Soil Moisture Retrieval from Active Spaceborne Microwave Observations: An Evaluation of Current Techniques
Abstract
:1. Introduction
Platform | Sensor | Band | Polarisation | Highest Spatial Resolution(m) | Swath Width (km) | Mission |
---|---|---|---|---|---|---|
SEASAT | SAR | L | HH | 25 | 100 | June-Oct 1978 |
SIR-A | SAR | L | HH | 40 | 50 | Nov 12-15th 1981 |
SIR-B | SAR | L | HH | 25 | 30 | Oct 5-13th 1984 |
Almaz-1 | SAR | S | HH | 13 | 172 | Mar 31st 1991-Oct 17th 1992 |
ERS-1 | AMI | C | VV | 30 | 100 | July 17th 1991-Mar 10th 2000 |
JERS-1 | SAR | L | HH | 18 | 75 | Feb 11th 1992-Oct 12th 1998 |
SIR-C/X-SAR | SIR-C X-SAR | L,C,X | VV,HH,HV, VH, HH | 30 | 10-200 | April 1994 Oct 1994 |
ERS-2 | AMI | C | VV | 30 | 100 | April 21st 1995- |
RADARSAT-1 | SAR | C | HH | 10 | 100-170 | Nov 28th 1995- |
SRTM | C-SAR X-SAR | C,X | VV,HH HH | 30 | 50 | Feb 11th – 22nd 2000 |
ENVISAT | ASAR | C | VV,HH,HH/VV HV/HH,VH/VV | 30 | 100-400 | Mar 1st 2002- |
ALOS | PALSAR | L | Quad-pol | 10 | 70 | Jan 24th 2006- |
TerraSAR-X | X-SAR | X | Quad-pol | 1 | 10-100 | June 15th 2007- |
RADARSAT-2 | SAR | C | Quad-pol | 3 | 10-500 | Dec 14th 2007- |
COSMO/ SkyMed Series | SAR-2000 | X | Quad-pol | 1 | 10-200 | June 8th & Dec 8th 2007- |
TecSAR | SAR | X | HH, HV, VH, VV | 1 | 40-100 | 21st Jan 2008 |
SAR-Lupe | SAR | X | - | <1 | - | Dec 2006 & Jul 2008- |
Kondor-5 | SAR | S | HH,VV | 1 | - | 2009 |
TanDEM-X | SAR | X | Quad-pol | 1 | 10-150 | 2009 |
RISAT | SAR | C | Quad-pol | 3 | 30-240 | 2009 |
HJ-1C | SAR | S | HH, VV | 20 | - | 2009 |
ARKON-2 | SAR | X, L, P | - | 2 | - | 2011 |
Sentinel-1 | C-SAR | C | Quad-pol | 5 | 80-400 | 2011 |
MapSAR | SAR | L | Quad-pol | 3 | 20-55 | 2011 |
KompSAT-5 | SAR | X | HH, HV, VH, VV | 20 | 100 | 2011 |
SAOCOM-1 | SAR | L | Quad-pol | 7 | 50-400 | 2011 |
RADARSAT Constellation Mission | SAR | C | Quad-pol | 3 | 20-500 | 2012 – 2014 |
SMAP | SAR | L | HH, HV, VV | 3km | 30-1000 | 2012 |
DESDynl | SAR | L | Quad-pol | 25 | >340 | 2015 |
1.1. Theory behind microwave remote sensing of soil moisture
1.2. Factors affecting the microwave signal
2. Model-Based Retrieval Approaches
2.1. Soil moisture retrieval using theoretical scattering models
2.2. Soil moisture retrieval using empirical scattering models
2.3. Soil moisture retrieval using semi-empirical scattering models
2.4. Dielectric mixing models
2.5. SAR data fusion
3. Soil Moisture Retrieval Using a Change Detection Approach
3.1. Image differencing and ratioing
- σ°wet = average backscatter from wet soil
- σ°dry = average backscatter from dry soil
3.2. Principal components analysis (PCA)
3.3. Interferometric techniques
4. Soil Moisture Retrieval Using Polarimetric Parameters
5. Discussion and Conclusions
Approach | Characteristics | Advantages | Disadvantages | Examples |
1. Modelling | ||||
• Empirical | Regression fits between in situ measurements and σ° | Simple and straightforward | No physical basis behind the model. Usually only valid for the area under investigation | [51,95,96,97] |
• Semi-empirical | Based on theoretical models but have been extended according to empirical observations. | Offer a good compromise between the simplicity of empirical and complexity of theoretical models. | Each model has certain validity ranges. Generally only valid for bare soil surfaces (apart from Water Cloud Model) | [10,11,57,104] |
• Theoretical | Simulates σ° as a function of mv and rms and known radar configurations. | Not site dependent | Only accounts for single scattering terms. Many input parameters required making model implementation extremely complex. | [56,197] |
2. Change Detection | ||||
• Image Differencing (& Ratioing) | Subtraction (& division) of intensity values from different dates | Differences in σ° can be related directly to soil moisture | Assumes surface roughness and vegetation remain time-invariant between dates | [79,93,135,138,139,140] |
• PCA | Reduces the number of variables in a multi-dimensional dataset. | Enhances key patterns in the data. Change can be detected in the new ‘components’. | Assumes multi-temporal data are highly correlated. | [145,146,147,148,149] |
• Coherence | Temporal (phase) decorrelation of σ° can be related to soil moisture changes. | Compliments the information contained in the amplitude of σ° | Several different factors contribute to the phase decorrelation of σ°. | [152,153,154,156,157,158,159,160] |
3. SAR Data Fusion | ||||
• Active & Passive | Integrates active (SAR) and passive (radiometer) measurements to help discriminate between the multiple influences on σ°. | Vegetation (volume scattering term can be separated) and roughness effects can be minimised. Fine and coarse resolution data can be combined. | Issues in scaling and validation. Sub-pixel variability (passive data). | [31,125,126,127,128] |
• SAR & Optical | Same as above but with SAR and optical measurements. | Vegetation and roughness effects can be minimised. | Issues in scaling and validation | [130,131,132,133] |
4. Differential SAR Interferometry | Topographic phase contribution is removed. Decrease in phase (surface displacement) is correlated to an increase in soil moisture. | Potential for estimating soil moisture with increased accuracies. | Requirement for high coherence limits the application to sparsely or non-vegetated surfaces. Very few studies using this technique have been carried out to date. | [163,164,165] |
5. SAR Polarimetry | Uses all polarisations to describe the complete complex scattering from within an imaged cell. | Can separate the different types of scattering mechanisms within the imaged cell. | Limited by presence of vegetation (target decomposition theorems and PolinSAR can be used to compensate for these) | [162,173,178,179,180,181,182,183] |
Acknowledgements
References and Notes
- Larson, K.M.; Small, E.E.; Gutmann, E.; Bilich, A.; Axelrad, P.; Braun, J. Using GPS multipath to measure soil moisture fluctuations: initial results. GPS Solutions 2008, 12, 173–177. [Google Scholar] [CrossRef]
- Masters, D.; Katzberg, S.; Axelrad, P. Airborne GPS bistatic radar soil moisture measurements during SMEX02. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '03), Toulouse, France, 21-25 July, 2003; pp. 896–898.
- Masters, D.; Zavorotny, V.; Katzberg, S.; Emery, W. GPS signal scattering from land for moisture content determination. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 2000; pp. 3090–3092.
- Katzberg, S.J.; Torres, O.; Grant, M.S.; Masters, D. Utilizing calibrated GPS reflected signals to estimate soil reflectivity and dielectric constant: Results from SMEX02. Remote Sens. Environ. 2006, 100, 17–28. [Google Scholar] [CrossRef]
- Larson, K.M.; Small, E.E.; Gutmann, E.D.; Bilich, A.L.; Braun, J.J.; Zavorotny, V.U. Use of GPS receivers as a soil moisture network for water cycle studies. Geophys. Res. Lett. 2008, 35, L24405. [Google Scholar] [CrossRef]
- Walker, J.P.; Houser, P.R. Requirements of a global near-surface soil moisture satellite mission: accuracy, repeat time, and spatial resolution. Adv. Water Resour. 2004, 27, 785–801. [Google Scholar] [CrossRef]
- Campbell, J.B.; Bonnet, R. Introduction to Remote Sensing; Taylor & Francis: London, 2002. [Google Scholar]
- Elachi, C.; van Zyl, J.J. Introduction to the physics and techniques of remote sensing, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Batlivala, P.P.; Dobson, C.; Ulaby, F.T. Soil moisture experiment (Kansas): documentation of radar backscatter and ground truth data; University of Kansas Center for Research: Gainesville, Florida, FL, USA, 1976. [Google Scholar]
- Oh, Y.; Sarabandi, K.; Ulaby, F.T. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 1992, 30, 370–381. [Google Scholar] [CrossRef]
- Dubois, P.C.; van Zyl, J.; Engman, T. Measuring soil moisture with imaging radars. IEEE Trans. Geosci. Remote Sens. 1995, 33, 915–926. [Google Scholar] [CrossRef]
- Benallegue, M.; Taconet, O.; Vidal-Madjar, D.; Normand, M. The use of radar backscattering signals for measuring soil moisture and surface roughness. Remote Sens. Environ. (USA) 1995, 53, 61–68. [Google Scholar] [CrossRef]
- Wagner, W.; Noll, J.; Borgeaud, M.; Rott, H. Monitoring soil moisture over the Canadian Prairies with the ERS scatterometer. IEEE Trans. Geosci. Remote Sens. 1999, 37, 206–216. [Google Scholar] [CrossRef]
- Woodhouse, I.H.; Hoekman, D.H. Determining land-surface parameters from the ERS wind scatterometer. IEEE Trans. Geosci. Remote Sens. 2000, 38, 126–140. [Google Scholar] [CrossRef]
- Scipal, K.; Wagner, W.; Trommler, M.; Naumann, K. The Global Soil Moisture Archive 1992-2000 from ERS scatterometer data: first results. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '02), Toronto, ON, Canada, 2002; p. 28.
- Ulaby, F.T.; Batlivala, P.P. Optimum radar parameters for mapping soil moisture. IEEE Trans. Geosci. Electron. 1976, 14, 81–93. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Batlivala, P.P.; Dobson, M.C. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part I-bare soil. IEEE Trans. Geosci. Electron. 1978, 16, 286–295. [Google Scholar] [CrossRef]
- Jackson, T.J.; Chang, A.; Schmugge, T.J. Active microwave measurements for estimating soil moisture. Photogramm. Eng. Remote Sens. 1981, 47, 801–805. [Google Scholar]
- Wang, J.R.; Engmen, E.T.; Shiue, J.C.; Rusek, M.; Steinmeier, C. The SIR-B observations of microwave backscatter dependence on soil moisture, surface roughness, and vegetation covers. IEEE Trans. Geosci. Remote Sens. 1986, 24, 510–516. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T. Active microwave soil moisture research. IEEE Trans. Geosci. Remote Sens. 1986, 24, 23–36. [Google Scholar] [CrossRef]
- Rombach, M.; Mauser, W. Multi-annual analysis of ERS surface soil moisture measurements of different land uses. In Proceedings of the Third ERS Symposium: Space at the Service of our Environment, Florence, Florence; ESA-SP-414. 1997; pp. 27–34. [Google Scholar]
- Jackson, T.J. Measuring surface soil moisture using passive microwave remote sensing. Hydrol. Process. 1993, 7, 139–152. [Google Scholar] [CrossRef]
- Wigneron, J.P.; Schmugge, T.; Chanzy, A.; Calvet, J.C.; Kerr, Y. Use of passive microwave remote sensing to monitor soil moisture. Agronomie 1998, 18, 27–43. [Google Scholar] [CrossRef]
- Du, Y.; Ulaby, F.T.; Dobson, M.C. Sensitivity to soil moisture by active and passive microwave sensors. IEEE Trans. Geosci. Remote Sens. 2000, 38, 105–114. [Google Scholar] [CrossRef]
- Li, Z.; Shi, J.; Guo, H. Measuring soil moisture change with vegetation cover using passive and active microwave data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '02), Toronto, ON, Canada, 2002; pp. 3071–3073.
- Sellers, P.J.; Hall, F.G.; Asrar, G.; Strebel, D.E.; Murphy, R.E. An overview of the first international satellite land surface climatology project (ISLSCP) field experiment (FIFE). J. Geophys. Res. Atmosph. 1992, 97, 18345–18371. [Google Scholar] [CrossRef]
- Jackson, T.J.; Le Vine, D.M.; Swift, C.T.; Schmugge, T.J.; Schiebe, F.R. Large area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita'92. Remote Sens. Environ. 1995, 53, 27–37. [Google Scholar] [CrossRef]
- Goutorbe, J.P.; Lebel, T.; Tinga, A.; Bessemoulin, P.; Brouwer, J.; Dolman, A.J.; Engman, E.T.; Gash, J.H.C.; Hoepffner, M.; Kabat, P. HAPEX-Sahel: a large-scale study of land-atmosphere interactions in the semi-arid tropics. Ann. Geophys. 1994, 12, 53–64. [Google Scholar] [CrossRef]
- Wang, J.R.; Hsu, A.; Shi, J.C.; O'Neill, P.E.; Engman, E.T. A comparison of soil moisture retrieval models using SIR-C measurements over the Little Washita River watershed. Remote Sens. Environ. 1997, 59, 308–320. [Google Scholar] [CrossRef]
- Le Vine, D.M.; Jackson, T.J.; Swift, C.T.; Isham, J.; Haken, M.; Hsu, A. Passive microwave remote sensing with the synthetic aperture radiometer, ESTAR, during the Southern Great Plains experiment. In Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS`98), Seattle, WA, USA, 1998; pp. 2606–2608.
- Bolten, J.D.; Lakshmi, V.; Njoku, E.G. Soil moisture retrieval using the passive/active L-and S-band radar/radiometer. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2792–2801. [Google Scholar] [CrossRef]
- van Zyl, J.J.; Njoku, E.G.; Jackson, T.J. Quantitative analysis of SMEX'02 AIRSAR data for soil moisture inversion. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS`03), Toulouse, France, 2003; pp. 404–406.
- Jackson, T.J.; Bindlish, R.; Gasiewski, A.J.; Stankov, B.; Klein, M.; Njoku, E.G.; Bosch, D.; Coleman, T.L.; Laymon, C.A.; Starks, P. Polarimetric scanning radiometer C- and X-band microwave observations during SMEX03. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2418–2430. [Google Scholar] [CrossRef]
- Vivoni, E.R.; Gebremichael, M.; Watts, C.J.; Bindlish, R.; Jackson, T.J. Comparison of ground-based and remotely-sensed surface soil moisture estimates over complex terrain during SMEX04. Remote Sens. Environ. 2008, 112, 314–325. [Google Scholar] [CrossRef]
- Pauwels, V.R.N.; Timmermans, W.; Loew, A. Comparison of the estimated water and energy budgets of a large winter wheat field during AgriSAR 2006 by multiple sensors and models. J. Hydrol. 2008, 349, 425–440. [Google Scholar] [CrossRef]
- De Rosnay, P.; Calvet, J.C.; Kerr, Y.; Wigneron, J.P.; Lemaître, F.; Escorihuela, M.J.; Sabater, J.M.; Saleh, K.; Barrié, J.; Bouhours, G. SMOSREX: A long term field campaign experiment for soil moisture and land surface processes remote sensing. Remote Sens. Environ. 2006, 102, 377–389. [Google Scholar] [CrossRef]
- Moran, M.S.; McElroy, S.; Watts, J.M.; Peters Lidard, C.D. Radar remote sensing for estimation of surface soil moisture at the watershed scale. In Proceedings of ARS/INIFAP Binational Symposium on Modeling and Remote Sensing in Agriculture, Aguascalientes, Mexico, 2006; pp. 91–106.
- Baghdadi, N.; Cerdan, O.; Zribi, M.; Auzet, V.; Darboux, F.; Hajj, M.E.; Kheir, R.B. Operational performance of current synthetic aperture radar sensors in mapping soil surface characteristics in agricultural environments: Application to hydrological and erosion modelling. Hydrol. Process. 2008, 22, 9–20. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive. Volume Scattering and Emission Theory, Advanced Systems and Applications; Dedham, MA, USA, 1986. [Google Scholar]
- Schmugge, T.J.; Kustas, W.P.; Ritchie, J.C.; Jackson, T.J.; Rango, A. Remote sensing in hydrology. Adv. Water Resour. 2002, 25, 1367–1385. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Dobson, M.C.; Bradley, G.A. Radar reflectivity of bare and vegetation-covered soil. Adv. Space Res. 1981, 1, 91–104. [Google Scholar] [CrossRef]
- Brown, R.J.; Pokier, S.; Manore, M.J. Correlations between X, C and L-band imagery within an agricultural environment. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '88), Edinburgh, Scotland, UK, 1988; pp. 1279–1280.
- Lin, D.; Wood, E.; Beven, K.; Saatchi, S.S. Soil moisture estimation over grass covered areas using AIRSAR. Int. J. Remote Sens. 1994, 15, 2323–2343. [Google Scholar] [CrossRef]
- Altese, E.; Bolognani, O.; Mancini, M.; Troch, P.A. Retrieving soil moisture over bare soil from ERS 1 synthetic aperture radar data: Sensitivity analysis based on a theoretical surface scattering model and field data. Water Resour. Res. 1996, 32, 653–661. [Google Scholar] [CrossRef]
- Satalino, G.; Mattia, F.; Davidson, M.W.J.; Thuy Le, T.; Pasquariello, G.; Borgeaud, M. On current limits of soil moisture retrieval from ERS-SAR data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2438–2447. [Google Scholar] [CrossRef]
- Rahman, M.M.; Moran, M.S.; Thoma, D.P.; Bryant, R.; Holifield Collins, C.D.; Jackson, T.; Orr, B.J.; Tischler, M. Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data. Remote Sens. Environ. 2008, 112, 391–402. [Google Scholar] [CrossRef]
- Jackson, T.J.; Kostov, K.G.; Saatchi, S.S. Rock fraction effects on the interpretation of microwave emission from soils. IEEE Trans. Geosci. Remote Sens. 1992, 30, 610–616. [Google Scholar] [CrossRef]
- Rao, K.S.; Raju, S.; Wang, J.R.; Center, N.; Greenbelt, M.D. Estimation of soil moisture and surface roughness parameters from backscattering coefficient. IEEE Trans. Geosci. Remote Sens. 1993, 31, 1094–1099. [Google Scholar] [CrossRef]
- Srivastava, H.S.; Patel, P.; Manchanda, M.L.; Adiga, S. Use of multiincidence angle RADARSAT-1 SAR data to incorporate the effect of surface roughness in soil moisture estimation. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1638–1640. [Google Scholar] [CrossRef]
- Baghdadi, N.; Holah, N.; Zribi, M. Soil moisture estimation using multiincidence and multipolarization ASAR data. Int. J. Remote Sens. 2006, 27, 1907–1920. [Google Scholar] [CrossRef]
- Holah, N.; Baghdadi, N.; Zribi, M.; Bruand, A.; King, C. Potential of ASAR/ENVISAT for the characterization of soil surface parameters over bare agricultural fields. Remote Sens. Environ. 2005, 96, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Ren, X.; Li, X.; Wang, L. Soil moisture measurement and retrieval using Envisat ASAR imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '04), Anchorage, AK, USA, 2004; pp. 3539–3542.
- Zhang, T.; Zeng, Q.; Li, Y.; Xiang, Y. Study on relation between InSAR coherence and soil moisture. In Proceedings of the ISPRS Congress, Beijing, China, 3-11th July, 2008.
- Autret, M.; Bernard, R.; Vidal-Madjar, D. Theoretical study of the sensitivity of the microwave backscattering coefficient to the soil surface parameters. Int. J. Remote Sens. 1989, 10, 171–179. [Google Scholar] [CrossRef]
- Chen, K.S.; Yen, S.K.; Huang, W.P. A simple model for retrieving bare soil moisture from radar-scattering coefficients. Remote Sens. Environ. 1995, 54, 121–126. [Google Scholar] [CrossRef]
- Fung, A.K.; Li, Z.; Chen, K.S. Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sens. 1992, 30, 356–369. [Google Scholar] [CrossRef]
- Shi, J.; Wang, J.; Hsu, A.Y.; O'Neill, P.E.; Engman, E.T. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1254–1266. [Google Scholar]
- Oh, Y.; Kay, Y.C. Condition for precise measurement of soil surface roughness. IEEE Trans. Geosci. Remote Sens. 1998, 36, 691–695. [Google Scholar]
- Davidson, M.W.J.; Thuy Le, T.; Mattia, F.; Satalino, C.; Manninen, T.; Borgeaud, M. On the characterization of agricultural soil roughness for radar remote sensing studies. IEEE Trans. Geosci. Remote Sens. 2000, 38, 630–640. [Google Scholar] [CrossRef]
- Mattia, F.; Le Toan, T.; Picard, G.; Posa, F.I.; D'Alessio, A.; Notarnicola, C.; Gatti, A.M.; Rinaldi, M.; Satalino, G.; Pasquariello, G. Multitemporal C-band radar measurements on wheat fields. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1551–1560. [Google Scholar] [CrossRef]
- Macelloni, G.; Paloscia, S.; Pampaloni, P.; Marliani, F.; Gai, M. The relationship between the backscattering coefficient and the biomass of narrow and broad leaf crops. IEEE Trans. Geosci. Remote Sens. 2001, 39, 873–884. [Google Scholar] [CrossRef]
- Macelloni, G.; Paloscia, S.; Pampaloni, P.; Ruisi, R.; Dechambre, M.; Valentin, R.; Chanzy, A.; Prévot, L.; Bruguier, N. Modelling radar backscatter from crops during the growth cycle. Agronomie 2002, 22, 575–579. [Google Scholar] [CrossRef]
- Della Vecchia, A.; Ferrazzoli, P.; Guerriero, L.; Blaes, X.; Defourny, P.; Dente, L.; Mattia, F.; Satalino, G.; Strozzi, T.; Wegmuller, U. Influence of geometrical factors on crop backscattering at C-band. IEEE Trans. Geosci. Remote Sens. 2006, 44, 778–790. [Google Scholar] [CrossRef]
- Sikdar, M.; Cumming, I. A modified empirical model for soil moisture estimation invegetated areas using SAR data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '04), Anchorage, AK, USA, 2004; pp. 803–806.
- Su, Z.; Troch, P.A.; De Troch, F.P. Remote sensing of bare surface soil moisture using EMAC/ESAR data. Int. J. Remote Sens. 1997, 18, 2105–2124. [Google Scholar] [CrossRef]
- Fung, A.K.; Dawson, M.S.; Chen, K.S.; Hsu, A.Y.; Engman, E.T.; O'Neill, P.O.; Wang, J. A modified IEM model for: scattering from soil surfaces with application to soil moisture sensing. In Proceedings of the IEEE Transactions on Geoscience and Remote Sensing Symposium (IGARSS '96), Lincoln, NB, USA, 1996; Vol. 2, pp. 1297–1299.
- Hsieh, C.Y.; Fung, A.K.; Nesti, G.; Sieber, A.J.; Coppo, P. A further study of the IEM surface scattering model. IEEE Trans. Geosci. Remote Sens. 1997, 35, 901–909. [Google Scholar] [CrossRef]
- Chen, K.S.; Tzong-Dar, W.; Mu-King, T.; Fung, A.K. Note on the multiple scattering in an IEM model. IEEE Trans. Geosci. Remote Sens. 2000, 38, 249–256. [Google Scholar] [CrossRef]
- Licheri, M.; Floury, N.; Borgeaud, M.; Migliaccio, M. On the scattering from natural surfaces: the IEM and the improved IEM. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '01), Sydney, Australia, 2001; Vol. 6, pp. 2911–2913.
- Baghdadi, N.; King, C.; Bonnifait, A. An empirical calibration of the integral equation model based on SAR data and soil parameters measurements. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '02), Toronto, ON, Canada, 2002; pp. 2646–2650.
- Fan, Y.; Song, K.; Zhou, X. Empirically adopted IEM for retrieval of soil moisture from radar backscattering coefficients. IEEE Trans. Geosci. Remote Sens. 2009, in press. [Google Scholar]
- Sano, E.E.; Huete, A.R.; Troufleau, D.; Moran, M.S.; Vidal, A. Relation between ERS-1 synthetic aperture radar data and measurements of surface roughness and moisture content of rocky soils in a semiarid rangeland. Water Resour. Res. 1998, 34, 1491–1498. [Google Scholar] [CrossRef]
- Alvarez, J.; Verhoest, N.E.C.; Casali, J.; Gonzalez-Audicana, M.; Lopez, J.J. RADARSAT based surface soil moisture retrieval on agricultural catchments of Navarre (Spain). In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS'04), Anchorage, AK, USA, 2004.
- Baghdadi, N.; Gherboudj, I.; Zribi, M.; Sahebi, M.; King, C.; Bonn, F. Semi-empirical calibration of the IEM backscattering model using radar images and moisture and roughness field measurements. Int. J. Remote Sens. 2004, 25, 3593–3623. [Google Scholar] [CrossRef]
- Sahebi, M.R.; Bonn, F.; Bénié, G.B. Neural networks for the inversion of soil surface parameters from synthetic aperture radar satellite data. Can. J. Civil Eng. 2004, 31, 95–108. [Google Scholar] [CrossRef]
- Baghdadi, N.; Zribi, M. Evaluation of radar backscatter models IEM, OH and Dubois using experimental observations. Int. J. Remote Sens. 2006, 27, 3831–3852. [Google Scholar] [CrossRef]
- Alvarez-Mozos, J.; Gonzalez-Audicana, M.; Casali, J.; Larranaga, A. Effective versus measured correlation length for radar-based surface soil moisture retrieval. Int. J. Remote Sens. 2008, 17, 5397–5408. [Google Scholar] [CrossRef]
- Bindlish, R.; Barros, A.P. Multifrequency soil moisture inversion from SAR measurements with the use of IEM. Remote Sens. Environ. 2000, 71, 67–88. [Google Scholar] [CrossRef]
- Thoma, D.P.; Moran, M.S.; Bryant, R.; Rahman, M.; Holifield-Collins, C.D.; Skirvin, S.; Sano, E.E.; Slocum, K. Comparison of four models to determine surface soil moisture from C-band radar imagery in a sparsely vegetated semiarid landscape. Water Resour. Res. 2006, 42, 1–12. [Google Scholar] [CrossRef]
- van Oevelen, P.J.; Hoekman, D.H. Radar backscatter inversion techniques for estimation of surface soil moisture: EFEDA-Spain and HAPEX-Sahel case studies. IEEE Trans. Geosci. Remote Sens. 1999, 37, 113–123. [Google Scholar] [CrossRef]
- Saich, P.; Lewis, P.; Disney, M.I. Biophysical parameter retrieval from forest and crop canopies in the optical and microwave domains using 3D models of canopy structure. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '03), Toulouse, France, 2003; 6, pp. 3546–3548.
- Baghdadi, N.; Gaultier, S.; King, C. Retrieving surface roughness and soil moisture from synthetic aperture radar (SAR) data using neural networks. Can. J. Remote Sens. 2002, 28, 701–711. [Google Scholar] [CrossRef]
- Notarnicola, C.; Angiulli, M.; Posa, F. Soil moisture retrieval from remotely sensed data: neural network approach versus bayesian method. IEEE Trans. Geosci. Remote Sens. 2008, 46, 547–557. [Google Scholar] [CrossRef]
- Pasquariello, G.; Satalino, G.; Mattia, F.; Casarano, D.; Posa, F.; Souyris, J.C.; Le Toan, T. On the retrieval of soil moisture from SAR data over bare soils. In Proceedings of the IEEE International Geoscience and Remote Sensing (IGARSS '97), Singapore, 1997; Vol. 3, pp. 1272–1274.
- Haddad, Z. S.; Dubois, P. Bayesian estimation of soil parameters from remote sensing data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '94), Pasadena, CA, USA, August 8-12, 1994; Vol. 3, pp. 1421–1423.
- Paloscia, S.; Santi, E.; Pettinato, S.; Angiulli, M. Soil properties estimates from SAR data by using a bayesian approach combined with IEM. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '04), Anchorage, AK, USA, 2004; pp. 819–822.
- Paloscia, S.; Pampaloni, P.; Pettinato, S.; Poggi, P.; Santi, E. The retrieval of soil moisture from ENVISAT/ASAR data. EARSeL eProc. 2005, 4, 44–51. [Google Scholar]
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Paloscia, S.; Pampaloni, P.; Pettinato, S.; Santi, E. A comparison of algorithms for retrieving soil moisture from ENVISAT/ASAR images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3274–3284. [Google Scholar] [CrossRef]
- Santi, E.; Paloscia, S.; Pampaloni, P.; Pettinato, S.; Poggi, P. Retrieval of soil moisture from ENVISAT/ASAR images: A comparison of inversion algorithms. In Proceedings of the ESA ENVISAT/ERS Symposium, Salzburg, Austria, 2004.
- Rakotoarivony, L.; Taconet, O.; Vidal-Madjar, D.; Bellemain, P.; Benallegue, M. Radar backscattering over agricultural bare soils. J. Electromagnet. Wave. 1996, 10, 187–209. [Google Scholar] [CrossRef]
- Bryant, R.; Thoma, D.; Moran, M.S.; Holifield, C.D.; Goodrich, D.C.; Keefer, T.O.; Paige, G.; Williamd, D.; Skirvin, S.M. Evaluation of hyperspectral, infrared temperature and RADAR measurements for monitoring surface soil moisture. In Proceedings of the First Interagency Conference on Research in the Watersheds Symposium, Benson, AZ, USA, Oct. 27-30, 2003; pp. 528–533.
- Thoma, D.; Moran, M.; Bryant, R.; Collins, C.H.; Rahman, M.; Skirvin, S. Comparison of two methods for extracting surface soil moisture from C-band radar imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '04), Anchorage, AK, USA, 2004; pp. 827–830.
- Neusch, T.; Sties, M. Application of the Dubois-model using experimental synthetic aperture radar data for the determination of soil moisture and surface roughness. ISPRS J. Photogramm. Remote Sens. 1999, 54, 273–278. [Google Scholar] [CrossRef]
- Wickel, A.; Jackson, T.; Wood, E. Multitemporal monitoring of soil moisture with RADARSAT SAR during the 1997 Southern Great Plains hydrology experiment. Int. J. Remote Sens. 2001, 22, 1571–1583. [Google Scholar] [CrossRef]
- Mathieu, R.; Sbih, M.; Viau, A.; Anctil, F.; Parent, L.; Boisvert, J. Relationships between Radarsat SAR data and surface moisture content of agricultural organic soils. Int. J. Remote Sens. 2003, 24, 5265–5281. [Google Scholar] [CrossRef]
- Baghdadi, N.; King, C.; Bourguignon, A.; Remond, A. Potential of ERS and Radarsat data for surface roughness monitoring over bare agricultural fields: Application to catchments in Northern France. Int. J. Remote Sens. 2002, 23, 3427–3442. [Google Scholar] [CrossRef]
- Baghdadi, N.; Zribi, M.; Loumagne, C.; Ansart, P.; Anguela, T.P. Analysis of TerraSAR-X data and their sensitivity to soil surface parameters over bare agricultural fields. Remote Sens. Environ. 2008, 112, 4370–4379. [Google Scholar] [CrossRef]
- D'Urso, G.; Minacapilli, M. A semi-empirical approach for surface soil water content estimation from radar data without a-priori information on surface roughness. J. Hydrol. 2006, 321, 297–310. [Google Scholar] [CrossRef]
- Oh, Y.; Sarabandi, K.; Ulaby, F.T. Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1348–1355. [Google Scholar] [CrossRef]
- Álvarez-Mozos, J.; Gonzalez-Audícana, M.; Casalí, J. Evaluation of empirical and semiempirical backscattering models for surface soil moisture estimation. Can. J. Remote Sens. 2007, 33, 176–188. [Google Scholar] [CrossRef]
- Zribi, M.; Taconet, O.; Le Hegarat-Mascle, S.; Vidal-Madjar, D.; Emblanch, C.; Loumagne, C.; Normand, M. Backscattering behavior and simulation comparison over bare soils using SIR-C/X-SAR and ERASME 1994 data over Orgeval. Remote Sens. Environ. 1997, 59, 256–266. [Google Scholar] [CrossRef]
- Ji, J.; van der Keur, P.; Thomsen, A.; Skriver, H. Soil moisture retrieval using the Danish L- & C-band polarimetric SAR. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '96), Lincoln, NB, USA, 1996; Vol. 2, pp. 1300–1302.
- Attema, E.P.W.; Ulaby, F.T. Vegetation modelled as a water cloud. Radio Science 1978, 13, 357–364. [Google Scholar] [CrossRef]
- Taconet, O.; Vidal-Madjar, D.; Emblanch, C.; Normand, M. Taking into account vegetation effects to estimate soil moisture from C-band radar measurements. Remote Sens. Environ. 1996, 56, 52–56. [Google Scholar] [CrossRef]
- Prevot, L.; Poenaru, V.; Voicu, P.; Vintila, R.; DeBoissezon, H.; Pourthie, N.; Lisah, I.; Montpellier, F. Surface soil moisture estimation from SAR data over wheat fields during the ADAM project. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS'03, Toulouse, France, 2003.
- Maity, S.; Patnaik, C.; Chakraborty, M.; Panigrahy, S. Analysis of temporal backscattering of cotton crops using a semiempirical model. IEEE Trans. Geosci. Remote Sens. 2004, 42, 577–587. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Allen, C.T.; Eger, G.; Kanemasu, E. Relating the microwave backscattering coefficient to leaf area index. Remote Sens. Environ. 1984, 14, 113–133. [Google Scholar] [CrossRef]
- Prévot, L.; Champion, I.; Guyot, G. Estimating surface soil moisture and leaf are index of a wheat canopy using a dual-frequency(C and W bands) scatterometer. Remote Sens. Environ. 1993, 46, 331–339. [Google Scholar] [CrossRef]
- van Leeuwen, H.J.C.; Clevers, J.G.P.W.; Rijckenberg, G.J. Synergetic use of optical and microwave remote sensing data using models and specific features with respect to the sugar beet crop. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '94), California, CA, USA, August 8-12, 1994; Vol. 2, pp. 827–831.
- Champion, I. Simple modelling of radar backscattering coefficient over a bare soil: variation with incidence angle, frequency and polarization. Int. J. Remote Sens. 1996, 15, 783–800. [Google Scholar] [CrossRef]
- Graham, A.J.; Harris, R. Extracting biophysical parameters from remotely sensed radar data: a review of the water cloud model. Prog. Phys. Geog. 2003, 27, 217–229. [Google Scholar] [CrossRef]
- Dabrowska-Zielinska, K.; Gruszczynska, M.; Kowalik, W.; Inoue, Y.; Hoscilo, A. Retrieval of crop parameters and soil moisture from ENVISAT ASAR based on model analysis. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '05), Seoul, Korea, July 25-29, 2005; pp. 2149–2152.
- Stolz, R.; Schneider, K.; Schouten, L.; van Leeuwen, H.; Bach, H. Combining the microwave model CLOUD and the growth model PROMET-V for soil moisture retrieval. In Proceedings of ERS-ENVISAT-Symposium, Gothenburg, Sweden, October 16-20, 2000.
- Cole, K.S.; Cole, R.H. Dispersion and absorption in dielectrics II. Direct current characteristics. J. Chem. Phys. 1942, 10, 98–105. [Google Scholar] [CrossRef]
- Debye, P. Polar molecules; Dover Publications Inc.: New York, NY, USA, 1929. [Google Scholar]
- van Dam, R.L.; Borchers, B.; Hendrickx, J.M. Methods for prediction of soil dielectric properties- A review. In Proceedings of the SPIE, Orlando, FL, USA, March 28- April 1, 2005; pp. 188–197.
- Lisichkin, V.; Shvedov, S. Comparative analysis of models of the dielectric properties of soil in self-excited oscillator measurements of moisture content. Meas. Techniq. 2008, 51, 213–218. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Wang, J.R.; Schmugge, T.J. An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Trans. Geosci. Remote Sens. 1980, 18, 288–295. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-Rayes, M.A. Microwave dielectric behavior of wet soil-part II: Dielectric mixing models. IEEE Trans. Geosci. Remote Sens. 1985, 23, 35–46. [Google Scholar] [CrossRef]
- Peplinski, N.R.; Ulaby, F.T.; Dobson, M.C. Dielectric properties of soils in the 0.3-1.3-GHz range. IEEE Trans. Geosci. Remote Sens. 1995, 33, 803–807. [Google Scholar] [CrossRef]
- Zribi, M.; Le Hégarat-Mascle, S.; Ottlé, C.; Kammoun, B.; Guerin, C. Surface soil moisture estimation from the synergistic use of the (multi-incidence and multi-resolution) active microwave ERS Wind Scatterometer and SAR data. Remote Sens. Environ. 2003, 86, 30–41. [Google Scholar] [CrossRef]
- Moran, M.S.; Peters-Lidard, C.D.; Watts, J.M.; McElroy, S. Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Can. J. Remote Sens. 2004, 30, 805–826. [Google Scholar] [CrossRef]
- O'Neill, P.; Chauhan, N.; Jackson, T. Use of active and passive microwave remote sensing for soil moisture estimation through corn. Int. J. Remote Sens. 1996, 17, 1851–1865. [Google Scholar] [CrossRef]
- Njoku, E.G.; Wilson, W.J.; Yueh, S.H.; Dinardo, S.J.; Li, F.K.; Jackson, T.J.; Lakshmi, V.; Bolten, J. Observations of soil moisture using a passive and active low-frequency microwave airborne sensor during SGP99. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2659–2673. [Google Scholar] [CrossRef]
- Narayan, U.; Lakshmi, V.; Jackson, T.J. High-resolution change estimation of soil moisture using L-band radiometer and Radar observations made during the SMEX02 experiments. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1545–1554. [Google Scholar] [CrossRef]
- Narayan, U.; Lakshmi, V.; Njoku, E.G. Retrieval of soil moisture from passive and active L/S band sensor (PALS) observations during the Soil Moisture Experiment in 2002 (SMEX02). Remote Sens. Environ. 2004, 92, 483–496. [Google Scholar] [CrossRef]
- Bindlish, R.; Barros, A.P. Subpixel variability of remotely sensed soil moisture: an inter-comparison study of SAR and ESTAR. IEEE Trans. Geosci. Remote Sens. 2002, 40, 326–337. [Google Scholar] [CrossRef]
- Wang, C.; Qi, J. Soil moisture extraction in sparse vegetated area using SAR and TM data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2000), Honolulu, HI, USA, 2000; Vol. 3, pp. 1265–1267.
- Wang, C.; Qi, J.; Moran, S.; Marsett, R. Soil moisture estimation in a semiarid rangeland using ERS-2 and TM imagery. Remote Sens. Environ. 2004, 90, 178–189. [Google Scholar] [CrossRef]
- Moran, M.S.; Hymer, D.C.; Qi, J.; Sano, E.E. Soil moisture evaluation using multi-temporal synthetic aperture radar (SAR) in semiarid rangeland. Agr. Forest Meteorol. 2000, 105, 69–80. [Google Scholar] [CrossRef]
- Notarnicola, C.; Angiulli, M.; Posa, F. Use of radar and optical remotely sensed data for soil moisture retrieval over vegetated areas. IEEE Trans. Geosci. Remote Sens. 2006, 44, 925–935. [Google Scholar] [CrossRef]
- Engman, E.T.; Chauhan, N. Status of microwave soil moisture measurements with remote sensing. Remote Sens. Environ. 1995, 51, 189–198. [Google Scholar] [CrossRef]
- Rignot, E.J.M.; van Zyl, J.J. Change detection techniques for ERS-1 SAR data. IEEE Trans. Geosci. Remote Sens. 1993, 31, 896–906. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L. A detail-preserving scale-driven approach to change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2963–2972. [Google Scholar] [CrossRef]
- Bao, M. Backscattering change detection in SAR images using wavelet techniques. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium ( IGARSS '99), Hamburg, Germany, 1999; pp. 1561–1563.
- Villasensor, J.D.; Fatland, D.R.; Hinzman, L.D. Change detection on Alaska's North Slope using repeat-pass ERS-1 SAR images. IEEE Trans. Geosci. Remote Sens. 1993, 31, 227–236. [Google Scholar] [CrossRef]
- Shoshany, M.; Svoray, T.; Curran, P.J.; Foody, G.M.; Perevolotsky, A. The relationship between ERS-2 SAR backscatter and soil moisture: generalization from a humid to semi-arid transect. Int. J. Remote Sens. 2000, 21, 2337. [Google Scholar] [CrossRef]
- Thoma, D.P.; Moran, M.S.; Bryant, R.; Rahman, M.M.; Collins, C.D.H.; Keefer, T.O.; Noriega, R.; Osman, I.; Skrivin, S.M.; Tischler, M.A.; Bosch, D.D.; Starks, P.J.; Peters-Lidard, C.D. Appropriate scale of soil moisture retrieval from high resolution radar imagery for bare and minimally vegetated soils. Remote Sens. Environ. 2008, 112, 403–414. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective; Prentice Hall: Englewood Cliffs, New Jersey, NJ, USA, 1986. [Google Scholar]
- Byrne, G.F.; Crapper, P.F.; Mayo, K.K. Monitoring land-cover change by principal component analysis of multitemporal landsat imagery. Remote Sens. Environ. 1980, 10, 175–184. [Google Scholar] [CrossRef]
- Fung, T.; LeDrew, E. Application of principal components analysis to change detection. Photogramm. Eng. Remote Sens. 1987, 53, 1649–1658. [Google Scholar]
- Piwowar, J.M.; LeDrew, E.F. Principal components analysis of Arctic ice conditions between 1978 and 1987 as observed from the SMMR data record. Can. J. Remote Sens. 1996, 22, 390–403. [Google Scholar] [CrossRef]
- Lee, J.S.; Hoppel, K. Principal components transformation of multifrequency polarimetricSAR imagery. IEEE Trans. Geosci. Remote Sens. 1992, 30, 686–696. [Google Scholar] [CrossRef]
- Baronti, S.; Carla, R.; Sigismondi, S.; Alparone, L. Principal component analysis for change detection on polarimetric multitemporal SAR data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '94), Pasadena, CA, USA, August 8-12, 1994; Vol. 4, pp. 2152–2154.
- Henebry, G.M. Advantages of principal components analysis for land cover segmentation from SAR image series. In Proceedings of the 1st ERS Symposium 'Space at the Service of our Environment '; ESA SP: Florence, Italy, 1997; pp. 175–178. [Google Scholar]
- Verhoest, N.E.C.; Troch, P.A.; Paniconi, C.; De Troch, F.P. Mapping basin scale variable source areas from multitemporal remotely sensed observations of soil moisture behavior. Water Resour. Res. 1998, 34, 3235–3244. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Dorling, S.R. Near-surface soil moisture retrieval from ASAR Wide Swath imagery using a Principal Component Analysis. Int. J. Remote Sens. 2008, 29, 2925–2942. [Google Scholar] [CrossRef]
- Graham, L.C. Synthetic Interferometer radar for topographic mapping. Proc, IEEE 1974, 62, 763–768. [Google Scholar] [CrossRef]
- Ichoku, C.; Karnieli, A.; Arkin, Y.; Chorowicz, J.; Fleury, T.; Rudant, J.P. Exploring the utility potential of SAR interferometric coherence images. Int. J. Remote Sens. 1998, 19, 1147–1160. [Google Scholar] [CrossRef]
- Borgeaud, M.; Wegmueller, U. On the use of ERS SAR interferometry for the retrieval of geo- and bio-physical information. In Proceedings of the 'Fringe 96' Workshop on ERS SAR Interferometry; ESA SP-406: Zurich, Switzerland, 1996; pp. 83–94. [Google Scholar]
- Wegmüller, U. Soil moisture monitoring with ERS SAR interferometry. In Proceedings of the Third ERS Symposium: Space at the Service of our Environment; ESA-SP-414: Florence, Italy, 1997; pp. 47–52. [Google Scholar]
- Lu, Z.; Meyer, D.J. Study of high SAR backscattering caused by an increase of soil moisture over a sparsely vegetated area: implications for characteristics of backscattering. Int. J. Remote Sens. 2002, 23, 1063–1074. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Nesti, G.; Sieber, A.J.; de Grandi, G.D.; Fortuny-Guasch, J.; Ohlmer, E. Recent advances at the european microwave signature laboratory. In Proceedings of SPIE: Microwave Instrumentation and Satellite Photogrammetry for Remote Sensing of the Earth, Rome, Italy, 26 September 1994.
- Nesti, G.; Tarchi, D.; Rudant, J.P. Decorrelation of backscattered signal due to soil moisture changes. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '95), Toulouse, France, October 1995; pp. 2026–2028.
- Nesti, G.; Tarchi, D.; Bedidi, A.; Despan, D.; Rudant, J.P.; Bachelier, E.; Borderies, P. Phase shift and decorrelation of radar signal related to soil moisture changes. In Retrieval of Bio- and Geo-Physical Parameters from SAR Data for Land Applications Workshop ESTEC, Noordwijk, The Netherlands, October 21-23; ESA SP, 1998; pp. 423–430. [Google Scholar]
- Luo, X.; Askne, J.; Smith, G.; Dammert, P. Coherence characteristics of radar signals from rough soil. Progr. Electromagnet. Res. PIER 2001, 31, 69–88. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Jayaraman, V. Relating interferometric signature of repeat pass ERS-1 SAR signals to dynamic land cover changes. Acta Astronaut. 2001, 48, 37–44. [Google Scholar] [CrossRef]
- Hajnsek, I.; Papathanassiou, K.P.; Moreira, A.; Cloude, S.R. Surface parameter estimation using interferometric and polarimetric SAR. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '02), Toronto, ON, Canada, 2002; Vol. 1, pp. 420–422.
- Hajnsek, I.; Alvarez-Perez, J.L.; Papathanassiou, K.P.; Moreira, A.; Cloude, S.R. Surface parameter estimation using interferometric coherences at different polarisations. In POLinSAR Workshop on Applications of SAR Polarimetry and Polarimetric Interferometry, ESA-ESRIN, Frascati, Italy, January 14-16, 2003.
- Gabriel, A.K.; Goldstein, R.; Zebker, H.A. Mapping small elevation changes over large areas. J. Geophys. Res. 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Nolan, M.; Fatland, D.R. Penetration depth as a DInSAR observable and proxy for soil moisture. IEEE Trans. Geosci. Remote Sens. 2003, 41, 532–537. [Google Scholar] [CrossRef]
- Nolan, M.; Fatland, D.R.; Hinzman, L. DInSAR measurement of soil moisture. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2802–2813. [Google Scholar] [CrossRef]
- Hajnsek, I.; Prats, P. Soil moisture estimation in time with D-InSAR. In Proceedings of the IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS'08), Boston, MA, USA, 2008; pp. 546–549.
- Souyris, J.C.; Imbo, P.; Fjortoft, R.; Mingot, S.; Lee, J.S. Compact polarimetry based on symmetry properties of geophysical media: The p/4 mode. IEEE Trans. Geosci. Remote Sens. 2005, 43, 634–646. [Google Scholar] [CrossRef]
- Raney, R.K. Hybrid-polarity sar architecture. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3397–3404. [Google Scholar] [CrossRef]
- Dubois-Fernandez, P.C.; Souyris, J.C.; Angelliaume, S.; Garestier, F. The compact polarimetry alternative for spaceborne sar at low frequency. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3208–3222. [Google Scholar] [CrossRef]
- Nord, M.E.; Ainsworth, T.L.; Jong-Sen, L.; Stacy, N.J.S. Comparison of compact polarimetric synthetic aperture radar modes. IEEE Trans. Geosci. Remote Sens. 2009, 47, 174–188. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Elachi, C. Radar Polarimetry for Geoscience Applications; Artech House: Norwood, MA, USA, 1990. [Google Scholar]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Hajnsek, I. Inversion of Surface Parameters from Polarimetric SAR data. PhD Thesis, Friedrich Schiller University of Jena (FSU), Jena, Germany, 2001. [Google Scholar]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Lee, J.S.; Boerner, W.M.; Schuler, D.L.; Ainsworth, T.L.; Hajnsek, I.; Papathanassiou, K.P.; Lüneburg, E. A review of polarimetric SAR algorithms and their applications. J. Photogramm. Remote Sens. 2004, 9, 31–80. [Google Scholar]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications ofpolarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Hajnsek, I.; Pottier, E.; Cloude, S.R. Inversion of surface parameters from polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 2003, 41, 727–744. [Google Scholar] [CrossRef]
- Hajnsek, I.; Jagdhuber, T.; Schon, H.; Papathanassiou, K.P. Potential of estimating soil moisture under vegetation cover by means of PolSAR. IEEE Trans. Geosci. Remote Sens. 2009, 47, 442–454. [Google Scholar] [CrossRef]
- Cloude, S.R.; Papathanassiou, K.; Hajnsek, I. An eigenvector method for the extraction of surface parameters in polarimetric SAR. In Proceedings of the CEOS SAR Workshop; European Space Agency: Toulouse, France, 2000; pp. 693–698. [Google Scholar]
- Allain, S.; Ferro-Famil, L.; Pottier, E. Surface parameter retrieval from polarimetric and multi-frequency SAR data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '03), Toulouse, France, 2003; Vol. 2, pp. 1417–1419.
- Cloude, S.R. The Dual Polarisation entropy/alpha decomposition: A PALSAR case study. In POLinSAR`07: the 3rd International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, Frascati, Italy, January 22-26, 2007.
- Williams, M.L. Potential for surface parameter estimation using compact polarimetric SAR. IEEE Geosci. Remote Sens. Lett. 2008, 5, 471–473. [Google Scholar] [CrossRef]
- Mattia, F.; Le Toan, T.; Souyris, J.C.; De Carolis, C.; Floury, N.; Posa, F.; Pasquariello, N. G. The effect of surface roughness on multifrequency polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 954–966. [Google Scholar] [CrossRef]
- Schuler, D.L.; Jong-Sen, L.; Kasilingam, D.; Nesti, G. Surface roughness and slope measurements using polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 687–698. [Google Scholar] [CrossRef]
- Malhotra, S.; Kasilingam, D.; Schuler, D. The dependence of polarimetric coherence on surface roughness for very rough surfaces. In Proceedings of the IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS '03), Toulouse, France, 2003; pp. 1654–1656.
- Cloude, S.R.; Corr, D.G. A new parameter for soil moisture estimation. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '02), Toronto, ON, Canada, 2002; Vol. 1, pp. 641–643.
- Ulaby, F.T. SAR biophysical retrievals: lessons learned and challenges to overcome. In Proceedings of the 2nd International Workshop on Retrieval of Bio- and Geo-physical Parameters from SAR Data for Land applications, Noordwijk, The Netherlands, 1998; pp. 19–26.
- Pathe, C.; Wagner, W.; Sabel, D.; Doubkova, M.; Basara, J. B. Using ENVISAT ASAR global mode data for surface soil moisture retrieval over oklahoma, USA. IEEE Trans. Geosci. Remote Sens. 2009, 47, 468–480. [Google Scholar] [CrossRef]
- Oldak, A.; Jackson, T.; Starks, P.; Elliott, R. Mapping near-surface soil moisture on regional scale using ERS-2 SAR data. Int. J. Remote Sens. 2003, 24, 4579–4598. [Google Scholar] [CrossRef]
- Wagner, W.; Pathe, C. Has SAR failed in soil moisture retrieval. In Proceedings ENVISAT & ERS Symposium, Salzburg, Austria; ESA SP-572. 2005; pp. 6–10. [Google Scholar]
- Wagner, W.; Blöschl, G.; Pampaloni, P.; Calvet, J. Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Hydrol. Res. 2007, 38, 1–20. [Google Scholar] [CrossRef]
- Engman, E. Progress in microwave remote sensing of soil moisture. Can. J. Remote Sens. 1990, 16, 6–14. [Google Scholar] [CrossRef]
- Fung, A.K. Microwave scattering and emission models and their applications; Artech House: Boston, MA, 1994. [Google Scholar]
- Hajnsek, I.; Papathanassiou, K.P.; Cloude, S.R. L-and P-band for surface parameter estimation. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '01), Sydney, NSW, Australia, 2001; pp. 2775–2777.
- Moran, M.S.; Vidal, A.; Troufleau, D.; Inoue, Y.; Mitchell, T.A. Ku- and C-band SAR for discriminating agricultural crop and soil conditions. IEEE Trans. Geosci. Remote Sens. 1998, 36, 265–272. [Google Scholar] [CrossRef]
- Karam, M.A.; Fung, A.K.; Lang, R.H.; Chauhan, N.S. A microwave scattering model for layered vegetation. IEEE Trans. Geosci. Remote Sens. 1992, 30, 767–784. [Google Scholar] [CrossRef]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Barrett, B.W.; Dwyer, E.; Whelan, P. Soil Moisture Retrieval from Active Spaceborne Microwave Observations: An Evaluation of Current Techniques. Remote Sens. 2009, 1, 210-242. https://doi.org/10.3390/rs1030210
Barrett BW, Dwyer E, Whelan P. Soil Moisture Retrieval from Active Spaceborne Microwave Observations: An Evaluation of Current Techniques. Remote Sensing. 2009; 1(3):210-242. https://doi.org/10.3390/rs1030210
Chicago/Turabian StyleBarrett, Brian W., Edward Dwyer, and Pádraig Whelan. 2009. "Soil Moisture Retrieval from Active Spaceborne Microwave Observations: An Evaluation of Current Techniques" Remote Sensing 1, no. 3: 210-242. https://doi.org/10.3390/rs1030210
APA StyleBarrett, B. W., Dwyer, E., & Whelan, P. (2009). Soil Moisture Retrieval from Active Spaceborne Microwave Observations: An Evaluation of Current Techniques. Remote Sensing, 1(3), 210-242. https://doi.org/10.3390/rs1030210