | Std-error | t-statistic | Robust_Pr | VIF |
Intercept | −16,641.976141 | 13,128.577735 | −1.267615 | 0.136854 | |
Population | 77.976537 | 8.602076 | 9.064851 | 0.000000 * | 1.141424 |
Road density | 14,753.736779 | 3.848730 | 3.848730 | 0.006231 * | 1.141424 |
Adjusted R2 | 0.787032 | ||||
R2 | 0.798543 | ||||
AICc | 940.227212 | ||||
F-statistic | 69.367333 | Prob(>F), (2, 35) degrees of freedom: | 0.000000 * | ||
Wald statistic | 69.817332 | Prob(>chi-squared), (2) degrees of freedom: | 0.000000 * | ||
Koenker (BP) statistic | 10.162278 | Prob(>chi-squared), (2) degrees of freedom: | 0.006213 * | ||
Jarque-Bera statistic | 1.541636 | Prob(>chi-squared), (2) degrees of freedom: | 0.462635 | ||
Summary OLS—2003 (C6) n = 38; variable = 2 | |||||
Variable | Coefficient | Std-error | t-statistic | Robust_Pr | VIF |
Intercept | 46,550.009155 | 23,443.004139 | 1.985667 | 0.042692 * | |
Population | 87.899806 | 9.239340 | 9.513645 | 0.000001 * | 1.010936 |
Mean slope | −5062.737893 | 2811.728063 | −1.800579 | 0.047269 * | 1.010936 |
Adjusted R2 | 0.722595 | ||||
R2 | 0.737590 | ||||
AICc | 950.271901 | ||||
F-statistic | 49.189541 | Prob(>F), (2,35) degrees of freedom: | 0.000000 * | ||
Wald statistic | 38.190853 | Prob(>chi-squared), (2) degrees of freedom: | 0.000000 * | ||
Koenker (BP) statistic | 11.661848 | Prob(>chi-squared), (2) degrees of freedom: | 0.002935 * | ||
Jarque-Bera statistic | 3.748749 | Prob(>chi-squared), (2) degrees of freedom: | 0.153451 | ||
Summary OLS—2010 (D2) n = 41; variable = 5 | |||||
Variable | Coefficient | Std-error | t-statistic | Robust_Pr | VIF |
Intercept | −126,652.313013 | 37,469.726328 | −3.380124 | 0.020394 * | |
Distance to arterial roads | 74.617275 | 17.078503 | 4.369076 | 0.001547 * | 1.180858 |
Road density | 14,318.952809 | 3392.340391 | 4.220966 | 0.001602 * | 2.658833 |
Average number of floors | −34,505.961914 | 15,665.314281 | −2.202698 | 0.010020 * | 2.882851 |
Neighb. land available | 0.065042 | 0.019144 | 3.397443 | 0.002504 * | 2.053562 |
Neig. avg socioecon. indicat. | 162.742782 | 42.136419 | 3.862283 | 0.006788 * | 2.165538 |
Adjusted R2 | 0.608417 | ||||
R2 | 0.657365 | ||||
AICc | 58.684142 | ||||
F-statistic | 13.429898 | Prob(>F), (5, 35) degrees of freedom: | 0.000000 * | ||
Wald statistic | 23.205349 | Prob(>chi-squared), (5) degrees of freedom: | 0.000308 * | ||
Koenker (BP) statistic | 24.291281 | Prob(>chi-squared), (5) degrees of freedom: | 0.000191 * | ||
Jarque-Bera statistic | 3.896771 | Prob(>chi-squared), (2) degrees of freedom: | 0.142504 | ||
Summary OLS—2015 (E2) n = 41; variable = 5 | |||||
Variable | Coefficient | Std-error | t-statistic | Robust_Pr | VIF |
Intercept | 65,621.443897 | 13,909.629218 | 4.717699 | 0.000053 * | |
Distance to left | 14.197743 | 4.196104 | 3.383553 | 0.000543 * | 2.561907 |
Distance to coast | −22.743622 | 4.950717 | −4.594006 | 0.000317 * | 4.923847 |
Road density | 4894.662978 | 1229.073300 | 3.982401 | 0.006499 * | 1.254978 |
Industrial area (binary variable) | −31846.651186 | 9884.405562 | −3.221909 | 0.000304 * | 1.506324 |
Distance to urban perimeter | −43.593186 | 7.053607 | −6.180269 | 0.000003 * | 2.970793 |
Adjusted R2 | 0.653254 | ||||
R2 | 0.696597 | ||||
AICc | 931.732624 | ||||
F-statistic | 23.879429 | Prob(>F), (5, 35) degrees of freedom: | 0.000000 * | ||
Wald statistic | 25.943000 | Prob(>chi-squared), (5) degrees of freedom: | 0.000000 * | ||
Koenker (BP) statistic | 16.152417 | Prob(>chi-squared), (5) degrees of freedom: | 0.002063 * | ||
Jarque-Bera statistic | 1.836169 | Prob(>chi-squared), (2) degrees of freedom: | 0.424394 |
References
- Angel, S. The NYU Urban Expansion Program: A Primer. Available online: http://marroninstitute.nyu.edu/uploads/content/UEPrimer2015.pdf (accessed on 8 August 2017).
- Brockerhoff, M.P. An Urbanizing World; Population Reference Bureau: Washington, DC, USA, 2000. [Google Scholar]
- UNFPA. State of World Population 2007: Unleashing the Potential of Urban Growth; UNFPA: New York, NY, USA, 2007. [Google Scholar]
- Jaeger, J.A.G.; Bertiller, R.; Schwick, C.; Kienast, F. Suitability criteria for measures of urban sprawl. Ecol. Indic. 2010, 10, 397–406. [Google Scholar] [CrossRef]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.M. Atlas of Urban Expansion; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2012. [Google Scholar]
- Nazarnia, N.; Schwick, C.; Jaeger, J.A.G. Accelerated urban sprawl in Montreal, Quebec City, and Zurich: Investigating the differences using time series 1951–2011. Ecol. Indic. 2016, 60, 1229–1251. [Google Scholar] [CrossRef]
- Bhatta, B. Analysis of Urban Growth and Sprawl from Remote Sensing Data (Advances in Geographic Information Science); Springer: Berlin, Germany, 2010. [Google Scholar]
- UN-Habitat. Urban Planning for City Leaders; UN-Habitat: Nairobi, Kenya, 2013. [Google Scholar]
- UN-Habitat. Urbanization and Climate Change in Small Island Developing States; UN-Habitat: Nairobi, Kenya, 2015. [Google Scholar]
- UN-OHRLLS. Small Islands Developing States:Small Islands Big(ger) Stakes; UN-OHRLLS: New York, NY, USA, 2011. [Google Scholar]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.M.; Potere, D. A Planet of Cities: Urban Land Cover Estimates and Projections for All Countries, 2000–2050; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2010. [Google Scholar]
- UN-OHRLLS. Small Island Developing States (SIDS) Statistics; UN-OHRLLS: New York, NY, USA, 2012. [Google Scholar]
- Câmara Municipal da Praia (CMP). Proposta do Plano Director Municipal (Proposal of the Municipal Master Plan); CMP: Praia, Cape Verde, 2014. [Google Scholar]
- Instituto Nacional de Gestão do Território (INGT). Esquema Regional do Ordenamento do Território de Santiago (Regional Scheme of Territorial Planning for Santiago island); INGT: Praia, Cape Verde, 2010. [Google Scholar]
- Li, X.; Zhou, W.; Ouyang, Z. Forty years of urban expansion in Beijing: What is the relative importance of physical, socioeconomic, and neighborhood factors? Appl. Geogr. 2013, 38, 1–10. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Fikadu, G.; Tsunekawa, A.; Tsubo, M.; Meshesha, D.T. The dynamics of urban expansion and its impacts on land use/land cover change and small-scale farmers living near the urban fringe: A case study of Bahir Dar, Ethiopia. Landsc. Urban Plan. 2012, 106, 149–157. [Google Scholar] [CrossRef]
- Dubovyk, O.; Sliuzas, R.; Flacke, J. Spatio-temporal modelling of informal settlement development in Sancaktepe district, Istanbul, Turkey. ISPRS J. Photogramm. Remote Sens. 2011, 66, 235–246. [Google Scholar] [CrossRef]
- Braimoh, A.K.; Onishi, T. Spatial determinants of urban land use change in Lagos, Nigeria. Land Use Policy 2007, 24, 502–515. [Google Scholar] [CrossRef]
- Chen, J.; Chang, K.; Karacsonyi, D.; Zhang, X. Comparing urban land expansion and its driving factors in Shenzhen. Habitat Int. 2014, 43, 61–71. [Google Scholar] [CrossRef]
- Lu, C.; Wu, Y.; Shen, Q.; Wang, H. Driving force of urban growth and regional planning: A case study of China’s Guangdong Province. Habitat Int. 2013, 40, 35–41. [Google Scholar] [CrossRef]
- Weilenmann, B.; Seidl, I.; Schulz, T. The socio-economic determinants of urban sprawl between 1980 and 2010 in Switzerland. Landsc. Urban Plan. 2017, 157, 468–482. [Google Scholar] [CrossRef]
- Angel, S.; Sheppard, S.C.; Civco, D.L.; Buckley, R.; Chabaeva, A.; Gitlin, L.; Kraley, A.; Parent, J.; Perlin, M. The Dynamics of Global Urban Expansion; World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Ewing, R. Is Los Angeles-style sprawl desirable? J. Am. Plan. Assoc. 1997, 63, 107–126. [Google Scholar] [CrossRef]
- Taubenböck, H.; Esch, T. Remote Sensing—An Effective Data Source for Urban Monitoring. 2011. Available online: https://earthzine.org/2011/07/20/remote-sensing-an-effective-data-source-for-urban-monitoring/ (accessed on 23 December 2016).
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Growth, population and industrialization, and urban land expansion of China. J. Urban Econ. 2008, 63, 96–115. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, J.; Dong, J.; Chi, W.; Zhang, C. The rapid and massive urban and industrial land expansions in China between 1990 and 2010: A CLUD-based analysis of their trajectories, patterns, and drivers. Landsc. Urban Plan. 2016, 145, 21–33. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Condessa, B.; Castro, J.; Pinto, P. Urban settlements delimitation in low-density areas—An application to the municipality of Tomar (Portugal). Landsc. Urban Plan. 2010, 97, 156–167. [Google Scholar] [CrossRef]
- Turker, M.; Koc-san, D. Building extraction from high-resolution optical spaceborne images using the integration of support vector machine (SVM) classification, Hough transformation and perceptual grouping. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 58–69. [Google Scholar] [CrossRef]
- Harig, O.; Burghardt, D.; Hecht, R. A Supervised Approach to Delineate Built-Up Areas for Monitoring and Analysis of Settlements. Int. J. Geo-Inf. 2016, 5, 137. [Google Scholar] [CrossRef]
- Millward, H. A vector GIS extension for generalization of binary polygon patterns. Cartogr. Int. J. Geogr. Inf. Geovis. 2004, 39, 55–64. [Google Scholar] [CrossRef]
- Zhou, Q. Comparative Study of Approaches to Delineating Built-Up Areas Using Road Network Data. Trans. GIS 2015. [Google Scholar] [CrossRef]
- Carvalho, J.; Pais, C. A Ocupação Dispersa, à escala local, nas Cidades de Aveiro-Ílhavo e Évora: identificação e caracterização (The dispersed occupation at the local level, in the cities of Aveiro-Ílhavo and Évora: Identification and characterisation) in Portuguese. In Proceedings of the Seventh International Conference on Virtual Cities and Territories (7VCT), Lisbon, Portugal, 11–13 October 2011. [Google Scholar]
- Silva, F.B.; Marques, T.S.; Delgado, C. Processos de expansão urbana e mudanças na paisagem: Ensaio metodológico (1950–2000) (Urban expansion process and change in the landscape: Methodological essay (1950–2000). In Revista da Faculdade de Letras—Geografia; Universidade do Porto: Porto, Portugal, 2012; pp. 161–183. [Google Scholar]
- Jaeger, J.A.G.; Bertiller, R.; Schwick, C.; Cavens, D.; Kienast, F. Urban permeation of landscapes and sprawl per capita: New measures of urban sprawl. Ecol. Indic. 2010, 10, 427–441. [Google Scholar] [CrossRef]
- Muhs, S.; Herold, H.; Meinel, G.; Burghardt, D.; Kretschmer, O. Computers, Environment and Urban Systems Automatic delineation of built-up area at urban block level from topographic maps. CEUS 2016, 58, 71–84. [Google Scholar] [CrossRef]
- Tavares, C. A Política de Solo na Política Urbana: A sua Relevância na Cidade Da Praia—Cabo Verde (The Urban Soil Policy: Its Relevance in the City of Praia—Cape Verde); Universidade Nova de Lisboa: Lisbon, Portugal, 2007. [Google Scholar]
- Instituto Nacional de Estatistica de Cabo Verde (INE-CV). Evolução da População Residente Urbana por Ilha e Concelho, Segundo os Censos de 1990–2010 (Evolution of the Urban Resident Population by Island and County, According to Censuses from 1990–2010); INE-CV: Praia, Cape Verde, 2010. [Google Scholar]
- Instituto Nacional de Estatistica de Cabo Verde (INE-CV). Produto Interno Bruto (PIB) por Ilha Série 2007–2012 (Gross Domestic Product (GDP) by Island, Series 2007–2012); INE-CV: Praia, Cape Verde, 2015. [Google Scholar]
- Monteiro, S.; Veiga, É.; Fernandes, É.; Fernandes, H.; Rodrigues, J.; Cunha, L. Crescimento urbano espontâneo e riscos naturais na cidade da Praia (Cabo Verde)(Spontaneous urban growth and naturals hazards in the city of Praia—Cape Verde). Cad. Geogr. 2011, 31, 117–130. [Google Scholar]
- El-Shayal, M.E.-S. First Arabian GIS software: A GIS, GPS, Database, Internet GIS software. In Proceedings of the International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences (GIS-IDEAS), Ho Chi Minh City (HCMC), Vietnam, 9–11 November 2006. [Google Scholar]
- Câmara Municipal da Praia (CMP). Que Altera os Preços de Alienação de Terrenos Municipais e Fixa a Fórmula de Cálculo de Ampliações e Mudanças de Uso (Amending the Sale of Municipal Land Price and the Fixed Magnifications of Calculation Formula and Land Use Change); Imprensa Nacional de Cabo Verde: Praia, Cape Verde, 2013; p. 17. [Google Scholar]
- United Nations. Methods of Estimating Total Population for Current Dates Methods of Estimating Total Population for Current Dates; United Nations: New York, NY, USA, 1952. [Google Scholar]
- Jaeger, J.A.G.; Schwick, C. Improving the measurement of urban sprawl: Weighted Urban Proliferation (WUP) and its application to Switzerland. Ecol. Indic. 2014, 38, 294–308. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Yu, S. Monitoring urban expansion and its effects on land use and land cover changes in Guangzhou city, China. Environ. Monit. Assess. 2016. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, L. Acerca do Crescimento Urbano no Terceiro Mundo: o caso de Cabo Verde visto através da Praia (About Urban Growth in the Third World: the case of Cape Verde seen through the Praia). Garcia da Orta Série Geogr. 1996, 15, 35–64. [Google Scholar]
- Nascimento, J.M. La Croissante et le Systeme de Gestion et de Planification de la Ville de Praia, Rep. du Cap-Vert (Growth of the system of management and planning of the city of Praia, Cape Verde republic). Ph.D. Thesis, Université de Rouen, Rouen, France, 2009. [Google Scholar]
- Haque, U.; Scott, L.M.; Hashizume, M.; Fisher, E.; Haque, R.; Yamamoto, T.; Glass, G.E. Modelling malaria treatment practices in Bangladesh using spatial statistics. Malar. J. 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poole, M.A.; Farrell, P.N.O.; Poole, A.; Farrell, N.O. The assumptions of the linear model regression. Trans. Inst. Br. Geogr. 1971, 52, 145–158. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Scott, L.; Pratt, M. Answering Why Questions: An Introduction to Using Regression Analysis with Spatial Data. Available online: http://www.esri.com/news/arcuser/0309/files/why.pdf (accessed on 10 February 2017).
- Esri Interpreting OLS Results. Available online: http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-statistics-toolbox/interpreting-ols-results.htm (accessed on 4 November 2016).
- Rosenshein, L.; Scott, L.; Pratt, M. Finding a Meaningful Model This Checklist Will Help You Evaluate Regression Models. Available online: http://www.esri.com/news/arcuser/0111/files/findmodel.pdf (accessed on 13 March 2017).
- Gao, B.; Huang, Q.; He, C.; Sun, Z.; Zhang, D. How does sprawl differ across cities in China? A multi-scale investigation using nighttime light and census data. Landsc. Urban Plan. 2016, 148, 89–98. [Google Scholar] [CrossRef]
- Hu, Z.; Du, P.; Guo, D. Analysis of Urban Expansion and Driving Forces in Xuzhou City Based on Remote Sensing. J. China Univ. Min. Technol. 2007, 17, 267–271. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Pravitasari, A.E.; Saizen, I.; Tsutsumida, N.; Rustiadi, E.; Pribadi, D.O. Local Spatially Dependent Driving Forces of Urban Expansion in an Emerging Asian Megacity: The Case of Greater Jakarta (Jabodetabek). J. Sustain. Dev. 2015, 8, 108–119. [Google Scholar] [CrossRef]
- Ali, M.M.; Al-Kodmany, K. Tall Buildings and Urban Habitat of the 21st Century: A Global Perspective. Buildings 2012, 2, 384–423. [Google Scholar] [CrossRef]
- Pank, W.; Girardet, H.; Cox, G. Tall buildings and sustainability; Corporation of London: London, UK, 2002. [Google Scholar]
Variables | 1993 | 2003 | 2010 | 2015 | Description |
---|---|---|---|---|---|
Population | x | x | x | x | The absolute difference between the population for each zone from time i to time i − 1. |
Road density | x | x | x | x | Area of zonal roads per total area of zone (Appendix A). |
Age of zones | x | x | x | x | The difference in year between the year of analysis and the estimated date that the zone emerged +. |
Distance to center | x | x | x | x | Euclidian distance between the centroid of changed urban areas for each zone in time i and the centroid to the historic center (Platô). |
Distance to coast | x | x | x | x | Euclidian distance between the centroid of changed urban areas for each zone in time i and the coastal line. |
Distance to arterial road | x | x | x | x | Euclidian distance between the centroid of changed urban areas for each zone in time i and the arterial road (arterial roads do not include roads that give access for the zones). |
Distance to industrial zones | x | x | x | x | Euclidean distance between the centroid of changed urban patches to the closest industrial zone. |
Distance to urban perimeter | x | x | Euclidean distance between the centroid of changed urban patches to the urban perimeter boundary for the interior. | ||
Distance to university | x | x | Euclidian distance between the centroid of changed urban patches for each zone in time i and the closest university. | ||
Mean elevation | x | x | x | x | Mean elevation of the changed urban patches for each zone in time i. |
Mean slope | x | x | x | x | Mean slope of the changed urban patches for each zone in time i. |
Socioeconomic variables | x | x | x | Number of people in percentage that live in each zone with indicators that show high quality of life ++. | |
Price of soil | x | x | Average price of soil per changed urban patches in each zone in 2010; and per zone for the year 2015 +++ (Appendix A). | ||
Average nbr of floors | x | x | Average of number of floors per changed urban patches in each zone in 2010, and per zone for the year 2015 ++++ (Appendix A). | ||
Number of infrastructure | x | x | Number of the main public infrastructure that require daily commuting and security to the population (schools, universities, police station, main states institutions, hospitals and health centers). | ||
Industrial zone | x | x | x | x | Dummy variable (0, 1), 1 for zones that have industrial areas, 0 otherwise. |
Land available | x | x | x | x | The amount of land available in hectares for urban expansion. Geophysical barriers were removed from areas where we have no built-up areas in each zone (Appendix A). |
Neighb. land available | x | x | Average of land available in neighboring zones, in hectares. | ||
Neighb. average Socioecon. Indic. | x | x | Average of socioeconomic factors in neighboring zones, in percentage. (See Appendix A) | ||
Neighb. number of infrastructure | x | x | Average number of infrastructure in neighboring zones. (See Appendix A) | ||
Neighb. average price of soil | x | x | Average of soil price in neighboring zones, in Cape Verdean escudos (ECV). | ||
OBS: The year 1969 was not considered in the OLS because the number of observations is insufficient (<30) and it does not meet the autocorrelation test assumptions. |
Periods | Range (years) | Changed UA (ha) | Pop. Growth (persons) | Annual UA Growth (ha) | Annual pop. Growth (persons) | Rate of Change in UA (%) | Rate of Change in Pop. (%) |
---|---|---|---|---|---|---|---|
1969–1993 | 24 | 295 | 47,368 | 12.3 | 1974 | 304.1 | 205.2 |
1993–2003 | 10 | 368 | 32,751 | 36.8 | 3275 | 93.8 | 46.5 |
2003–2010 | 7 | 153 | 21,525 | 21.8 | 3075 | 20.1 | 20.9 |
2010–2015 | 5 | 114 | 18,866 | 22.9 | 3773 | 12.5 | 15.1 |
Years | Urban Area (ha) | Population (persons) | Urban Area per Person (m2) | Person per Unit of Urban Area (ha) |
---|---|---|---|---|
1969 | 97 | 23,082 | 42.1 | 238 |
1993 | 392 | 70,450 | 55.7 | 180 |
2003 | 760 | 103,201 | 73.7 | 136 |
2010 | 913 | 124,726 | 73.2 | 137 |
2015 | 1028 | 143,592 | 71.6 | 140 |
Summary OLS—1993 (B) n = 32; variable = 2 | |||||
Variable | Coefficient | Std-error | t-statistic | Probability | VIF |
Intercept | 3985.820589 | 6785.842575 | 0.587373 | 0.561498 | |
Population | 31.809366 | 2.517843 | 12.633579 | 0.000000 * | 1.108274 |
Road density | 12,100.056800 | 7.480310 | 7.480310 | 0.009483 * | 1.108274 |
Adjusted R2 | 0.907012 | ||||
R2 | 0.913011 | ||||
AICc | 745.776307 | ||||
F-statistic | 152.187464 | Prob(>F), (2, 29) degrees of freedom: | 0.000000 * | ||
Wald statistic | 518.634477 | Prob(>chi-squared), (2) degrees of freedom: | 0.000000 * | ||
Koenker (BP) statistic | 2.417524 | Prob(>chi-squared), (2) degrees of freedom: | 0.298567 | ||
Jarque–Bera statistic | 0.303049 | Prob(>chi-squared), (2) degrees of freedom: | 0.859397 | ||
Summary OLS—2003 (C) n = 38; variable = 3 | |||||
Variable | Coefficient | Std-error | t-statistic | Robust_Pr | VIF |
Intercept | −44,427.098031 | 16,544.293472 | −2.685343 | 0.016221 * | |
Population | 76.301495 | 8.050794 | 9.477511 | 0.000000 * | 1.149402 |
Distance from industrial zone | 38.399808 | 15.376331 | 2.497332 | 0.032221 * | 1.018675 |
Road density | 15,919.911821 | 3605.625972 | 4.415298 | 0.003162 * | 1.160896 |
Adjusted R2 | 0.814749 | ||||
R2 | 0.829769 | ||||
AICc | 936.490199 | ||||
F-statistic | 55.242897 | Prob(>F), (3, 34) degrees of freedom: | 0.000000 * | ||
Wald statistic | 74.820247 | Prob(>chi-squared), (3) degrees of freedom: | 0.000000 * | ||
Koenker (BP) statistic | 15.385867 | Prob(>chi-squared), (3) degrees of freedom: | 0.001515 * | ||
Jarque–Bera statistic | 0.672661 | Prob(>chi-squared), (2) degrees of freedom: | 0.714387 | ||
Summary OLS—2010 (D) n = 41; variable = 3 | |||||
Variable | Coefficient | Std-error | t-statistic | Robust_Pr | VIF |
Intercept | −15,060.608501 | 9754.185620 | −1.544015 | 0.064277 | - |
Distance to arterial roads | 60.146585 | 15.354631 | 3.917163 | 0.003010 * | 1.015134 |
Road density | 18,220.520796 | 2613.066032 | 6.972851 | 0.000506 * | 1.677798 |
Number of infrastructure | −13,913.000078 | 3234.758763 | −4.301094 | 0.008496 * | 1.659595 |
Adjusted R2 | 0.631806 | ||||
R2 | 0.659420 | ||||
AICc | 979.427171 | ||||
F-statistic | 23.879429 | Prob(>F), (3, 37) degrees of freedom: | 0.000000 * | ||
Wald statistic | 25.943000 | Prob(>chi-squared), (3) degrees of freedom: | 0.000010 * | ||
Koenker (BP) statistic | 16.152417 | Prob(>chi-squared), (3) degrees of freedom: | 0.001055 * | ||
Jarque–Bera statistic | 1.836169 | Prob(>chi-squared), (5) degrees of freedom: | 0.399283 | ||
Summary OLS—2015 (E) n = 41; variable = 5 | |||||
Variable | Coefficient | Std-error | t-statistic | Probability | VIF |
Intercept | 67,497.851765 | 13,740.383921 | 4.912370 | 0.000021 * | - |
Distance to coast | −10.771943 | 4.029534 | −2.673247 | 0.011336 * | 3.303922 |
Road density | 9695.252926 | 1500.361755 | 6.461944 | 0.000000 * | 1.894193 |
Number of infrastructure | −6261.266625 | 1804.017556 | −3.470735 | 0.001397 * | 1.890089 |
Industrial area (binary variable) | −34,236.263490 | 9810.436301 | −3.489780 | 0.001325 * | 1.502953 |
Distance to urban perimeter | −37.700956 | 7.200143 | −5.236140 | 0.000008 * | 3.135334 |
Adjusted R2 | 0.657658 | ||||
R2 | 0.700451 | ||||
AICc | 931.208517 | ||||
F-statistic | 16.368468 | Prob(>F), (5,35) degrees of freedom: | 0.000000 * | ||
Wald statistic | 71.455642 | Prob(>chi-squared), (5) degrees of freedom: | 0.000000 * | ||
Koenker (BP) statistic | 5.562527 | Prob(>chi-squared), (2) degrees of freedom: | 0.351138 | ||
Jarque–Bera statistic | 2.876546 | Prob(>chi-squared), (2) degrees of freedom: | 0.237337 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, P.; Li, L. Mapping Urban Expansion and Exploring Its Driving Forces in the City of Praia, Cape Verde, from 1969 to 2015. Sustainability 2017, 9, 1434. https://doi.org/10.3390/su9081434
Silva P, Li L. Mapping Urban Expansion and Exploring Its Driving Forces in the City of Praia, Cape Verde, from 1969 to 2015. Sustainability. 2017; 9(8):1434. https://doi.org/10.3390/su9081434
Chicago/Turabian StyleSilva, Patrik, and Lin Li. 2017. "Mapping Urban Expansion and Exploring Its Driving Forces in the City of Praia, Cape Verde, from 1969 to 2015" Sustainability 9, no. 8: 1434. https://doi.org/10.3390/su9081434
APA StyleSilva, P., & Li, L. (2017). Mapping Urban Expansion and Exploring Its Driving Forces in the City of Praia, Cape Verde, from 1969 to 2015. Sustainability, 9(8), 1434. https://doi.org/10.3390/su9081434