Facilitating Regional Energy Transition Strategies: Toward a Typology of Regions
Abstract
:1. Introduction
2. Contextual Factors of Regional RE Use
- Functions are the goals and demands that are imposed on a system. In the case considered here, the most important function of a regional energy system is to provide energy services—heat, electricity, and mobility—using renewable energy sources.
- Structures are defined as the relevant “spatial and temporal relationship, connectedness, partitioning and modularization of the system units” ([42] p. 309) that serve to fulfill the functions of a system. Structures are regularly altered and shaped from within and from outside the system. The structures of regional energy systems are, among others, energy infrastructure such as solar panels or electricity grids or relationships between public energy services and their customers.
- Context “includes all environmental constraints that are permanently relevant system or impact factors” ([42] p. 309) that influence the processes in the system and cannot be easily influenced from within the system. The context of a regional energy system includes natural and socio-economic conditions, which both underlie larger dynamics and cannot or can only partly be influenced by actors at the regional level, e.g., wind speed for wind power.
3. Materials and Methods
4. Results
4.1. Spatial Patterns
4.2. Energy Context Types
5. Discussion
5.1. Discussion of Results
5.2. Implications for Generic Regional Energy Transition Strategies
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Scheer, H. The Energy Imperative: 100 Per Cent Renewable Now; EarthScan: New York, NY, USA, 2011. [Google Scholar]
- Sathaye, J.; Lucon, O.; Rahman, A.; Christensen, J.; Denton, F.; Fujino, J.; Heath, G.; Mirza, M.; Rudnick, H.; Schlaepfer, A.; et al. Renewable Energy in the Context of Sustainable Development. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., et al., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 707–790. [Google Scholar]
- Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (WBGU). Sondergutachten: Klimaschutz als Weltbürgerbewegung; Sondergutachten (WBGU): Berlin, Germany, 2014. [Google Scholar]
- IPCC. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation; Prepared by Working Group III of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., et al., Eds.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Schmid, E.; Knopf, B.; Pechan, A. Putting an energy system transformation into practice: The case of the German Energiewende. Energy Res. Soc. Sci. 2016, 11, 263–275. [Google Scholar] [CrossRef]
- Bundesregierung des Deutschen Bundestags. Energiekonzept für eine Umweltschonende, Zuverlässige und Bezahlbare Energieversorgung; Bundesministerium für Wirtschaft und Energie: Berlin, Germany, 2010. [Google Scholar]
- Agora Energiewende. Energiewende und Dezentralität. Zu den Grundlagen einer Politisierten Debatte; Agora Energiewende: Berlin, Germany, 2017. [Google Scholar]
- Tietz, H.-P. Systeme der Ver- und Entsorgung; Teubner Verlag: Wiesbaden, Germany, 2007. [Google Scholar]
- Hall, S.; Foxon, T.J.; Bolton, R. Financing the civic energy sector: How financial institutions affect ownership models in Germany and the United Kingdom. Energy Res. Soc. Sci. 2016, 12, 5–15. [Google Scholar] [CrossRef]
- Trutnevyte, E.; Stauffacher, M.; Schlegel, M.; Scholz, R.W. Context-Specific Energy Strategies: Coupling Energy System Visions with Feasible Implementation Scenarios. Environ. Sci. Technol. 2012, 46, 9240–9248. [Google Scholar] [CrossRef] [PubMed]
- Tödtling, F.; Trippl, M. One size fits all? Towards a differentiated regional innovation policy approach. Res. Policy 2005, 34, 1203–1219. [Google Scholar]
- Kienast, F.; Huber, N.; Hergert, R.; Bolliger, J.; Moran, L.S.; Hersperger, A.M. Conflicts between decentralized renewable electricity production and landscape services—A spatially-explicit quantitative assessment for Switzerland. Renew. Sustain. Energy Rev. 2017, 67, 397–407. [Google Scholar] [CrossRef]
- Späth, P.; Rohracher, H. “Energy regions”: The transformative power of regional discourses on socio-technical futures. Res. Policy 2010, 39, 449–458. [Google Scholar] [CrossRef]
- Späth, P. Understanding the Social Dynamics of Energy Regions—The Importance of Discourse Analysis. Sustainability 2012, 4, 1256–1273. [Google Scholar] [CrossRef]
- Binder, C.R.; Knoeri, C.; Hecher, M. Modeling transition paths towards decentralized regional energy autonom—The role of legislation, technology adoption, and resource availability. Raumforsch. Raumordn. 2016, 74, 273–284. [Google Scholar] [CrossRef]
- Hecher, M.; Vilsmaier, U.; Akhavan, R.; Binder, C.R. An integrative analysis of energy transitions in energy regions: A case study of ökoEnergieland in Austria. Ecol. Econ. 2016, 121, 40–53. [Google Scholar] [CrossRef]
- Trutnevyte, E.; Stauffacher, M.; Scholz, R.W. Supporting energy initiatives in small communities by linking visions with energy scenarios and multi-criteria assessment. Energy Policy 2011, 39, 7884–7895. [Google Scholar] [CrossRef]
- Trutnevyte, E.; Stauffacher, M.; Scholz, R.W. Linking stakeholder visions with resource allocation scenarios and multi-criteria assessment. Eur. J. Oper. Res. 2012, 219, 762–772. [Google Scholar] [CrossRef]
- Hauber, J.; Ruppert-Winkel, C. Moving towards Energy Self-Sufficiency Based on Renewables: Comparative Case Studies on the Emergence of Regional Processes of Socio-Technical Change in Germany. Sustainability 2012, 4, 491–530. [Google Scholar] [CrossRef]
- Kostevsek, A.; Cizelj, L.; Petek, J.; Pivec, A. A novel concept for a renewable network within municipal energy systems. Renew. Energy 2013, 60, 79–87. [Google Scholar] [CrossRef]
- Ruppert, H.; Schmuck, P.; Eigner-Thiel, S.; Girschner, W.; Karpenstein-Machan, M.; Ruwisch, V.; Sauer, B.; Roland, F. Das Bioenergiedorf; Fachagentur für nachwachsende Rohstoffe: Gülzow, Germany, 2008. [Google Scholar]
- Walker, G. What are the barriers and incentives for community-owned means of energy production and use? Energy Policy 2008, 36, 4401–4405. [Google Scholar] [CrossRef]
- Walker, G.; Cass, N. Carbon reduction, “the public” and renewable energy: Engaging with socio-technical configurations. Area 2007, 39, 458–469. [Google Scholar] [CrossRef]
- Yildiz, Ö. Financing renewable energy infrastructures via financial citizen participation—The case of Germany. Renew. Energy 2014, 68, 677–685. [Google Scholar] [CrossRef]
- Yildiz, Ö.; Rommel, J.; Debor, S.; Holstenkamp, L.; Mey, F.; Müller, J.R.; Radtke, J.; Rognli, J. Renewable energy cooperatives as gatekeepers or facilitators? Recent developments in Germany and a multidisciplinary research agenda. Energy Res. Soc. Sci. 2015, 6, 59–73. [Google Scholar] [CrossRef]
- Hitzeroth, M.; Megerle, A. Renewable Energy Projects: Acceptance Risks and Their Management. Renew. Sustain. Energy Rev. 2013, 27, 576–584. [Google Scholar] [CrossRef]
- Musall, F.D.; Kuik, O. Local acceptance of renewable energy—A case study from southeast Germany. Energy Policy 2011, 39, 3252–3260. [Google Scholar] [CrossRef]
- Hansen, T.; Coenen, L. The geography of sustainability transitions: Review, synthesis and reflections on an emergent research field. Environ. Innov. Soc. Transit. 2014, 17, 1–18. [Google Scholar] [CrossRef]
- Calvert, K. From “energy geography” to “energy geographies”. Prog. Hum. Geogr. 2016, 40, 105–125. [Google Scholar] [CrossRef]
- Asheim, B.T.; Boschma, R.; Cooke, P. Constructing Regional Advantage: Platform Policies Based on Related Variety and Differentiated Knowledge Bases. Reg. Stud. 2011, 45, 893–904. [Google Scholar] [CrossRef]
- Markard, J.; Truffer, B. Technological innovation systems and the multi-level perspective: Towards an integrated framework. Res. Policy 2008, 37, 596–615. [Google Scholar] [CrossRef]
- Dewald, U.; Truffer, B. The Local Sources of Market Formation: Explaining Regional Growth Differentials in German Photovoltaic Markets. Eur. Plan. Stud. 2012, 20, 37–41. [Google Scholar] [CrossRef]
- Coenen, L.; Benneworth, P.; Truffer, B. Toward a spatial perspective on sustainability transitions. Res. Policy 2012, 41, 968–979. [Google Scholar] [CrossRef]
- Bridge, G.; Bouzarovski, S.; Bradshaw, M.; Eyre, N. Geographies of energy transition: Space, place and the low-carbon economy. Energy Policy 2013, 53, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Späth, P.; Rohracher, H. Local demonstrations for global transitions—Dynamics across governance levels fostering socio-technical regime change towards sustainability. Eur. Plan. Stud. 2012, 20, 461–479. [Google Scholar] [CrossRef]
- Bundesregierung des Deutschen Bundestags Energiewende—Maßnahmen im Überblick. Available online: http://www.bundesregierung.de/Content/DE/StatischeSeiten/Breg/Energiekonzept/0-Buehne/ma%C3%9Fnahmen-im-ueberblick.html.s3t1 (accessed on 16 October 2015).
- Deutscher Bundestag. Gesetz für den Vorrang Erneuerbarer Energien. Available online: https://www.bgbl.de/xaver/bgbl/start.xav?start=%2F%2F*%5B%40attr_id%3D%27bgbl100s0305.pdf%27%5D#__bgbl__%2F%2F*%5B%40attr_id%3D%27bgbl100s0305.pdf%27%5D__1503311809295 (accessed on 23 October 2017).
- Deutscher Städte-und Gemeindebund. Positionspapier Energiewende nur mit Kommunen; Deutscher Städte-und Gemeindebund: Berlin, Germany, 2013. [Google Scholar]
- Umweltbundesamt. Energieziel 2050: 100% Strom aus Erneuerbaren Quellen; Umweltbundesamt: Dessau-Roßlau, Germany, 2010. [Google Scholar]
- Morgan, K. Sustainable Regions: Governance, Innovation and Scale. Eur. Plan. Stud. 2004, 12, 871–889. [Google Scholar] [CrossRef]
- Knoeri, C.; Goetz, A.; Binder, C.R. Generic bottom-up building-energy models for developing regional energy transition scenarios. In Advances in Computational Social Science and Social Simulation; Quesada, M., Amblard, F., Barceló, J.A., Madella, M., Eds.; Autònoma University of Barcelona: Barcelona, Spain, 2014. [Google Scholar]
- Scholz, R.W.; Tietje, O. Embedded Case Study Methods: Integrating Quantitative and Qualitative Knowledge; Sage Publications: Thousand Oaks, CA, USA, 2002. [Google Scholar]
- KoRiS-Kommunikative Stadt-und Regionalentwicklung. Regionales Entwicklungskonzept Kooperationsraum Aller-Leine-Tal zur Teilnahme am Niedersächsischen Auswahlverfahren für die LEADER- und ILE-Regionen für den Förderzeitraum 2014–2020; Europäischer Landwirtschaftsfonds für die Entwicklung des ländlichen Raums: Schwarmstedt, Germany, 2015. [Google Scholar]
- Öko-Institut: Prognos AG. Modell Deutschland—Klimaschutz bis 2050 Vom Ziel her denken. Endbericht; World Wildlife Fund: Basel, Switzerland, 2009. [Google Scholar]
- BMWi—Bundesministerium für Wirtschaft und Energie. Erneuerbare Energien in Deutschland. Daten zur Entwicklung im Jahr 2015; Bundesministerium für Wirtschaft und Energie: Berlin, Germany, 2016. [Google Scholar]
- Thompson, P.B. The Agricultural Ethics of Biofuels: The Food vs. Fuel Debate. Agriculture 2012, 2, 339–358. [Google Scholar] [CrossRef]
- SRU Sachverständigenrat für Umweltfragen. Klimaschutz durch Biomasse—Sondergutachten; Erich Schmidt Verlag: Berlin, Germany, 2007. [Google Scholar]
- Hahn, H.; Krautkremer, B.; Hartmann, K.; Wachendorf, M. Review of concepts for a demand-driven biogas supply for flexible power generation. Renew. Sustain. Energy Rev. 2014, 29, 383–393. [Google Scholar] [CrossRef]
- Agora Energiewende. Die Energiewende im Stromsektor: Stand der Dinge 2016. Rückblick auf die wesentlichen Entwicklungen sowie Ausblick auf 2017. Available online: https://www.agora-energiewende.de/fileadmin/Projekte/2017/Jahresauswertung_2016/Agora_Jahresauswertung-2016_WEB.pdf (accessed on 23 August 2017).
- Grünwald, R.; Ragwitz, M.; Sensfuß, F.; Winkler, J. Regenerative Energieträger zur Sicherung der Grundlast in der Stromversorgung. Available online: http://www.tab-beim-bundestag.de/de/pdf/publikationen/zusammenfassungen/TAB-Arbeitsbericht-ab147_Z.pdf (accessed on 23 August 2017).
- Reynolds, T.S. Stronger Than a Hundred Men: A History of the Vertical Water Wheel; The Johns Hopkins University Press: Baltimore, MD, USA, 1983. [Google Scholar]
- SRU Sachverständigenrat für Umweltfragen. Wege zur 100% Erneuerbaren Stromversorgung: Sondergutachten; Erich Schmidt Verlag: Berlin, Germany, 2011. [Google Scholar]
- Verbong, G.; Geels, F.W. The ongoing energy transition: Lessons from a socio-technical, multi-level analysis of the Dutch electricity system (1960–2004). Energy Policy 2007, 35, 1025–1037. [Google Scholar] [CrossRef]
- Öko-Institut & Partner. Stoffstromanalyse zur Nachhaltigen Energetischen Nutzung von Biomasse-Endbericht. Available online: https://www.oeko.de/oekodoc/236/2004-025-de.pdf (accessed on 23 August 2017).
- Trend:Research. Marktakteure Erneuerbare–Energien-Anlagen in der Stromerzeugung. Available online: http://www.kni.de/media/pdf/Marktakteure_Erneuerbare_Energie_Anlagen_in_der_Stromerzeugung_2011.pdf (accessed on 23 August 2017).
- Vallios, I.; Tsoutsos, T.; Papadakis, G. Design of biomass district heating systems. Biomass Bioenergy 2009, 33, 659–678. [Google Scholar] [CrossRef]
- Deutscher Bundestag. Gesetz für den Vorrang Erneuerbarer Energien. Bundesgesetzblatt I S. 2074 & S. 2730. Available online: https://www.bundesanzeiger-verlag.de/fileadmin/BIV-Portal/Dokumente/eeg_2012_bf.pdf (accessed on 23 August 2017).
- Holstenkamp, L. Definition und Marktanalyse von Bürgerenergie in Deutschland. Available online: http://100-prozent-erneuerbar.de/wp-content/uploads/2013/10/Definition-und-Marktanalyse-von-B%C3%BCrgerenergie-in-Deutschland.pdf (accessed on 23 August 2017).
- European Environment Agency. Corine Land Cover 2006 Raster Data. Available online: https://www.eea.europa.eu/data-and-maps/data/clc-2006-raster-4 (accessed on 23 August 2017).
- Bofinger, S.; Callies, D.; Scheibe, M.; Saint-Drenan, Y.-M.; Rohrig, K. Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES) Abteilung Energiewirtschaft und Netzbetrieb. In Potenzial der Windenergienutzung an Land. Kurzfassung; Bundesverband für Windenergie e.V.: Berlin, Germany, 2012. [Google Scholar]
- Ministerium für Wirtschaft Klimaschutz Energie und Landesplanung Rheinland-Pfalz; Ministeriums der Finanzen Rheinland-Pfalz; Ministeriums für Umwelt Landwirtschaft Ernährung Weinbau und Forsten Rheinland-Pfalz; Ministeriums des Innern für Sport und Infrastruktur Rheinland-Pfalz. Hinweise für die Beurteilung der Zulässigkeit der Errichtung von Windenergieanlagen in Rheinland-Pfalz (Rundschreiben Windenergie ); Ministerium für Wirtschaft, Klimaschutz, Energie und Landesplanung, Ministerium der Finanzen/Ministerium für Umwelt Landwirtschaft Ernährung Weinbau und Forsten/Ministerium des Innern für Sport und Infrastruktur: Mainz (Rheinland-Pfalz), Germany, 2013.
- Bundesinstitut für Bau- Stadt- und Raumforschung. Indikatoren und Karten zur Raum-und Stadtentwicklung; Bundesinstitut für Bau- Stadt- und Raumforschung: Bonn, Germany, 2011. [Google Scholar]
- Statistische Ämter des Bundes und der Länder. Regionaldatenbank Deutschland. Available online: https://www.regionalstatistik.de/genesis/online/data;jsessionid=D7B825233CC603C8D663B4D388FB23E3?operation=abruftabelleBearbeiten&levelindex=2&levelid=1379406520750&auswahloperation=abruftabelleAuspraegungAuswaehlen&auswahlverzeichnis=ordnungsstruktur&aus (accessed on 10 August 2017).
- Bundesamt für Kartographie und Geodäsie Archive of GeoDatenZentrum. Available online: http://www.geodatenzentrum.de/auftrag/services/archiv/de0901/ (accessed on 10 August 2017).
- Pal Arya, S. Introduction to Micrometeorology, 2nd ed.; Academic Press: New York, NY, USA, 1988. [Google Scholar]
- Thrän, D.; Dotzauer, M.; Lenz, V.; Liebetrau, J.; Ortwein, A. Flexible bioenergy supply for balancing fluctuating renewables in the heat and power sector—A review of technologies and concepts. Energy Sustain. Soc. 2015, 5. [Google Scholar] [CrossRef]
- Walker, G.; Devine-Wright, P. Community renewable energy: What should it mean? Energy Policy 2008, 36, 497–500. [Google Scholar] [CrossRef]
- Dincer, I.; Acar, C. A review on clean energy solutions for better sustainability. Int. J. Energy Res. 2015, 39, 585–606. [Google Scholar] [CrossRef]
- Del Río, P.; Burguillo, M. An empirical analysis of the impact of renewable energy deployment on local sustainability. Renew. Sustain. Energy Rev. 2009, 13, 1314–1325. [Google Scholar] [CrossRef]
- Cebotari, S.; Benedek, J. Renewable energy project as a source of innovation in rural communities: Lessons from the periphery. Sustainability 2017, 9, 509. [Google Scholar] [CrossRef]
- Lutz, L.M.; Fischer, L.-B.; Newig, J.; Lang, D.J. Driving factors for the regional implementation of renewable energy—A multiple case study on the German energy transition. Energy Policy 2017, 105, 136–147. [Google Scholar] [CrossRef]
- Deutscher Bundestag. Nationaler Aktionsplan Energieeffizienz; Unterrichtung durch die Bundesregierung: Berlin, Geramny, 2014. [Google Scholar]
- BMJV Bundesministerium der Justiz und für Verbraucherschutz. Gesetz für den Ausbau Erneuerbarer Energien; Bundesministerium für Justiz und Verbraucherschutz: Berlin, Germany, 2017. [Google Scholar]
- Hirschl, B.; Aretz, A.; Dunkelberg, E.; Neumann, A.; Weiß, J. Potenziale Erneuerbarer Energien in Berlin 2020 und Langfristig—Quantifizierung und Maßnahmengenerierung zur Erreichung Ambitionierter Ausbauziele Studie zum Berliner Energiekonzept (Anlage 6); Institut für ökologische Wirtschaftsforschung: Berlin, Germany, 2011. [Google Scholar]
- Acosta, J.L.; Combe, K.; Djokic, S.Z.; Hernando-Gil, I. Performance Assessment of Micro and Small-Scale Wind Turbines in Urban Areas. IEEE Syst. J. 2012, 6, 152–163. [Google Scholar] [CrossRef]
- Allen, S.R.; Hammond, G.P.; McManus, M.C. Energy analysis and environmental life cycle assessment of a micro-wind turbine. Proc. Inst. Mech. Eng. Part A J. Power Energy 2008, 222, 669–684. [Google Scholar] [CrossRef]
Contextual Factor | Variable | Proxy | References | |
---|---|---|---|---|
Natural context | solar radiation | global radiation | annual average global radiation [Wh/m2] | [39,52,53] |
wind speed | wind speed | annual average wind speed at a height of 80 m [m/s] | [39,52] | |
waste biomass potential | from crops | harvest residues [GJ] | [54] | |
from meadows | meadow residues [GJ] | [54] | ||
from forestry | forest residues [GJ] | [10,54] | ||
from livestock | zoomass [GJ] | [54] | ||
from households | waste [GJ] | [54] | ||
Socio-economic context | population density | population density | number of inhabitants per km2 built-up area | [44,52] |
population growth | population growth | total population growth up to the year 2025 [%] | [44,52] | |
property rate | property rate | property rate [%] | [55] | |
economic structure | forestry and agriculture | earners in forestry and agriculture [%] | [10] | |
industry | earners in industry [%] | [44,52] | ||
commerce and services | earners in commerce and services [%] | [44] | ||
economic strength | tax income | municipal tax income from households [€] | [44] | |
unemployment | unemployment rate [%] | [44] |
Variable | Energy Context Type | ||||||||
---|---|---|---|---|---|---|---|---|---|
Urban North | Rural North | Livestock Belt | Urban South | Industrial East | Rural South | Sunny South | Global City | Rich but Poor | |
T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | |
(N = 64) | (N = 50) | (N = 36) | (N = 69) | (N = 38) | (N = 75) | (N = 52) | (N = 1) | (N = 27) | |
Population density | 2916.8 | 1345.4 | 1162.4 | 3128.1 | 1338.4 | 1371.2 | 1438.1 | 5503.3 | 810.5 |
Property | 30.0 | 58.3 | 63.8 | 39.9 | 50.8 | 62.6 | 61.9 | 14.9 | 49.0 |
Tax income | 543.3 | 527.7 | 547.3 | 811.1 | 402.5 | 561.7 | 664.5 | 513.6 | 330.1 |
Unemployment | 8.8 | 6.1 | 4.6 | 5.3 | 9.3 | 4.3 | 3.2 | 10.0 | 11.0 |
Earners agri. + fores. | 0.7 | 3.4 | 5.5 | 0.8 | 3.3 | 3.3 | 5.1 | 0.3 | 5.5 |
Earners industry | 19.4 | 24.5 | 26.5 | 24.0 | 34.8 | 32.9 | 32.9 | 12.9 | 24.6 |
Earners services | 79.9 | 72.1 | 67.9 | 75.1 | 62.0 | 63.9 | 62.0 | 86.8 | 69.8 |
Population growth | −7.9 | −0.1 | 1.9 | 2.1 | −13.3 | −2.0 | 4.7 | 0.9 | −13.4 |
Wind speed | 5.8 | 5.8 | 6.3 | 5.1 | 5.7 | 5.8 | 5.1 | 5.3 | 5.8 |
Global radiation | 1017 | 1008 | 1034 | 1105 | 1030 | 1081 | 1136 | 1035 | 1034 |
Harvest residues | 27,413 | 239,325 | 227,512 | 3040 | 219,017 | 85,821 | 164,582 | 18,187 | 491,340 |
Meadow residues | 7765 | 48,905 | 182,927 | 7147 | 30,603 | 57,577 | 33,867 | 3343 | 101,253 |
Forest residues | 49,852 | 485,553 | 291,896 | 112,371 | 445,870 | 625,863 | 355,525 | 236,318 | 765,317 |
Zoo mass | 48,419 | 249,758 | 1,030,417 | 31,780 | 175,590 | 181,885 | 300,392 | 7586 | 378,915 |
Household waste | 422,402 | 360,245 | 324,317 | 446,452 | 275,217 | 271,564 | 246,332 | 6,059,108 | 250,054 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lutz, L.M.; Lang, D.J.; Von Wehrden, H. Facilitating Regional Energy Transition Strategies: Toward a Typology of Regions. Sustainability 2017, 9, 1560. https://doi.org/10.3390/su9091560
Lutz LM, Lang DJ, Von Wehrden H. Facilitating Regional Energy Transition Strategies: Toward a Typology of Regions. Sustainability. 2017; 9(9):1560. https://doi.org/10.3390/su9091560
Chicago/Turabian StyleLutz, Lotte M., Daniel J. Lang, and Henrik Von Wehrden. 2017. "Facilitating Regional Energy Transition Strategies: Toward a Typology of Regions" Sustainability 9, no. 9: 1560. https://doi.org/10.3390/su9091560
APA StyleLutz, L. M., Lang, D. J., & Von Wehrden, H. (2017). Facilitating Regional Energy Transition Strategies: Toward a Typology of Regions. Sustainability, 9(9), 1560. https://doi.org/10.3390/su9091560