Irrigation-Induced Changes in Evapotranspiration Demand of Awati Irrigation District, Northwest China: Weakening the Effects of Water Saving?
Abstract
:1. Introduction
2. Study Area, Data, and Method
2.1. Irrigation Development of Awati
2.2. Methods of Calculating Evapotranspiration Demand
3. Results and Discussion
3.1. Changes in Evapotranspiration Demand with Irrigation Development
3.2. Comparisons with Changes in Evapotranspiration Demand in Other Regions
3.3. Analysis Based on Complementary Relationship
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Döll, P.; Schmied, H.M.; Schuh, C.; Portmann, F.T.; Eicker, A. Globalascale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and grace satellites. Water Resour. Res. 2014, 50, 5698–5720. [Google Scholar] [CrossRef]
- Burt, C.M.; Clemmens, A.J.; Strelkoff, T.S.; Solomon, K.H.; Bliesner, R.D.; Hardy, L.A.; Howell, T.A.; Eisenhauer, D.E. Irrigation performance measures: Efficiency and uniformity. J. Irrig. Drain. E 1997, 123, 423–442. [Google Scholar] [CrossRef]
- Pereira, L.S.; Cordery, I.; Iacovides, I. Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agric. Water Manag. 2012, 108, 39–51. [Google Scholar] [CrossRef]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation management under water scarcity. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
- Allen, R.G.; Willardson, L.S.; Frederiksen, H. Water Use Definitions and Their Use for Assessing the Impacts of Water Conservation. In Proceedings of the ICID Workshop on Sustainable Irrigation in Areas of Water Scarcity and Drought, Oxford, UK, 11–12 September 1997; pp. 72–82. [Google Scholar]
- Wang, H.; Yang, G.Y.; Jia, Y.W.; Qin, D.Y.; Gan, H.; Wang, J.H.; Han, C.M. Necessity and feasibility for an et-based modern water resources management strategy: A case study of soil water resources in the yellow river basin. Sci. China Ser. E 2009, 52, 3004–3016. [Google Scholar] [CrossRef]
- Wang, H.; Yang, G.Y.; Jia, Y.W.; Qin, D.Y. Study on consumption efficiency of soil water resources in the yellow river basin based on regional et structure. Sci. China Ser. D 2008, 51, 456–468. [Google Scholar] [CrossRef]
- Dumont, A.; Mayor, B.; López-Gunn, E. Is the rebound effect or jevons paradox a useful concept for better management of water resources? Insights from the irrigation modernisation process in Spain. Aquat. Procedia 2013, 1, 64–76. [Google Scholar] [CrossRef]
- Erie, L.J.; French, O.F.; Bucks, D.A.; Harris, K. Consumptive Use of Water by Major Crops in the Southwestern United States; USDA Conservation Research Report 29; USDA: Washington, DC, USA, 1982.
- Zhang, Z.; Tian, F.; Hu, H.; Yang, P. A comparison of methods for determining field evapotranspiration: Photosynthesis system, sap flow, and eddy covariance. Hydrol. Earth Syst. Sci. 2014, 18, 1053–1072. [Google Scholar] [CrossRef]
- Ward, F.A.; Pulido-Velazquez, M. Water conservation in irrigation can increase water use. Proc. Natl. Acad. Sci. USA 2008, 105, 18215–18220. [Google Scholar] [CrossRef] [PubMed]
- Berbel, J.; Gutiérrez-Martín, C.; Rodríguez-Díaz, J.A.; Camacho, E.; Montesinos, P. Literature review on rebound effect of water saving measures and analysis of a Spanish case study. Water Resour. Manag. 2014, 29, 663–678. [Google Scholar] [CrossRef]
- Scott, C.A.; Vicuña, S.; Blanco-Gutiérrez, I.; Meza, F.; Varela-Ortega, C. Irrigation efficiency and water-policy implications for river basin resilience. Hydrol. Earth Syst. Sci. 2014, 18, 1339–1348. [Google Scholar] [CrossRef] [Green Version]
- Loch, A.; Adamson, D. Drought and the rebound effect: A murray–darling basin example. Nat. Hazards 2015, 79, 1429–1449. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, H.; Tian, F.; Yao, X.; Sivapalan, M. Groundwater dynamics under water-saving irrigation and implications for sustainable water management in an oasis: Tarim river basin of Western China. Hydrol. Earth Syst. Sci. 2014, 18, 3951–3967. [Google Scholar] [CrossRef]
- Sivapalan, M.; Konar, M.; Srinivasan, V.; Chhatre, A.; Wutich, A.; Scott, C.; Wescoat, J.; Rodríguez-Iturbe, I. Socio-hydrology: Use-inspired water sustainability science for the anthropocene. Earth’s Future 2014, 2, 225–230. [Google Scholar] [CrossRef]
- Berbel, J.; Mateos, L. Does investment in irrigation technology necessarily generate rebound effects? A simulation analysis based on an agro-economic model. Agric. Syst. 2014, 128, 25–34. [Google Scholar] [CrossRef]
- Doorenbos, J.; Plusje, J.; Kassam, A.; Branscheid, V.; Bentvelsen, C. Yield Response to Water; Food and Agriculture Organization of the United Nations: Rome, Italy, 1979. [Google Scholar]
- Jensen, M.E. Water consumption by agricultural plants. In Water Deficit and Plant Growth; Kozlowski, T.T., Ed.; Academic Press: New York, NY, USA, 1968. [Google Scholar]
- Stewart, J.; Cuenca, R.; Pruitt, W.; Hagan, R.; Tosso, J. Determination and Utilization of Water Production Functions for Principal California Crops; University of California: Davis, CA, USA, 1977. [Google Scholar]
- Mahmood, R.; Pielke, R.A.; Hubbard, K.G.; Niyogi, D.; Dirmeyer, P.A.; McAlpine, C.; Carleton, A.M.; Hale, R.; Gameda, S.; Beltrán-Przekurat, A. Land cover changes and their biogeophysical effects on climate. Int. J. Climatol. 2014, 34, 929–953. [Google Scholar] [CrossRef]
- Mahmood, R.; Hubbard, K.G.; Leeper, R.D.; Foster, S.A. Increase in near-surface atmospheric moisture content due to land use changes: Evidence from the observed dewpoint temperature data. Mon. Weather Rev. 2008, 136, 1554–1561. [Google Scholar] [CrossRef]
- Cook, B.I.; Puma, M.J.; Krakauer, N.Y. Irrigation induced surface cooling in the context of modern and increased greenhouse gas forcing. Clim. Dyn. 2010, 37, 1587–1600. [Google Scholar] [CrossRef]
- Han, S.; Tang, Q.; Zhang, X.; Di, X.; Kou, L. Surface wind observations affected by agricultural development over Northwest China. Environ. Res. Lett. 2016, 11, 054014. [Google Scholar] [CrossRef]
- Vautard, R.; Cattiaux, J.; Yiou, P.; Thépaut, J.N.; Ciais, P. Northern hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci. 2010, 3, 756–761. [Google Scholar] [CrossRef]
- Boucher, O.; Myhre, G.; Myhre, A. Direct human influence of irrigation on atmospheric water vapour and climate. Clim. Dyn. 2004, 22, 597–603. [Google Scholar] [CrossRef]
- Ozdogan, M.; Woodcock, C.E.; Salvucci, G.D.; Demir, H. Changes in summer irrigated crop area and water use in Southeastern Turkey from 1993 to 2002: Implications for current and future water resources. Water Resour. Manag. 2006, 20, 467–488. [Google Scholar] [CrossRef]
- Han, S.; Xu, D.; Wang, S.; Yang, Z. Water requirement with irrigation expansion in jingtai irrigation district, Northwest China: The need to consider irrigation-induced local changes in evapotranspiration demand. J. Irrig. Drain. Eng. (ASCE) 2014, 140, 04013009. [Google Scholar] [CrossRef]
- Bouchet, R. Evapotranspiration réelle et potentielle, signification climatique. Int. Assoc. Hydrol. Sci. Publ. 1963, 62, 134–142. [Google Scholar]
- Ozdogan, M.; Salvucci, G.D. Irrigation-induced changes in potential evapotranspiration in Southeastern Turkey: Test and application of bouchet’s complementary hypothesis. Water Resour. Res. 2004, 40, W04301. [Google Scholar] [CrossRef]
- Lobell, D.B.; Bala, G.; Mirin, A.; Phillips, T.; Maxwell, R.; Rotman, D. Regional differences in the influence of irrigation on climate. J. Clim. 2009, 22, 2248–2255. [Google Scholar] [CrossRef]
- Bonfils, C.; Lobell, D. Empirical evidence for a recent slowdown in irrigation-induced cooling. Proc. Natl. Acad. Sci. USA 2007, 104, 13582–13587. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Kueppers, L. Increased heat waves with loss of irrigation in the United States. Environ. Res. Lett. 2015, 10, 064010. [Google Scholar] [CrossRef]
- Zhong, R.; Dong, X.; Ma, Y. Sustainable water saving: New concept of modern agricultural water saving, starting from development of Xinjiang’s agricultural irrigation over the last 50 years. Irrig. Drain. 2009, 58, 383–392. [Google Scholar]
- Zhong, R.; Tian, F.; Yang, P.; Yi, Q. Planting and irrigation methods for cotton in southern Xinjiang, China. Irrig. Drain. 2016, 65, 461–468. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, Y.; Sun, Z.; Chen, J. Irrigation quota and its changes of different irrigation modes in arid Xinjiang region. Water Sav. Irrig. 2013, 38, 5–11. [Google Scholar]
- Liu, Y.; Tian, F.; Hu, H.; Sivapalan, M. Socio-hydrologic perspectives of the co-evolution of humans and water in the tarim river basin, Western China: The Taiji–Tire model. Hydrol. Earth Syst. Sci. 2014, 18, 1289–1303. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Tian, F.; Hu, H.; Lin, M.; Cong, Z. Ecohydrological evolution model on riparian vegetation in hyperarid regions and its validation in the lower reach of Tarim river. Hydrol. Process. 2012, 26, 2049–2060. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Xu, C.; Ye, Z.; Li, Z.; Zhu, C.; Ma, X. Effects of ecological water conveyance on groundwater dynamics and riparian vegetation in the lower reaches of Tarim river, China. Hydrol. Process. 2010, 24, 170–177. [Google Scholar] [CrossRef]
- Thevs, N.; Peng, H.; Rozi, A.; Zerbe, S.; Abdusalih, N. Water allocation and water consumption of irrigated agriculture and natural vegetation in the aksu-tarim river basin, Xinjiang, China. J. Arid. Environ. 2015, 112, 87–97. [Google Scholar] [CrossRef]
- Yang, P.; Hu, H.; Tian, F.; Zhang, Z.; Dai, C. Crop coefficient for cotton under plastic mulch and drip irrigation based on eddy covariance observation in an arid area of Northwestern China. Agric. Water Manag. 2016, 171, 21–30. [Google Scholar] [CrossRef]
- Tian, F.; Yang, P.; Hu, H.; Dai, C. Partitioning of cotton field evapotranspiration under mulched drip irrigation based on a dual crop coefficient model. Water 2016, 8, 72. [Google Scholar] [CrossRef]
- Zhong, R.; Dong, X.; Du, W. Strategies of its optimal allocation and current situation of water-soil resources in awati irrigation area (in Chinese with English abstract). J. Soil Water Conserv. 2007, 21, 174–178. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No. 56; Food and Agricultural Organization of the U.N.: Rome, Italy, 1998. [Google Scholar]
- Han, S.; Hu, H. Spatial variations and temporal changes in potential evaporation in the Tarim Basin, northwest china (1960–2006): Influenced by irrigation? Hydrol. Process. 2012, 26, 3041–3051. [Google Scholar] [CrossRef]
- Lobell, D.B.; Bonfils, C. The effect of irrigation on regional temperatures: A spatial and temporal analysis of trends in California, 1934–2002. J. Clim. 2008, 21, 2063–2071. [Google Scholar] [CrossRef]
- Ozdogan, M. The hydroclimatologic Effects of Irrigation in Southeastern Turkey. Ph.D. Thesis, Boston University, Boston, MA, USA, 2005. [Google Scholar]
- Lei, Z.; Hu, H.; Yang, S.; Tian, F. Analysis on water consumption in oases of the Tarim Basin. J. Hydr. Eng. 2006, 12, 1470–1475. [Google Scholar]
Crop | Cotton | Wheat | Maize | Vegetable | Pasture | Wood | |||
---|---|---|---|---|---|---|---|---|---|
CI 1 | MDI 2 | Summer | Spring | ||||||
Planting day Harvesting day | 25/4 1/11 | 22/4 4/10 | 25/9 20/6 | 20/6 10/10 | 25/4 1/9 | 10/4 10/9 | 1/4 30/9 | ~ | |
Proportion % | 1980 | 33.8 | 0 | 30 | 25.1 | 3.9 | 1.8 | 0.4 | 5 |
1998 | 66.3 | 0 | 18.5 | 11.5 | 1.3 | 0.6 | 0.1 | 1.7 | |
2012 | 44.7 | 26.4 | 9.2 | 7.3 | 0.2 | 1.2 | 0 | 11.1 |
Site | Period | Erad | Ep | ET0 | T | RH | u | SD | P | |
---|---|---|---|---|---|---|---|---|---|---|
(mm) | (mm) | (mm) | (°C) | (%) | (m s−1) | (Hour) | (mm) | |||
AW | 1980–1997 | Mean | 758.7 | 1167.9 | 1012.1 | 10.47 | 58.8 | 1.32 | 2906 | 62.7 |
Trend | 0.5 | −14.9 ** | −15.6 ** | −0.01 | 0.34 * | −0.08 ** | −8.9 | 1.8 | ||
1998–2014 | Mean | 758.7 | 1179.7 | 1017.5 | 11.35 | 56.7 | 1.19 | 2876 | 71.0 | |
Trend | −0.1 | 9.7 ** | 9.2 ** | 0.06 | −0.62 ** | 0.03 ** | 21.7 ** | 0.3 | ||
AL | 1998–2014 | Mean | 762.5 | 1183.9 | 1026.1 | 10.81 | 57.26 | 1.25 | 2910 | 51.0 |
Trend | 2.13 | 7.3 ** | 8.0 ** | −0.03 | −0.19 | 0.03 ** | 21.4 ** | −0.6 | ||
TZ | 1998–2014 | Mean | 689.8 | 1568.8 | 1460.9 | 11.76 | 34.30 | 2.12 | 2708 | 25.6 |
Trend | 2.0 | −8.9 ** | −10.4 ** | −0.14 | 0.07 | −0.03 * | 11.2 | −0.1 |
Year | Irrigated Area (km2) | P (mm) | I (mm) | D (mm) | Erad (mm) | Ep (mm) | ET0 (mm) |
---|---|---|---|---|---|---|---|
1982 | 540.5 | 57.3 | 766.0 | 317.7 | 766.8 | 1286.9 | 1141.5 |
1997 | 635.6 | 56.6 | 1123.1 | 444.0 | 802.2 | 1161.1 | 992.2 |
2012 | 1088.8 | 83.4 | 772.2 | 283.2 | 750.2 | 1221.4 | 1057.3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Xu, D.; Yang, Z. Irrigation-Induced Changes in Evapotranspiration Demand of Awati Irrigation District, Northwest China: Weakening the Effects of Water Saving? Sustainability 2017, 9, 1531. https://doi.org/10.3390/su9091531
Han S, Xu D, Yang Z. Irrigation-Induced Changes in Evapotranspiration Demand of Awati Irrigation District, Northwest China: Weakening the Effects of Water Saving? Sustainability. 2017; 9(9):1531. https://doi.org/10.3390/su9091531
Chicago/Turabian StyleHan, Songjun, Di Xu, and Zhiyong Yang. 2017. "Irrigation-Induced Changes in Evapotranspiration Demand of Awati Irrigation District, Northwest China: Weakening the Effects of Water Saving?" Sustainability 9, no. 9: 1531. https://doi.org/10.3390/su9091531
APA StyleHan, S., Xu, D., & Yang, Z. (2017). Irrigation-Induced Changes in Evapotranspiration Demand of Awati Irrigation District, Northwest China: Weakening the Effects of Water Saving? Sustainability, 9(9), 1531. https://doi.org/10.3390/su9091531