Heatstroke Risk Predictions for Current and Near-Future Summers in Sendai, Japan, Based on Mesoscale WRF Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Method for Heatstroke Risk Estimation
2.1.1. Conceptual Model for Disaster Risk Evaluation
2.1.2. Development of a Method for Quantitatively Estimating the Heatstroke Risk
2.1.3. Procedure for Estimating Heatstroke Risk
2.2. Outline of Mesoscale Meteorological Simulations Using the WRF Model
3. Results and Discussions
3.1. Method Validation for Heatstroke Risk Estimation in an Actual Situation
3.2. Results of Current and Near-Future Meteorological Simulations
3.2.1. Meteorological Factors
3.2.2. Outdoor WBGT
3.3. Estimation of the Outdoor Incidence Rate and Risk of Heatstroke
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the IPCC; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2013.
- Working Group for Future Standard Weather Data Using GCM Results, Sub-committee on Urban and Climate Adaptation, Research Committee on Global Environment. The near future weather data for building energy simulation using dynamical downscaling of results from global climate model. AIJ J. Technol. Des. 2014, 20, 1041–1046. [Google Scholar] [CrossRef]
- Arima, Y.; Ooka, R.; Kikumoto, H.; Yamanaka, T. Effect of climate change on building cooling loads in Tokyo in the summers of the 2030s using dynamically downscaled GCM data. Energy Build. 2016, 114, 123–129. [Google Scholar] [CrossRef]
- Sakamoto, T.T.; Komuro, Y.; Nishimura, T.; Ishii, M.; Tatebe, H.; Shiogama, H.; Hasegawa, A.; Toyoda, T.; Mori, M.; Suzuki, T.; et al. MIROC4h—A new high-resolution atmosphere-ocean coupled general circulation model. J. Meteorol. Soc. Jpn. 2012, 90, 325–359. [Google Scholar] [CrossRef]
- National Institute for Environmental Studies. Bulletin Report on Heatstroke Patients. Available online: http://www.nies.go.jp/gaiyo/archiv/risk8/ (accessed on 16 June 2017).
- Akbari, H.; Cartalis, C.; Kolokotsa, D.; Muscio, A.; Pisello, A.L.; Rossi, F.; Santamouris, M.; Synnefa, A.; Wong, N.H.; Zinzi, M. Local climate change and urban heat island mitigation techniques—The state of the art. J. Civ. Eng. Manag. 2016, 22, 1–16. [Google Scholar] [CrossRef]
- Akbari, H.; Pomerantz, M.; Taha, H. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol. Energy 2001, 70, 295–310. [Google Scholar] [CrossRef]
- Takebayashi, H.; Moriyama, M. Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Build. Environ. 2007, 42, 2971–2979. [Google Scholar] [CrossRef]
- Santamouris, M. On the energy impact of urban heat island and global warming on buildings. Energy Build. 2014, 82, 100–113. [Google Scholar] [CrossRef]
- Yumino, S.; Uchida, T.; Sasaki, K.; Kobayashi, H.; Mochida, A. Total assessment for various environmentally conscious techniques from three perspectives: Mitigation of global warming, mitigation of UHIs, and adaptation to urban warming. Sustain. Cities Soc. 2015, 19, 236–249. [Google Scholar] [CrossRef]
- Xuan, Y.; Yang, G.; Li, Q.; Mochida, A. Outdoor thermal environment for different urban forms under summer conditions. Build. Simul. 2016, 9, 281–296. [Google Scholar] [CrossRef]
- Rossi, F.; Morini, E.; Castellani, B.; Nicolini, A.; Bonamente, E.; Anderini, E.; Cotana, F. Beneficial effects of retroreflective materials in urban canyons: Results from seasonal monitoring campaign. J. Phys. 2015, 655, 012012. [Google Scholar] [CrossRef]
- Yoshida, S.; Yumino, S.; Uchida, T.; Mochida, A. Numerical analysis of the effects of windows with heat ray retro-reflective film on the outdoor thermal environment within a two-dimensional square cavity-type street canyon. Procedia Eng. 2016, 169, 384–391. [Google Scholar] [CrossRef]
- Kusaka, H.; Kimura, F.; Hirakuchi, H.; Mizutori, M. The effects of land-use alteration on the sea breeze and daytime heat island in the Tokyo metropolitan area. J. Meteorol. Soc. Jpn. 2000, 78, 405–420. [Google Scholar] [CrossRef]
- Morini, E.; Touchaei, A.G.; Castellani, B.; Rossi, F.; Cotana, F. The impact of albedo increase to mitigate the urban heat island in Terni (Italy) using the WRF model. Sustainability 2016, 8, 999. [Google Scholar] [CrossRef]
- Błażejczyk, K.; Matzarakis, A. Assessment of bioclimatic differentiation of Poland based on the human heat balance. Geogr. Pol. 2007, 80, 63–82. [Google Scholar]
- Kershaw, S.E.; Millward, A.A. A spatio-temporal index for heat vulnerability assessment. Environ. Monit. Assess. 2012, 184, 7329–7342. [Google Scholar] [CrossRef] [PubMed]
- Kjellstrom, T.; Lemke, B.; Matthias, O. Mapping occupational heat exposure and effects in South-East Asia: Ongoing time trends 1980–2011 and future estimates to 2050. Ind. Health 2013, 51, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health, Labor and Welfare. Utilization of WBGT in Heatstroke Prevention. Available online: http://www.mhlw.go.jp/bunya/roudoukijun/anzeneisei05/ (accessed on 1 August 2017).
- International Standards Organization (ISO 7243). Hot Environments; Estimation of the Heat Stress on Working Man, Based on the WBGT-Index (Wet Bulb Globe Temperature); International Organization for Standardization: Geneva, Switzerland, 1989.
- Kusaka, H.; Masayuki, H.; Takane, Y. Urban climate projection by the WRF model at 3-km horizontal grid increment: Dynamical downscaling and predicting heat stress in the 2070’s August for Tokyo, Osaka, and Nagoya metropolises. J. Meteorol. Soc. Jpn. 2012, 90, 47–63. [Google Scholar] [CrossRef]
- Ohashi, Y.; Kikegawa, Y.; Ihara, T.; Sugiyama, N. Numerical simulations of outdoor heat stress index and heat disorder risk in the 23 wards of Tokyo. J. Appl. Meteorol. Climatol. 2014, 53, 583–597. [Google Scholar] [CrossRef]
- Kikumoto, H.; Ooka, R.; Arima, Y. A study of urban thermal environment in Tokyo in summer of the 2030s under influence of global warming. Energy Build. 2016, 114, 54–61. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2014: Impacts, Adaptation, and Vulnerability 2014; Contribution of Working Group II to the Fifth Assessment Report of the IPCC; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014.
- Epstein, Y.; Moran, D.S. Thermal comfort and the heat stress indices. Ind. Health 2006, 44, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Yaglou, C.P.; Minaed, D. Control of heat casualties at military training centers. AMA Arch. Ind. Health 1957, 16, 302–316. [Google Scholar] [PubMed]
- Budd, G.M. Wet-bulb globe temperature (WBGT)—Its history and its limitations. J. Sci. Med. Sport 2008, 11, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Iribarne, J.V.; Godson, W.L. Atmospheric Thermodynamics; Springer: Berlin, Germany, 2012; Volume 6. [Google Scholar]
- Tetens, O. Uber einige meteorologische Begriffe. Z. Geophys. 1930, 6, 297–309. [Google Scholar]
- Tonouchi, M.; Murayama, K. Regional characteristics for the risk of heatstroke and HWDI. Jpn. J. Biometeor. 2008, 45, S62. [Google Scholar]
- Takaichi, M.; Hosono, T.; Kurosaki, H.; Watanabe, S.; Kawashima, H.; Nakano, Y. Estimation of Wet Bulb Globe Temperature (WBGT) and Evaluation of Safe Working Time and Space in Cultivation Facility. Available online: http://www.naro.affrc.go.jp/project/results/laboratory/vegetea/2003/vegetea03-24.html (accessed on 7 August 2017).
- Ministry of Internal Affairs and Communications. National Census 2010. Available online: http://www.stat.go.jp/data/kokusei/2010/index.htm (accessed on 16 June 2017).
- Ministry of Internal Affairs and Communications. Results of Economic Census 2009. Available online: http://www.stat.go.jp/data/e-census/2009/index.htm (accessed on 16 June 2017).
- Ministry of Land, Infrastructure, Transport and Tourism. National Land Numerical Information Download Service. Available online: http://nlftp.mlit.go.jp/ksj/ (accessed on 16 June 2017).
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.T.; van Vuuren, D.P.; Carter, T.M.; Emoril, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.Y.; Lim, J.O.J. The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteorol. Soc. 2006, 42, 129–151. [Google Scholar]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Kusaka, H.; Kimura, F. Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteorol. Soc. Jpn. 2004, 82, 67–80. [Google Scholar] [CrossRef]
- Kusaka, H.; Kondo, H.; Kikegawa, Y.; Kimura, F. A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound. Layer Meteorol. 2001, 101, 329–358. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
Domain Size (X × Y) | Grid Arrangement (X × Y × Z) | Grid Size (X × Y) | |
---|---|---|---|
Domain 1 | 1800 km × 1800 km | 72 × 72 × 34 | 25 km × 25 km |
Domain 2 | 750 km × 750 km | 150 × 150 × 34 | 5 km × 5 km |
Domain 3 | 120 km × 120 km | 120 × 120 × 34 | 1 km × 1 km |
Items | Content |
---|---|
Date | 21:00 (JST) 15 July to 21:00 1 September |
Number of Vertical Grids | 34 (from the surface to the 50 hPa level) |
Time Interval | Domain 1: 90 s; Domain 2: 30 s; Domain 3: 6 s |
Topographic Data | Domains 1 and 2: U.S. Geological Survey |
Domain 3: Japanese National Land Numerical Information [34] | |
Nesting | One-way nesting |
Items | Content |
---|---|
Microphysics | WRF single-moment six-class scheme [37] |
Shortwave Radiation | Dudhia scheme [38] |
Longwave Radiation | Rapid radiative transfer model scheme [39] |
Land Surface | Noah land surface model [40] |
+ Single-layer urban canopy model [41,42] | |
Planetary Boundary Layer | Yonsei University scheme [43] |
Cumulus Parameterization | Domains 1 and 2: Kain-Fritsch (new Eta) scheme [44] |
Domain 3: None |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasai, M.; Okaze, T.; Mochida, A.; Hanaoka, K. Heatstroke Risk Predictions for Current and Near-Future Summers in Sendai, Japan, Based on Mesoscale WRF Simulations. Sustainability 2017, 9, 1467. https://doi.org/10.3390/su9081467
Kasai M, Okaze T, Mochida A, Hanaoka K. Heatstroke Risk Predictions for Current and Near-Future Summers in Sendai, Japan, Based on Mesoscale WRF Simulations. Sustainability. 2017; 9(8):1467. https://doi.org/10.3390/su9081467
Chicago/Turabian StyleKasai, Masataka, Tsubasa Okaze, Akashi Mochida, and Kazumasa Hanaoka. 2017. "Heatstroke Risk Predictions for Current and Near-Future Summers in Sendai, Japan, Based on Mesoscale WRF Simulations" Sustainability 9, no. 8: 1467. https://doi.org/10.3390/su9081467
APA StyleKasai, M., Okaze, T., Mochida, A., & Hanaoka, K. (2017). Heatstroke Risk Predictions for Current and Near-Future Summers in Sendai, Japan, Based on Mesoscale WRF Simulations. Sustainability, 9(8), 1467. https://doi.org/10.3390/su9081467