The Seasonal and Diurnal Influence of Surrounding Land Use on Temperature: Findings from Seoul, South Korea
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Data
2.2.1. Temperature Data
2.2.2. Land Use Data
2.3. Analysis
3. Results
3.1. Testing for Multicollinearity
3.2. Land Use Classification I
3.3. Land Use Classification II
4. Discussion and Implications
5. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014. [Google Scholar]
- Bulkeley, H. Cities and Climate Change, 1st ed.; Routledge: New York, NY, USA, 2013; ISBN 978-0-415-59705-0. [Google Scholar]
- Ewing, R.; Bartholomew, K.; Winkelman, S.; Walters, J.; Chen, D. Growing Cooler: The Evidence on Urban Development and Climate Change; Urban Land Institute: Washington, DC, USA, 2008; ISBN 978-0-87420-082-9. [Google Scholar]
- Stone, B. The City and the Coming Climate: Climate Change in the Places We Live, 1st ed.; Cambridge University Press: New York, NY, USA, 2012; ISBN 978-1-107-60258-8. [Google Scholar]
- Hickman, R.; Banister, D. Transport, Climate Change and the City; Routledge: London, UK; New York, NY, USA, 2015; ISBN 978-0-415-66003-7. [Google Scholar]
- Newman, P.; Beatley, T.; Boyer, H.M. Resilient Cities: Responding to Peak Oil and Climate Change, 1st ed.; Island Press: Washington, DC, USA, 2009; ISBN 978-1-59726-499-0. [Google Scholar]
- Deilami, K.; Kamruzzaman, M. Modelling the urban heat island effect of smart growth policy scenarios in Brisbane. Land Use Policy 2017, 64, 38–55. [Google Scholar] [CrossRef]
- Giridharan, R.; Lau, S.S.Y.; Ganesan, S.; Givoni, B. Urban design factors influencing heat island intensity in high-rise high-density environments of Hong Kong. Build. Environ. 2007, 42, 3669–3684. [Google Scholar] [CrossRef]
- Givoni, B. Climate Considerations in Building and Urban Design; Van Nostrand Reinhold: New York, NY, USA, 1998; ISBN 0-442-00991-7. [Google Scholar]
- Lenzholer, S. Weather in the City: How Design Shapes the Urban Climate; nai010 Publishers: Rotterdam, The Netherlands, 2015; ISBN 978-94-6208-198-7. [Google Scholar]
- Mitchell, D.; Enemark, S.; van der Molen, P. Climate resilient urban development: Why responsible land governance is important. Land Use Policy 2015, 48, 190–198. [Google Scholar] [CrossRef]
- Taylor, P.J. Cities in climate change. Int. J. Urban Sci. 2017, 21, 1–14. [Google Scholar] [CrossRef]
- Calthorpe, P. Urbanism in the Age of Climate Change, 2nd ed.; Island Press: Washington, DC, USA, 2013; ISBN 978-1-59726-721-2. [Google Scholar]
- Desouza, K.C.; Flanery, T.H. Designing, planning, and managing resilient cities: A conceptual framework. Cities 2013, 35, 89–99. [Google Scholar] [CrossRef]
- Jabareen, Y. Planning the resilient city: Concepts and strategies for coping with climate change and environmental risk. Cities 2013, 31, 220–229. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Susca, T.; Gaffin, S.R.; Dell’Osso, G.R. Positive effects of vegetation: Urban heat island and green roofs. Environ. Pollut. 2011, 159, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Takebayashi, H.; Moriyama, M. Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Build. Environ. 2007, 42, 2971–2979. [Google Scholar] [CrossRef]
- Wong, J.K.W.; Lau, L.S.-K. From the “urban heat island” to the “green island”? A preliminary investigation into the potential of retrofitting green roofs in Mongkok district of Hong Kong. Habitat Int. 2013, 39, 25–35. [Google Scholar] [CrossRef]
- Zinzi, M.; Agnoli, S. Cool and green roofs. An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region. Energy Build. 2012, 55, 66–76. [Google Scholar] [CrossRef]
- Alexandri, E.; Jones, P. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build. Environ. 2008, 43, 480–493. [Google Scholar] [CrossRef]
- Santamouris, M. Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renew. Sustain. Energy Rev. 2013, 26, 224–240. [Google Scholar] [CrossRef]
- Chen, L.; Ng, E.; An, X.; Ren, C.; Lee, M.; Wang, U.; He, Z. Sky view factor analysis of street canyons and its implications for daytime intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong: A GIS-based simulation approach. Int. J. Climatol. 2012, 32, 121–136. [Google Scholar] [CrossRef]
- Chun, B.; Guhathakurta, S. Daytime and nighttime urban heat islands statistical models for Atlanta. Environ. Plan. B Plan. Des. 2015. [Google Scholar] [CrossRef]
- Chun, B.; Guldmann, J.-M. Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landsc. Urban Plan. 2014, 125, 76–88. [Google Scholar] [CrossRef]
- Coseo, P.; Larsen, L. How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago. Landsc. Urban Plan. 2014, 125, 117–129. [Google Scholar] [CrossRef]
- Svensson, M.K. Sky view factor analysis—Implications for urban air temperature differences. Meteorol. Appl. 2004, 11, 201–211. [Google Scholar] [CrossRef]
- Yuan, C.; Chen, L. Mitigating urban heat island effects in high-density cities based on sky view factor and urban morphological understanding: A study of Hong Kong. Archit. Sci. Rev. 2011, 54, 305–315. [Google Scholar] [CrossRef]
- Middel, A.; Häb, K.; Brazel, A.J.; Martin, C.A.; Guhathakurta, S. Impact of Urban Form and Design on Mid-Afternoon Microclimate in Phoenix Local Climate Zones. Landsc. Urban Plan. 2014, 122, 16–28. [Google Scholar] [CrossRef]
- Stone, B.; Rodgers, M.O. Urban Form and Thermal Efficiency: How the Design of Cities Influences the Urban Heat Island Effect. J. Am. Plan. Assoc. 2001, 67, 186–198. [Google Scholar] [CrossRef]
- Jamei, E.; Jamei, Y.; Rajagopalan, P.; Ossen, D.R.; Roushenas, S. Effect of built-up ratio on the variation of air temperature in a heritage city. Sustain. Cities Soc. 2015, 14, 280–292. [Google Scholar] [CrossRef]
- Aflaki, A.; Mirnezhad, M.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Omrany, H.; Wang, Z.-H.; Akbari, H. Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities 2017, 62, 131–145. [Google Scholar] [CrossRef]
- Alavipanah, S.; Wegmann, M.; Qureshi, S.; Weng, Q.; Koellner, T. The Role of Vegetation in Mitigating Urban Land Surface Temperatures: A Case Study of Munich, Germany during the Warm Season. Sustainability 2015, 7, 4689–4706. [Google Scholar] [CrossRef]
- Armson, D.; Stringer, P.; Ennos, A.R. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For. Urban Green. 2012, 11, 245–255. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Chang, C.-R.; Li, M.-H. Effects of urban parks on the local urban thermal environment. Urban For. Urban Green. 2014, 13, 672–681. [Google Scholar] [CrossRef]
- Chen, A.; Yao, X.A.; Sun, R.; Chen, L. Effect of urban green patterns on surface urban cool islands and its seasonal variations. Urban For. Urban Green. 2014, 13, 646–654. [Google Scholar] [CrossRef]
- Connors, J.P.; Galletti, C.S.; Chow, W.T.L. Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc. Ecol. 2013, 28, 271–283. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Dons, K.; Meilby, H. Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landsc. Urban Plan. 2014, 123, 87–95. [Google Scholar] [CrossRef]
- Gill, S.; Handley, J.; Ennos, A.; Pauleit, S. Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef]
- Park, J.-H.; Cho, G.-H. Examining the Association between Physical Characteristics of Green Space and Land Surface Temperature: A Case Study of Ulsan, Korea. Sustainability 2016, 8, 777. [Google Scholar] [CrossRef]
- Shih, W. Greenspace patterns and the mitigation of land surface temperature in Taipei metropolis. Habitat Int. 2017, 60, 69–80. [Google Scholar] [CrossRef]
- Hanamean, J.R., Jr.; Pielke, R.A., Sr.; Castro, C.L.; Ojima, D.S.; Reed, B.C.; Gao, Z. Vegetation greenness impacts on maximum and minimum temperatures in northeast Colorado. Meteorol. Appl. 2003, 10, 203–215. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Tan, C.-H.; Wei, C.; Su, Z.-W. Cooling Effect of Rivers on Metropolitan Taipei Using Remote Sensing. Int. J. Environ. Res. Public Health 2014, 11, 1195–1210. [Google Scholar] [CrossRef] [PubMed]
- Hathway, E.A.; Sharples, S. The interaction of rivers and urban form in mitigating the Urban Heat Island effect: A UK case study. Build. Environ. 2012, 58, 14–22. [Google Scholar] [CrossRef]
- Steeneveld, G.J.; Koopmans, S.; Heusinkveld, B.G.; Theeuwes, N.E. Refreshing the role of open water surfaces on mitigating the maximum urban heat island effect. Landsc. Urban Plan. 2014, 121, 92–96. [Google Scholar] [CrossRef]
- Sun, R.; Chen, L. How can urban water bodies be designed for climate adaptation? Landsc. Urban Plan. 2012, 105, 27–33. [Google Scholar] [CrossRef]
- Han, S.-G.; Huh, J.-H. Estimate of the Heat Island and Building Cooling Load Changes due to the Restored Stream in Seoul, Korea. Int. J. Urban Sci. 2008, 12, 129–145. [Google Scholar] [CrossRef]
- Xiao, R.; Ouyang, Z.; Zheng, H.; Li, W.; Schienke, E.W.; Wang, X. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. J. Environ. Sci. 2007, 19, 250–256. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Gallo, K.; Xian, G. Application of spatially gridded temperature and land cover data sets for urban heat island analysis. Urban Clim. 2014, 8, 1–10. [Google Scholar] [CrossRef]
- Gallo, K.; Xian, G. Changes in satellite-derived impervious surface area at US historical climatology network stations. ISPRS J. Photogramm. Remote Sens. 2016, 120, 77–83. [Google Scholar] [CrossRef]
- Amiri, R.; Weng, Q.; Alimohammadi, A.; Alavipanah, S.K. Spatial—Temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sens. Environ. 2009, 113, 2606–2617. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc. Ecol. 2010, 25, 17–33. [Google Scholar] [CrossRef]
- Stathopoulou, M.; Cartalis, C. Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Sol. Energy 2007, 81, 358–368. [Google Scholar] [CrossRef]
- Svensson, M.K.; Eliasson, I. Diurnal air temperatures in built-up areas in relation to urban planning. Landsc. Urban Plan. 2002, 61, 37–54. [Google Scholar] [CrossRef]
- Viegas, C.V.; Saldanha, D.L.; Bond, A.; Ribeiro, J.L. D.; Selig, P.M. Urban land planning: The role of a Master Plan in influencing local temperatures. Cities 2013, 35, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature—Vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Hart, M.A.; Sailor, D.J. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor. Appl. Climatol. 2009, 95, 397–406. [Google Scholar] [CrossRef]
- Jusuf, S.K.; Wong, N.H.; Hagen, E.; Anggoro, R.; Hong, Y. The influence of land use on the urban heat island in Singapore. Habitat Int. 2007, 31, 232–242. [Google Scholar] [CrossRef]
- Rinner, C.; Hussain, M. Toronto’s Urban Heat Island—Exploring the Relationship between Land Use and Surface Temperature. Remote Sens. 2011, 3, 1251–1265. [Google Scholar] [CrossRef]
- Santamouris, M. On the energy impact of urban heat island and global warming on buildings. Energy Build. 2014, 82, 100–113. [Google Scholar] [CrossRef]
- Steeneveld, G.J.; Koopmans, S.; Heusinkveld, B.G.; van Hove, L.W.A.; Holtslag, A.A.M. Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands. J. Geophys. Res. Atmos. 2011, 116, D20129. [Google Scholar] [CrossRef]
- Szymanowski, M. Interactions between thermal advection in frontal zones and the urban heat island of Wrocław, Poland. Theor. Appl. Climatol. 2005, 82, 207–224. [Google Scholar] [CrossRef]
- Busato, F.; Lazzarin, R.M.; Noro, M. Three years of study of the Urban Heat Island in Padua: Experimental results. Sustain. Cities Soc. 2014, 10, 251–258. [Google Scholar] [CrossRef]
- Wong, N.H.; Yu, C. Study of green areas and urban heat island in a tropical city. Habitat Int. 2005, 29, 547–558. [Google Scholar] [CrossRef]
- Seoul Metropolitan Government. Atmospheric Environment Conditions of Seoul; Seoul Metropolitan Government: Seoul, Korea, 2017.
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Korea Meteorological Administration. Climate Change Projection Report—Seoul, Incheon, and Gyeonggi; Korea Meteorological Administration: Seoul, Korea, 2012.
- Kim, Y.-H.; Baik, J.-J. Daily maximum urban heat island intensity in large cities of Korea. Theor. Appl. Climatol. 2004, 79, 151–164. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Baik, J.-J. Spatial and Temporal Structure of the Urban Heat Island in Seoul. J. Appl. Meteorol. 2005, 44, 591–605. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Baik, J.-J. Maximum Urban Heat Island Intensity in Seoul. J. Appl. Meteorol. 2002, 41, 651–659. [Google Scholar] [CrossRef]
- Lee, S.-H.; Baik, J.-J. Statistical and dynamical characteristics of the urban heat island intensity in Seoul. Theor. Appl. Climatol. 2010, 100, 227–237. [Google Scholar] [CrossRef]
- Cha, Y.-H.; Kim, H.-Y.; Heo, T.-Y. The Effects of Urban Land Use and Land Cover Characteristics on Air Temperature in Seoul Metropolitan Area. Seoul City Res. 2009, 10, 107–120. [Google Scholar]
- Pielke, R., Sr.; Nielsen-Gammon, J.; Davey, C.; Angel, J.; Bliss, O.; Doesken, N.; Cai, M.; Fall, S.; Niyogi, D.; Gallo, K.; et al. Documentation of Uncertainties and Biases Associated with Surface Temperature Measurement Sites for Climate Change Assessment. Bull. Am. Meteorol. Soc. 2007, 88, 913–928. [Google Scholar] [CrossRef]
- Fall, S.; Watts, A.; Nielsen-Gammon, J.; Jones, E.; Niyogi, D.; Christy, J.R.; Pielke, R.A. Analysis of the impacts of station exposure on the U.S. Historical Climatology Network temperatures and temperature trends. J. Geophys. Res. 2011, 116, D14120. [Google Scholar] [CrossRef]
- Korea Meteorological Administration. Guidelines for Surface Meteorological Observation; Korea Meteorological Administration: Seoul, Korea, 2011.
- Kim, Y.; Guldmann, J.-M. Land-use regression panel models of NO2 concentrations in Seoul, Korea. Atmos. Environ. 2015, 107, 364–373. [Google Scholar] [CrossRef]
- Ross, Z.; Jerrett, M.; Ito, K.; Tempalski, B.; Thurston, G.D. A land use regression for predicting fine particulate matter concentrations in the New York City region. Atmos. Environ. 2007, 41, 2255–2269. [Google Scholar] [CrossRef]
- Mallick, J.; Singh, C.K.; Shashtri, S.; Rahman, A.; Mukherjee, S. Land surface emissivity retrieval based on moisture index from LANDSAT TM satellite data over heterogeneous surfaces of Delhi city. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 348–358. [Google Scholar] [CrossRef]
- Onishi, A.; Cao, X.; Ito, T.; Shi, F.; Imura, H. Evaluating the potential for urban heat-island mitigation by greening parking lots. Urban For. Urban Green. 2010, 9, 323–332. [Google Scholar] [CrossRef]
- Xiao, H.; Ji, W. Relating landscape characteristics to non-point source pollution in mine waste-located watersheds using geospatial techniques. J. Environ. Manag. 2007, 82, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Sampson, P.D.; Richards, M.; Szpiro, A.A.; Bergen, S.; Sheppard, L.; Larson, T.V.; Kaufman, J.D. A regionalized national universal kriging model using Partial Least Squares regression for estimating annual PM2.5 concentrations in epidemiology. Atmos. Environ. 2013, 75, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Woldesenbet, T.A.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Sci. Total Environ. 2017, 575, 724–741. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Fang, N.F.; Zhang, P.C.; Shi, Z.H. Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. J. Hydrol. 2013, 484, 26–37. [Google Scholar] [CrossRef]
- Abdi, H. Partial least square regression (PLS regression). In Encyclopedia for Research Methods for the Social Sciences; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2003; pp. 792–805. [Google Scholar]
- Liu, H.-L.; Shen, Y.-S. The Impact of Green Space Changes on Air Pollution and Microclimates: A Case Study of the Taipei Metropolitan Area. Sustainability 2014, 6, 8827–8855. [Google Scholar] [CrossRef]
- Zhao, J.; Deng, W.; Song, Y. Ridership and effectiveness of bikesharing: The effects of urban features and system characteristics on daily use and turnover rate of public bikes in China. Transp. Policy 2014, 35, 253–264. [Google Scholar] [CrossRef]
- Wold, S. Exponentially weighted moving principal components analysis and projections to latent structures. Chemom. Intell. Lab. Syst. 1994, 23, 149–161. [Google Scholar] [CrossRef]
Classification | Land Use Types | Summary Statistics | Reference Station (#108) | ||
---|---|---|---|---|---|
Min. | Max. | Mean. | |||
Classification I | Residential (RE) | 0.0% | 64.2% | 34.3% | 50.4% |
Commercial (CO) | 0.0% | 15.1% | 3.2% | 7.7% | |
Civic (CI) | 0.1% | 56.5% | 7.1% | 8.8% | |
Industrial (IN) | 0.0% | 24.6% | 2.9% | 0.0% | |
Open Space (OS) | 2.7% | 93.7% | 31.2% | 12.9% | |
Road (RO) | 0.2% | 27.5% | 15.0% | 20.1% | |
Water (WA) | 0.0% | 51.9% | 6.3% | 0.0% | |
Classification II (Permissible floor area ratio 1 and lot coverage ratio 2) | Low-density residential (RL) (1.5 and 0.5) | 0.0% | 20.5% | 4.8% | 11.6% |
Medium-density residential (RM) (2.0 and 0.6) | 0.0% | 41.1% | 15.2% | 18.6% | |
High-density residential (RH) (4.0 and 0.6) | 0.0% | 35.7% | 14.3% | 20.2% | |
Neighborhood commercial (CN) (6.0 and 0.6) | 0.0% | 1.5% | 0.2% | 0.0% | |
Central commercial (CC) (10.0 and 0.6) | 0.0% | 15.1% | 3.0% | 7.7% | |
Civic (CI) 3 | 0.1% | 56.5% | 7.1% | 8.8% | |
Industrial (IN) (4.0 and 0.6) | 0.0% | 24.6% | 2.9% | 0.0% | |
Park (PA) (0.5 and 0.2) | 0.0% | 52.8% | 7.2% | 4.8% | |
Greenery (GR) (0.5 and 0.2) | 0.0% | 93.6% | 24.1% | 8.2% | |
Road (RO) | 0.2% | 27.5% | 15.0% | 20.1% | |
Water (WA) | 0.0% | 51.9% | 6.3% | 0.0% |
Land Use | RE | CO | CI | IN | OS | RO | WA |
---|---|---|---|---|---|---|---|
RE | 1 | ||||||
CO | 0.181 | 1 | |||||
CI | −0.175 | −0.178 | 1 | ||||
IN | −0.025 | 0.347 | −0.161 | 1 | |||
OS | −0.710 ** | −0.501 ** | −0.034 | −0.278 | 1 | ||
RO | 0.703 ** | 0.497 ** | −0.353 | 0.358 | −0.797 ** | 1 | |
WA | −0.279 | 0.129 | −0.186 | −0.087 | −0.228 | 0.007 | 1 |
Land Use | RL | RM | RH | CN | CC | CI | IN | PA | GR | RO | WA |
---|---|---|---|---|---|---|---|---|---|---|---|
RL | 1 | ||||||||||
RM | −0.076 | 1 | |||||||||
RH | −0.317 | 0.334 | 1 | ||||||||
CN | 0.022 | 0.386 * | 0.067 | 1 | |||||||
CC | −0.300 | −0.130 | 0.555 ** | −0.221 | 1 | ||||||
CI | 0.084 | −0.148 | −0.174 | 0.000 | −0.176 | 1 | |||||
IN | −0.197 | 0.086 | −0.037 | 0.331 | 0.310 | −0.161 | 1 | ||||
PA | 0.423 * | −0.029 | −0.068 | 0.005 | −0.070 | −0.155 | −0.143 | 1 | |||
GR | 0.045 | −0.535 ** | −0.576 ** | −0.259 | −0.399 * | 0.035 | −0.194 | −0.396 * | 1 | ||
RO | −0.252 | 0.530 ** | 0.725 ** | 0.307 | 0.460 * | −0.353 | 0.358 | 0.111 | −0.780 ** | 1 | |
WA | −0.323 | −0.174 | -0.109 | −0.161 | 0.142 | −0.186 | −0.087 | −0.003 | −0.208 | 0.007 | 1 |
Spring | Summer | Fall | Winter | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day | VIP | Night | VIP | Day | VIP | Night | VIP | Day | VIP | Night | VIP | Day | VIP | Night | VIP | |
Land Use Coefficient | ||||||||||||||||
RE | 0.006 †† | 1.129 | 0.012 †† | 1.063 | 0.006 †† | 1.091 | 0.010 † | 0.976 | 0.004 † | 0.836 | 0.010 † | 0.829 | 0.004 † | 0.877 | 0.011 † | 0.961 |
CO | 0.019 † | 0.847 | 0.055 †† | 1.055 | 0.025 †† | 1.027 | 0.051 †† | 1.103 | 0.028 †† | 1.169 | 0.067 †† | 1.234 | 0.022 † | 0.996 | 0.052 †† | 1.075 |
CI | −0.002 | 0.240 | −0.006 | 0.325 | −0.003 | 0.272 | −0.007 | 0.399 | −0.001 | 0.100 | −0.007 | 0.358 | 0.000 | 0.031 | −0.005 | 0.266 |
IN | −0.001 | 0.043 | 0.012 | 0.382 | 0.002 | 0.132 | 0.014 | 0.492 | 0.007 | 0.462 | 0.021 | 0.614 | 0.006 | 0.387 | 0.015 | 0.494 |
OS | −0.005 †† | 1.471 | −0.012 †† | 1.508 | −0.006 †† | 1.487 | −0.011 †† | 1.482 | −0.006 †† | 1.523 | −0.013 †† | 1.484 | −0.006 †† | 1.544 | −0.012 †† | 1.533 |
RO | 0.021 †† | 1.618 | 0.043 †† | 1.416 | 0.022 †† | 1.504 | 0.038 †† | 1.390 | 0.020 †† | 1.448 | 0.040 †† | 1.266 | 0.021 †† | 1.567 | 0.040 †† | 1.390 |
WA | 0.003 | 0.408 | 0.008 | 0.476 | 0.003 | 0.436 | 0.008 | 0.549 | 0.004 | 0.544 | 0.012 | 0.693 | 0.004 | 0.499 | 0.009 | 0.570 |
Goodness-of-fit Statistics | ||||||||||||||||
R2 | 0.405 | 0.721 | 0.477 | 0.790 | 0.392 | 0.669 | 0.357 | 0.670 | ||||||||
Q2 | 0.259 | 0.679 | 0.342 | 0.755 | 0.260 | 0.621 | 0.223 | 0.614 |
Spring | Summer | Fall | Winter | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day | VIP | Night | VIP | Day | VIP | Night | VIP | Day | VIP | Night | VIP | Day | VIP | Night | VIP | |
Land Use Coefficient | ||||||||||||||||
RL | −0.012 † | 0.909 | −0.020 | 0.685 | −0.011 † | 0.807 | −0.019 | 0.747 | −0.016 †† | 1.162 | −0.017 | 0.578 | −0.016 †† | 1.173 | −0.018 | 0.672 |
RM | 0.005 | 0.774 | 0.010 | 0.761 | 0.005 | 0.748 | 0.009 | 0.722 | 0.003 | 0.530 | 0.008 | 0.589 | 0.004 | 0.568 | 0.009 | 0.715 |
RH | 0.011 †† | 1.723 | 0.024 †† | 1.605 | 0.012 †† | 1.695 | 0.020 †† | 1.516 | 0.011 †† | 1.570 | 0.020 †† | 1.330 | 0.011 †† | 1.577 | 0.020 †† | 1.460 |
CN | 0.061 | 0.337 | 0.202 | 0.495 | 0.045 | 0.227 | 0.164 | 0.448 | 0.044 | 0.219 | 0.147 | 0.353 | 0.097 | 0.499 | 0.184 | 0.487 |
CC | 0.015 † | 0.894 | 0.045 †† | 1.168 | 0.021 †† | 1.137 | 0.042 †† | 1.231 | 0.023 †† | 1.251 | 0.056 †† | 1.430 | 0.018 †† | 1.014 | 0.043 †† | 1.199 |
CI | −0.002 | 0.267 | −0.006 | 0.381 | −0.002 | 0.312 | −0.006 | 0.469 | −0.001 | 0.110 | −0.007 | 0.432 | 0.000 | 0.033 | −0.004 | 0.313 |
IN | −0.001 | 0.048 | 0.011 | 0.447 | 0.002 | 0.152 | 0.013 | 0.578 | 0.006 | 0.511 | 0.019 | 0.741 | 0.005 | 0.419 | 0.013 | 0.582 |
PA | 0.000 | 0.057 | −0.003 | 0.234 | −0.001 | 0.201 | −0.003 | 0.271 | −0.002 | 0.327 | −0.001 | 0.072 | −0.001 | 0.145 | −0.001 | 0.065 |
GR | −0.004 †† | 1.477 | −0.009 †† | 1.521 | −0.004 †† | 1.480 | −0.008 †† | 1.482 | −0.004 †† | 1.408 | −0.009 †† | 1.614 | −0.004 †† | 1.474 | −0.009 †† | 1.631 |
RO | 0.018 †† | 1.798 | 0.038 †† | 1.657 | 0.019 †† | 1.725 | 0.033 †† | 1.632 | 0.018 †† | 1.602 | 0.036 †† | 1.527 | 0.018 †† | 1.696 | 0.035 †† | 1.637 |
WA | 0.002 | 0.453 | 0.007 | 0.557 | 0.003 | 0.499 | 0.007 | 0.645 | 0.004 | 0.602 | 0.011 † | 0.836 | 0.003 | 0.540 | 0.008 | 0.672 |
Goodness-of-fit Statistics | ||||||||||||||||
R2 | 0.451 | 0.730 | 0.503 | 0.795 | 0.450 | 0.637 | 0.424 | 0.665 | ||||||||
Q2 | 0.266 | 0.663 | 0.349 | 0.737 | 0.253 | 0.567 | 0.213 | 0.591 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Kim, S.-N. The Seasonal and Diurnal Influence of Surrounding Land Use on Temperature: Findings from Seoul, South Korea. Sustainability 2017, 9, 1443. https://doi.org/10.3390/su9081443
Kim H, Kim S-N. The Seasonal and Diurnal Influence of Surrounding Land Use on Temperature: Findings from Seoul, South Korea. Sustainability. 2017; 9(8):1443. https://doi.org/10.3390/su9081443
Chicago/Turabian StyleKim, Hyungkyoo, and Seung-Nam Kim. 2017. "The Seasonal and Diurnal Influence of Surrounding Land Use on Temperature: Findings from Seoul, South Korea" Sustainability 9, no. 8: 1443. https://doi.org/10.3390/su9081443
APA StyleKim, H., & Kim, S. -N. (2017). The Seasonal and Diurnal Influence of Surrounding Land Use on Temperature: Findings from Seoul, South Korea. Sustainability, 9(8), 1443. https://doi.org/10.3390/su9081443