Spectroscopic Analysis of Arsenic Uptake in Pteris Ferns
Abstract
:1. Introduction
2. Background
2.1. Spectroscopy and Remote Sensing
2.2. The Red Edge
2.3. Arsenic and Arsenic Phytoremediation
3. Materials and Methods
3.1. Plant and Soil Conditions
3.2. Spectral and Chemical Data Collection
3.3. Statistical/Analytical Techniques: PLS and SLR
3.4. Statistical/Analytical Techniques: Derivative spectra
4. Results
4.1. Plant Growth and Arsenic Uptake
4.2. Summary of Greenhouse Results
4.3. Spectral Analysis Results
4.4. Testing Spectral-Arsenic Prediction Models
5. Summary and Discussion
References
- Ma, L.Q.; Komar, K.M.; Tu, C.; Zhang, W.; Cai, Y. A fern that hyperaccumulates arsenic. Nature 2001, 409, 579. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.J.; Dunham, S.J.; McGrath, S.P. Arsenic hyperaccumulation by different fern species. New Phytol. 2002, 156, 27–31. [Google Scholar] [CrossRef]
- Srivastava, M.; Ma, L.Q.; Gonzaga-Santos, J.A. Three new arsenic hyperaccumulating ferns. Sci. Total Envion. 2006, 364, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.B.; Wong, M.H.; Lan, C.Y.; Baker, A.J.M.; Qin, Y.R.; Shu, W.S.; Chen, G.Z.; Ye, Z.H. Uptake and accumulation of arsenic by 11 Pteris taxa from southern china. Environ. Pollut. 2006, 20, 1–9. [Google Scholar]
- Blaylock, M.J.; Elless, M.P.; Bray, C.A.; Teeter, C.L. Phytoremediation of arsenic contaminated soil in Spring Valley FUDS of Washington, D.C.; Edenspace Systems: Dulles, VA, USA, 2005. [Google Scholar]
- Wei, C.Y.; Chen, T.B. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation. Chemosphere 2006, 63, 1048–1053. [Google Scholar] [CrossRef] [PubMed]
- Milton, N.M.; Collins, W.; Chang, S.H. Confirmation of Airborne biogeophysical mineral exploration technique using laboratory methods. Econ. Geol. 1983, 78, 723–736. [Google Scholar]
- Milton, N.M.; Ager, C.M.; Eisworth, B.A.; Powers, M.S. Arsenic and selenium induced changes in spectral reflectance and morphology of soybean plants. Remote Sens. Environ. 1989, 30, 263–269. [Google Scholar] [CrossRef]
- Rock, B.N.; Hoshizake, T.; Miller, J.R. Comparison of in situ and airborne spectral measurements of the blue shift with forest decline. Remote Sens. Environ. 1988, 24, 109–127. [Google Scholar] [CrossRef]
- Milton, N.M.; Eisworth, B.A.; Ager, C.M. Effect of phosphorous deficiency on spectral reflectance and morphology of soybean plants. Remote Sens. Environ. 1991, 36, 121–127. [Google Scholar] [CrossRef]
- Rood, J.W. Jr. Modern Chromatics with Applications to Art and Industry; D. Appleton & Company: New York, NY, USA, 1879. [Google Scholar]
- Murtha, P.A. Vegetation. In The Manual of Photographic Interpretation; Phillipson, W.R., Ed.; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 1997. [Google Scholar]
- Schull, C.A. A spectrophotometric study of reflection of light from leaf surfaces. Bot. Gaz. 1929, 87, 583–607. [Google Scholar] [CrossRef]
- McNicholas, H.J. The visible and ultraviolet absorption spectra of carotin and xanthophyll and the changes accompanying oxidation. J. Res. Natl. Bur. Stand. 1931, 7, 171–193. [Google Scholar] [CrossRef]
- Gates, D.M.; Keegan, H.J.; Schleter, J.C.; Weidner, V.R. Spectral properties of plants. Appl. Opt. 1965, 4, 11–20. [Google Scholar] [CrossRef]
- Guyot, G.; Baret, F.; Jacquemoud, S. Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands. Remote Sens. Environ. 1992, 41, 145–165. [Google Scholar]
- Ray, T.W.; Muray, B.C.; Chehbouni, A.; Njoku, E. The Red edge in arid region vegetation: 340 – 1060 nm spectra. In Summaries of the Fourth Annual JPL Airborne Geoscience Workshop; JPL Publication 93–26; Jet Propulsion Laboratory: Pasadena, CA, USA, 1993; pp. 149–152. [Google Scholar]
- Horler, D.N.H.; Dockray, M.; Barber, J.; Barringer, A.R. Red edge measurements for remote sensing plant chlorophyll content. Adv. Space Res. 1983, 3, 273–277. [Google Scholar] [CrossRef]
- Baret, F.I.; Champion, G.; Guyot, G.; Podaire, A. Monitoring wheat canopies with a high spectral resolution radiometer. Remote Sens. Environ. 1987, 2, 367–378. [Google Scholar] [CrossRef]
- Collins, W.; Raines, G.L.; Canney, F.C. Airborne spectroradiometer discrimination of vegetation anomalies over sulfide mineralization – a remote sensing technique. In Abstracts with programmes, Geological Society of America Annual Meeting, Seattle, Washington, DC, USA, 7 – 9 November 1977; pp. 932–933.
- Horler, D.N.H.; Barber, J.; Barringer, A.R. Effects of heavy metals on the absorbance and reflectance spectra of plants. Int. J. Remote Sens. 1980, 1, 121–136. [Google Scholar] [CrossRef]
- Schwaller, M.R.; Tkach, S.J. Premature leaf senescence: remote sensing detection and utility for geobotanical prospecting. Econ. Geol. 1985, 80, 250–255. [Google Scholar] [CrossRef]
- Anderson, J.E.; Robbins, E.I. Spectral reflectance and detection of iron–oxide precipitates associated with acidic mine drainage. Photogramm. Eng. Remote Sens. 1998, 64, 1201–1208. [Google Scholar]
- Swayze, G.A.; Smith, K.S.; Clark, R.N.; Sutley, S.J.; Pearson, R.M.; Vance, J.S.; Hageman, P.L.; Briggs, P.H.; Meier, A.L.; Singleton, M.J.; Roth, S. Using imaging spectroscopy to map acidic mine waste. Environ. Sci. Technol. 2000, 34, 47–54. [Google Scholar] [CrossRef]
- Kooistra, L.J.; Wehrens, R.; Leuven, E.W.; Buydens, L.M.C. Possibilities of visible–near–infrared spectroscopy for the assessment of soil contamination in river floodplains. Anal. Chim. Acta 2001, 446, 97–105. [Google Scholar] [CrossRef]
- Kooistra, L.J.; Wanders, G.F.; Epema, R.S.; Leuven, E.W.; Wehrens, R.; Buydens, L.M.C. The potential of field spectroscopy for the assessment of sediment properties in river floodplains. Anal. Chem. Acta 2003, 484, 189–200. [Google Scholar] [CrossRef]
- Kooistra, L.; Salas, E.A.L.; Clevers, J.G.P.; Wehrens, R.; Luevens, R.S.E.W.; Nienhuis, P.H.; Buydens, L.M.C. Exploring field vegetation reflectance as an indicator of soil contamination in river foodplains. Environ. Pollut. 2004, 127, 281–290. [Google Scholar] [CrossRef]
- Clevers, J.; Kooistra, L.; Salas, E.A.L. Study of heavy metal contamination in river floodplains using the red-edge position in spectroscopic data. Int. J. Remote Sens. 2004, 25, 1–13. [Google Scholar] [CrossRef]
- Rosso, P.H.; Pushnik, J.C.; Lay, M.; Ustin, S.L. Reflectance properties and physiological responses of salicornia virginica to heavy metal and petroleum contamination. Environ. Pollut. 2005, 137, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Schuerger, A.C.; Capelle, G.A.; Di Benedetto, J.A.; Maoc, C.; Thaid, C.N.; Evans, M.D.; Richards, J.T.; Blank, T.A.; Stryjewski, E.C. Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in Bahia Grass (Paspalum notatum Flugge.). Remote Sens. Environ. 2003, 84, 572–588. [Google Scholar] [CrossRef]
- Sridhar, M.B.B.; Han, F.X.; Diehl, S.V.; Monts, D.L.; Su, Y. Monitoring the effects of arsenic and chromium accumulation in chinese brake fern (Pteris vittata). Int. J. Remote Sens. 2007, 28, 1055–1067. [Google Scholar] [CrossRef]
- CERCLA. Comprehensive environmental response, Compensation, and Liability Act (commonly known as Superfund). Public Law 96–510, 42 U.S.C. §§ 9601et seq. 1980. [Google Scholar]
- Gorby, M.S. Arsenic in human medicine. In Arsenic in the Environment; Nriagu, J.O., Ed.; Part II: Human Health and Ecosystem; John Wiley & Sons: New York, USA, 1994. [Google Scholar]
- Azcue, J.M.; Nriague, J.O. Arsenic: Historical perspectives. In Arsenic in the Environment; Nriagu, J.O., Ed.; Part I: Cycling and Characterization; John Wiley & Sons: New York, NY, USA, 1994. [Google Scholar]
- NRC (National Research Council). Arsenic in Drinking Water; National Academy of Sciences: Washington, DC, USA, 1999. [Google Scholar]
- Focazio, M.J.; Welch, A.H.; Watkins, S.A.; Helsel, D.R.; Horn, M.A. A retrospective analysis on the occurrence of arsenic in ground–water resources of the United States and limitations in drinking–water–supply characterizations. In U.S. geological survey water–resources investigations report 99–4279; U.S. Geological Survey: Reston, VA, USA, 1999. [Google Scholar]
- Karim, M.M. Arsenic exposure modeling and risk assessment in Bangladesh using geographic information system. In Proceedings of The Second International Health Geographics Conference, Washington, DC, USA, 17 – 19 March 2000; pp. 35–42.
- Duble, R.L.; Thomas, J.C.; Brown, K.W. Arsenic pollution from underdrainage and runoff from golf greens. Agron. J. 1978, 70, 71–74. [Google Scholar] [CrossRef]
- A citizen’s guide to bioremediation; EPA–F42–01–001; Office of Solid Waste and Emergency Response: Washington, DC, USA, 2001.
- Boyajian, G.E.; Devedjian, D.L. Phytoremediation: it grows on you. Soil and Groundwater Cleanup 1997, 22–26. [Google Scholar]
- Peart, V. Indoor Air Quality in Florida: Houseplants to Fight Pollution; Publication FCS 3208, Department of Family, Youth and Community Services, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences; University of Florida: Gainesville, FL, USA, 1993. [Google Scholar]
- Bondada, B.R.; Ma, L.Q. Tolerance of heavy metals in vascular plants: arsenic hyperaccumulation by chinese brake fern (Pteris vittata L.). In Pteridology in the New Millennium; Chandra, S., Srivastava, M., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 2003; pp. 397–420. [Google Scholar]
- Blaylock, M.J. The controlled growth of arsenic hyperaccumulating ferns to support EPA spectral imaging studies; Edenspace Systems Corporation: Dulles, VA, USA, 2005. [Google Scholar]
- Method 3050b, Acid digestion of sediments, sludges, and soils; U.S. Environmental Protection Agency: Washington, DC, USA, 2004.
- FieldSpec Users Guide; Analytical Spectral Devices: Boulder, CO, USA, 1997.
- Hansen, P.M.; Jorgenson, J.R.; Thomsen, A. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression. J. Agric. Sci. 2002, 139, 307–318. [Google Scholar] [CrossRef]
- Schmidtlein, S. Imaging spectroscopy as a tool for mapping ellenberg indicator values. J. Appl. Ecol. 2005, 42, 966–974. [Google Scholar] [CrossRef]
- Wold, H. Estimation of principal components and related models by iterative least squares. In Multivariate Analysis; Krishnaiah, P.R., Ed.; Academic Press: New York, NY, USA, 1966; pp. 391–420. [Google Scholar]
- Abdi, H. Partial least squares regression (PLS-regression). In Encyclopedia for Research Methods for the Social Science; Lewis-Beck, M., Futing, B.T., Eds.; Sage Publishing: Thousand Oaks, CA, USA, 2003; pp. 792–795. [Google Scholar]
- Höskuldsson, A. PLS regression methods. J. Chemometr. 1988, 2, 211–228. [Google Scholar] [CrossRef]
- Rosipal, R.; Krämer, N. Overview and recent advances in partial least squares. In Subspace, Latent Structure and Feature Selection Techniques; Saunders, C., Grobelnik, M., Gunn, S., Shawe-Taylor, J., Eds.; Springer: New York, NY, USA, 2006; pp. 34–51. [Google Scholar]
- Wold, H. Path with Latent Variables: The NIPALS Approach. In Quantitative Sociology: International Perspectives on Mathematical and Statistical Model Building; Balock, H.M., Ed.; Academic Press: New York, NY, USA, 1975; pp. 307–357. [Google Scholar]
- Wold, H. Partial Least Squares. In Encyclopedia of Statistical Sciences; Kotz, S., Johnson, N.L., Eds.; Wiley: New York, NY, USA, 1985; Volume 6, pp. 581–591. [Google Scholar]
- Wold, S.; Sjolstrom, M.; Erikson, L. PLS–regression: A basic tool of chemometrics. Chemometr. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Kresta, J.V.; Macgregor, J.F.; Marlin, T.E. Multivariate statistical monitoring of process operating performance. Can. J. Chem. Eng. 1991, 69, 35–47. [Google Scholar] [CrossRef]
- MacGregor, J.F.; Jaeckle, C.; Kiparissides, C.; Koutoudi, M. Process systems engineering: process monitoring and diagnosis by multiblock PLS methods. AIChE J. 2004, 40, 826–838. [Google Scholar] [CrossRef]
- Nyberg, L.; Forkstam, C.; Petersson, K.M.; Cabeza, R.; Cabeza, M.; Ingvar, M. Brain imaging of human memory systems: Between–systems similarities and within–system differences. Cogn. Brain Res. 2002, 13, 281–292. [Google Scholar] [CrossRef]
- Habeck, C.; Krakauer, J.W.; Ghez, C.; Sackeim, H.A.; Eidelberg, D.; Stern, Y.; Moeller, J.R. A new approach to spatial covariance modeling of functional brain imaging data: ordinal trend analysis. Neural. Comput. 2005, 17, 1602–1645. [Google Scholar] [CrossRef] [PubMed]
- Nash, M.S.; Chaloud, D.J.; Lopez, R.D. Applications of canonical correlation and partial least squares in landscape ecology; EPA Report EPA/600/X–05/004; Environmental Sciences Division, U.S. Environmental Protection Agency: Las Vegas, NV, USA, 2005.
- Wold, S. PLS for multivariate linear modeling. In QSAR: Chemometric Methods in Molecular Design, Methods and Principles in Medicinal Chemistry; van de Waterbeemd, H., Ed.; Verlag Chemie: Weinheim, Germany, 1995; Volume 2, pp. 195–218. [Google Scholar]
- Martin, M.E.; Newman, S.D.; Aber, J.D.; Congalton, R.G. Determining forest species composition using high spectral resolution remote sensing data. Remote Sens. Environ. 1998, 65, 249–254. [Google Scholar] [CrossRef]
- Chen, Z.; Curran, P.J.; Hansom, J.D. Derivative reflectance spectroscopy to estimate suspendedsediment concentration. Remote Sens. Environ. 1992, 40, 67–77. [Google Scholar] [CrossRef]
- Demetriades-Shah, T.H.; Steven, M.D.; Clark, J.A. High resolution derivative spectra in remote sensing. Remote Sens. Environ. 1990, 33, 55–64. [Google Scholar] [CrossRef]
- Tsai, F.; Philpot, W. Derivative analysis of hyperspectral data. Remote Sens. Environ. 1998, 66, 41–51. [Google Scholar] [CrossRef]
- Wessman, C.A.; Aber, J.D.; Peterson, D.L.; Melillo, J.M. Foliar analysis using near infrared spectroscopy. Can. J. For. Res. 1988, 18, 6–11. [Google Scholar] [CrossRef]
- Yoder, B.J.; Pettigrew-Crosby, R.E. Predicting nitrogen and nhlorophyll nontent and concentrations from reflectance spectra (400 – 2500 nm) at leaf and canopy scales. Remote Sens. Environ. 1995, 53, 199–211. [Google Scholar] [CrossRef]
- Kosmas, C.S.; Curi, N.; Bryant, R.B.; Franzmeier, D.P. Characterization of iron oxide minerals by second derivative visible spectroscopy. J. Soil Sci. Soc. Amer. 1984, 48, 401–405. [Google Scholar] [CrossRef]
- Adams, M.L.; Philpot, W.D.; Norvell, W.A. Yellowness index: an application of spectral second derivatives to estimate chlorosis of leaves in stressed vegetation. Int. J. Remote Sens. 1999, 18, 3663–3675. [Google Scholar] [CrossRef]
- Chen, Z.; Elvidge, C.D.; Jansen, W.T. Description of a derivative-based high spectral-resolution (AVIRIS) green vegetation index. In Proceedings of Imaging Spectrometry of the Terrestrial Environment; SPIE: Orlando, FL, USA, 1993; pp. 43–54. [Google Scholar]
- Dixit, L.; Ram, S. Quantitative analysis by derivative electronic spectroscopy. Appl. Spectrosc. Rev. 1985, 21, 311–418. [Google Scholar] [CrossRef]
- Eisler, R. A review of arsenic hazards to plants and animals with emphasis on fishery and wildlife resources. In Arsenic in the Environment; Nriagu, J.O., Ed.; Part II: Human Health and Ecosystem Effects; John Wiley & Sons: New York, NY, USA, 1994; pp. 185–261. [Google Scholar]
- Bondada, B.R.; Ma, L.Q. Tolerance of heavy metals in vascular plants: arsenic hyperaccumulation by chinese brake fern (Pteris vittata L.). In Pteridology in the New Millennium; Chandra, S., Srivastava, M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 397–420. [Google Scholar]
- Jones, H.G.; Flowers, T.L.; Jones, M.B. Plants Under Stress; Cambridge University Press: New York, NY, USA, 1989. [Google Scholar]
- Savitsky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sens. Environ. 1999, 67, 267–287. [Google Scholar] [CrossRef]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Slonecker, T.; Haack, B.; Price, S. Spectroscopic Analysis of Arsenic Uptake in Pteris Ferns. Remote Sens. 2009, 1, 644-675. https://doi.org/10.3390/rs1040644
Slonecker T, Haack B, Price S. Spectroscopic Analysis of Arsenic Uptake in Pteris Ferns. Remote Sensing. 2009; 1(4):644-675. https://doi.org/10.3390/rs1040644
Chicago/Turabian StyleSlonecker, Terrence, Barry Haack, and Susan Price. 2009. "Spectroscopic Analysis of Arsenic Uptake in Pteris Ferns" Remote Sensing 1, no. 4: 644-675. https://doi.org/10.3390/rs1040644
APA StyleSlonecker, T., Haack, B., & Price, S. (2009). Spectroscopic Analysis of Arsenic Uptake in Pteris Ferns. Remote Sensing, 1(4), 644-675. https://doi.org/10.3390/rs1040644