Portraying Urban Functional Zones by Coupling Remote Sensing Imagery and Human Sensing Data
Abstract
:1. Introduction
2. Study Area and Dataset
2.1. Study Area
2.2. Dataset
2.2.1. Remote Sensing Images
2.2.2. Mobile Phone Positioning Data
3. Methodology
3.1. Landscapes
3.1.1. Image Segmentation
3.1.2. Object-Based Image Classification
3.1.3. Landscape Metrics
3.2. Human Activity
3.2.1. Activity Detection
3.2.2. Rule-Based Activity Labeling
- In-home activity labeling: For a user, if the total duration in a fixed place is more than half of the early morning period [0:00–6:00], this place will be defined as home. All potential activities located at the home of this person are recognized as in-home activities.
- Working activity labeling: If the total duration in a place is more than half of the daily working period [9:00–12:00] and [14:00–17:00], this place will be defined as the workplace. Considering the living style, the time [12:00, 14:00] for lunch is eliminated from working time to avoid biases. Finally, all potential activities located in the workplace of this user are defined as the working activities.
- Social activity labeling: The remaining non-in-home or non-working activities are labeled as social activities.
3.2.3. Human Activity Metrics
3.3. Hierarchical Cluster Analysis
4. Results
4.1. Urban Functional Zones
4.2. Gradient Analysis of Landscapes and Human Activity
4.2.1. Pattern of Landscapes
4.2.2. Pattern of Human Activities
4.3. Comparison
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United Nations. The World’s Cities in 2016. 2016. Available online: http://www.un.org/en/development/desa/population/publications/pdf/urbanization/the_worlds_cities_in_2016_data_booklet.pdf (accessed on 20 August 2017).
- SCNESDRPC. Statistical Communique on National Economic and Social Development of the People’s Republic of China in 2016. 2016. Available online: http://www.stats.gov.cn/tjsj/zxfb/201702/t20170228_1467424.html (accessed on 27 August 2017).
- Wu, J. Urban ecology and sustainability: The state-of-the-science and future directions. Landsc. Urban Plan. 2014, 125, 209–221. [Google Scholar] [CrossRef]
- Batty, M. The size, scale, and shape of cities. Science 2008, 319, 769–771. [Google Scholar] [CrossRef] [PubMed]
- Yang, X. Urban Remote Sensing: Monitoring, Synthesis and Modeling in the Urban Environment; Wiley-Blackwell: Hoboken, NJ, USA, 2011. [Google Scholar]
- Weng, Q.H. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Jensen, J.R.; Cowen, D.C. Remote sensing of urban suburban infrastructure and socio-economic attributes. Photogramm. Eng. Remote Sens. 1999, 65, 611–622. [Google Scholar]
- Taubenböck, H.; Esch, T.; Felbier, A.; Wiesner, M.; Roth, A.; Dech, S. Monitoring urbanization in mega cities from space. Remote Sens. Environ. 2012, 117, 162–176. [Google Scholar] [CrossRef]
- Weng, Q. Global Urban Monitoring and Assessment through Earth Observation; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Blaschke, T.; Hay, G.J.; Weng, Q.H.; Resch, B. Collective sensing: Integrating geospatial technologies to understand urban systems: An overview. Remote Sens. 2011, 3, 1743–1776. [Google Scholar] [CrossRef]
- Liu, H.; Huang, X.; Wen, D.; Li, J. The use of landscape metrics and transfer learning to explore urban villages in China. Remote Sens. 2017, 9, 365. [Google Scholar] [CrossRef]
- Mesev, V. Exploring the Temporal Lag between the Structure and Function of Urban Areas. In Urban Remote Sensing: Monitoring, Synthesis and Modeling in the Urban Environment; Yang, X., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2011. [Google Scholar]
- Chen, Y.; Liu, X.; Li, X. Analyzing Parcel-Level Relationships between Urban Land Expansion and Activity Changes by Integrating Landsat and Nighttime Light Data. Remote Sens. 2017, 9, 164. [Google Scholar] [CrossRef]
- Lo, C.P. The application of geospatial technology to urban morphological research. Urban Morphol. 2007, 11, 81–90. [Google Scholar]
- Aubrecht, C.; León Torres, J.A. Evaluating Multi-Sensor Nighttime Earth Observation Data for Identification of Mixed vs. Residential Use in Urban Areas. Remote Sens. 2016, 8, 114. [Google Scholar] [CrossRef]
- Greene, R.P.; Pick, J.B. Exploring the Urban Community: A GIS Approach; Pearson: London, UK, 2011. [Google Scholar]
- Lin, T.; Sun, C.; Li, X.; Zhao, Q.; Zhang, G.; Ge, R.; Ye, H.; Huang, N.; Yin, K. Spatial pattern of urban functional landscapes along an urban—Rural gradient: A case study in Xiamen city, China. Int. J. Appl. Earth Obs. Geoinf. 2016, 46, 22–30. [Google Scholar] [CrossRef]
- Yang, X.; Lo, C.P. Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. Int. J. Remote Sens. 2002, 23, 1775–1798. [Google Scholar] [CrossRef]
- Luck, M.; Wu, J. A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 2002, 17, 327–339. [Google Scholar] [CrossRef]
- McDonnell, M.J.; Hahs, A.K. The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: Current status and future directions. Landsc. Ecol. 2008, 23, 1143–1155. [Google Scholar] [CrossRef]
- Vizzari, M.; Hilal, M.; Sigura, M.; Antognelli, S.; Joly, D. Urban-rural-natural gradient analysis with CORINE data: An application to the metropolitan France. Landsc. Urban Plan. 2018, 171, 18–29. [Google Scholar] [CrossRef]
- Weng, Y. Spatiotemporal changes of landscape pattern in response to urbanization. Landsc. Urban Plan. 2007, 81, 341–353. [Google Scholar] [CrossRef]
- Ji, W.; Ma, J.; Twibell, R.W.; Underhill, K. Characterizing urban sprawl using multi-stage remote sensing images and landscape metrics. Comput. Environ. Urban Syst. 2006, 30, 861–879. [Google Scholar] [CrossRef]
- Yu, X.J.; Ng, C.N. Spatial and temporal dynamics of urban sprawl along two urban—Rural transects: A case study of Guangzhou, China. Landsc. Urban Plan. 2007, 79, 96–109. [Google Scholar] [CrossRef]
- Antrop, M. Landscape change: Plan or chaos? Landsc. Urban Plan. 1998, 41, 155–161. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Yu, B.L.; Song, W.; Liu, H.X.; Wu, Q.S.; Shi, K.F.; Wu, J.P. A new approach for detecting urban centers and their spatial structure with nighttime light remote sensing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6305–6319. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Gao, S.; Gong, L.; Kang, C.; Zhi, Y. Social sensing: A new approach to understanding our socioeconomic environments. Ann. Assoc. Am. Geogr. 2015, 105, 512–530. [Google Scholar] [CrossRef]
- Thakuriah, P.; Tilahun, N.; Zellner, M. Seeing Cities through Big Data; Springer International Publishing: New York, NY, USA, 2017. [Google Scholar]
- Goodchild, M.F. Citizens as sensors: The world of volunteered geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef]
- Batty, M. The pulse of the city. Environ. Plan. B 2010, 37, 575–577. [Google Scholar] [CrossRef]
- Yang, Y.; Tian, L.; Yeh Anthony, G.O.; Li, Q.Q. Zooming into individuals to understand the collective: A review of trajectory-based travel behavior studies. Travel Behav. Soc. 2014, 1, 719–723. [Google Scholar]
- Fang, Z.; Shaw, S.-L.; Tu, W.; Li, Q.Q.; Li, Y.G. Spatio temporal analysis of critical transportation links based on time geographic concepts: A case study of critical bridges in Wuhan, China. J. Transp. Geogr. 2012, 23, 44–59. [Google Scholar] [CrossRef]
- Tu, W.; Cao, R.; Yue, Y.; Zhou, B.D.; Li, Q.P.; Li, Q.Q. Spatial variations in urban public ridership derived from GPS trajectories and smart card data. J. Transp. Geogr. 2017, in press. [Google Scholar]
- Tu, W.; Li, Q.Q.; Fang, Z.X.; Shaw, S.L.; Zhou, B.D.; Chang, X.M. Optimizing the locations of electric taxi charging stations: A spatial–temporal demand coverage approach. Transp. Res. C 2016, 65, 172–189. [Google Scholar] [CrossRef]
- Ratti, C.; Frenchman, D.; Pulselli, R.M.; Williams, S. Mobile landscapes: Using location data from cell phones for urban analysis. Environ. Plan. B 2006, 33, 727–748. [Google Scholar] [CrossRef]
- Ahas, R.; Aasa, A.; Yuan, Y.; Raubal, M.; Smoreda, Z.; Liu, Y.; Ziemlicki, C.; Tiru, M.; Zook, M. Everyday space–time geographies: Using mobile phone-based sensor data to monitor urban activity in Harbin, Paris, and Tallinn. Int. J. Geo-Inf. Sci. 2015, 29, 2017–2039. [Google Scholar] [CrossRef]
- Pei, T.; Sobolevsky, S.; Ratti, C.; Shaw, S.-L.; Li, T.; Zhou, C. A new insight into land use classification based on aggregated mobile phone data. Int. J. Geo-Inf. Sci. 2014, 28, 1988–2007. [Google Scholar] [CrossRef]
- Xu, Y.; Shaw, S.-L.; Zhao, Z.; Yin, L.; Lu, F.; Chen, J.; Fang, Z.; Li, Q. Another Tale of Two Cities: Understanding Human Activity Space Using Actively Tracked Cellphone Location Data. Ann. Am. Assoc. Geogr. 2016, 106, 489–502. [Google Scholar]
- Tu, W.; Cao, J.Z.; Yue, Y.; Shaw, S.L.; Zhou, M.; Wang, Z.S.; Chang, X.M.; Xu, Y.; Li, Q.Q. Coupling mobile phone and social media data: A new approach to understanding urban functions and diurnal patterns. Int. J. Geo-Inf. Sci. 2017, 31, 2331–2358. [Google Scholar] [CrossRef]
- Gonzalez, M.C.; Hidalgo, C.A.; Barabasi, A.L. Understanding individual human mobility patterns. Nature 2008, 453, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, X.; Li, X.; Liu, X.; Yao, Y.; Hu, G.; Xu, X.; Pei, F. Delineating urban functional areas with building-level social media data: A dynamic time warping (DTW) distance based k-medoids method. Landsc. Urban Plan. 2017, 160, 48–60. [Google Scholar] [CrossRef]
- Cao, J.Z.; Tu, W.; Li, Q.Q.; Zhou, M.; Cao, R. Exploring the distribution and dynamics of functional regions using mobile phone data and social media data. In Proceedings of the 14th International Conference on Computers in Urban Planning and Urban Management, Boston, MA, USA, 10 July 2015. [Google Scholar]
- Huang, W.; Li, S.N. Understanding human activity patterns based on space-time-semantics. ISPRS J. Photogramm. Remote Sens. 2016, 121, 1–10. [Google Scholar] [CrossRef]
- Cai, J.; Huang, B.; Song, Y. Using multi-source geospatial big data to identify the structure of polycentric cities. Remote Sens. Environ. 2017, 202, 210–221. [Google Scholar] [CrossRef]
- Aubrecht, C.; Steinnocher, K.; Hollaus, M.; Wagner, W. Integrating earth observation and GIScience for high resolution spatial and functional modeling of urban land use. Comput. Environ. Urban Syst. 2009, 33, 15–25. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A. The Gradient Concept of Landscape Structure; Wiens, J.A., Moss, M.R., Eds.; Issues and Perspectives in Landscape Ecology; Cambridge University Press: Cambridge, UK, 2005; pp. 112–119. [Google Scholar]
- Schneider, A.; Mertes, C.M. Expansion and growth in Chinese cities, 1978–2010. Environ. Res. Lett. 2014, 9, 024008. [Google Scholar] [CrossRef]
- Shenzhen Statistics Yearbook 2016. 2016. Available online: http://www.sztj.gov.cn/xxgk/tjsj/tjnj/201701/W020170120506125327799.pdf (accessed on 7 June 2017).
- Roerdink, J.B.; Meijster, A. The watershed transform: Definitions, algorithms and parallelization strategies. Fund Inform. 2000, 41, 187–228. [Google Scholar]
- Felzenszwalb, P.F.; Huttenlocher, D.P. Efficient graph-based image segmentation. Int. J. Comput. Vis. 2004, 59, 167–181. [Google Scholar] [CrossRef]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Haris, K.; Efstratiadis, S.N.; Maglaveras, N.; Katsaggelos, A.K. Hybrid image segmentation using watersheds and fast region merging. IEEE Trans. Image Process. 1998, 7, 1684–1699. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Li, Q.; Zou, Q.; Zhang, Q.; Wu, G. A bilevel scale-sets model for hierarchical representation of large remote sensing images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7366–7377. [Google Scholar] [CrossRef]
- Baatz, M.; Schäpe, A. Multiresolution Segmentation: An optimization approach for high quality multi-scale image segmentation. In Angewandte Geographische Informationsverarbeitung XII; Wichmann: Karlsruhe, Germany, 2000; pp. 12–23. [Google Scholar]
- Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multi-resolution image segmentation of remotely sensed data. Int. J. Geo-Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Johnson, B.; Xie, Z. Unsupervised image segmentation evaluation and refinement using a multi-scale approach. ISPRS J. Photogramm. Remote Sens. 2011, 66, 473–483. [Google Scholar] [CrossRef]
- Johnson, B.A.; Bragais, M.; Endo, I.; Magcale-Macandog, D.B.; Macandog, P.B.M. Image segmentation parameter optimization considering within-and between-segment heterogeneity at multiple scale levels: Test case for mapping residential areas using Landsat imagery. ISPRS Int. J. Geo-Inf. 2015, 4, 2292–2305. [Google Scholar] [CrossRef]
- Pesaresi, M.; Gerhardinger, A.; Kayitakire, F.C.C.O. A robust built-up area presence index by anisotropic rotation-invariant textural measure. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 180–192. [Google Scholar] [CrossRef]
- ECognition Developer. 9.0 User Guide; Trimble Germany GmbH: Munich, Germany, 2014. [Google Scholar]
- Hu, Z.; Li, Q.; Zhang, Q.; Wu, G. Representation of block-based image features in a multi-scale framework for built-up area detection. Remote Sens. 2016, 8, 155. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support vector machine. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Peng, J.; Wang, Y.; Zhang, Y. Evaluating the effectiveness of landscape metrics in quantifying spatial patterns. Ecol. Indic. 2010, 10, 217–223. [Google Scholar] [CrossRef]
- Uuemaa, E.; Antrop, M.; Roosaare, J.; Marja, R.; Mander, Ü. Landscape metrics and indices: An overview of their use in landscape research. Living Rev. Landsc. Res. 2009, 3, 1–28. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps; Computer Software Program Produced by the Authors at the University of Massachusetts; University of Massachusetts: Amherst, MA, USA, 2012; Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 25 September 2017).
- Sevtsuk, A.; Ratti, C. Does urban mobility have a daily routine? Learning from the aggregate data of mobile networks. J. Urban Tech. 2010, 17, 41–60. [Google Scholar] [CrossRef]
- Johnson, S.C. Hierarchical clustering schemes. Psychometrika 1967, 32, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef]
- Shenzhen Comprehensive Urban Plan 2010–2020. 2011. Available online: http://www.szpl.gov.cn/ywzy/ghzs/201710/t20171024_443924.html (accessed on 15 November 2017).
- McMillen, D.P.; McDonald, J.F. A nonparametric analysis of employment density in a polycentric city. J. Reg. Sci. 1997, 37, 591–612. [Google Scholar] [CrossRef]
Name | Description |
---|---|
Total class area (CA) | Total area of one class landscape |
Patch density (PD) | Patch count per square km of one class landscape |
Number of patches (NP) | Total number of patches |
Shannon’s diversity index (SHDI) | Equals minus the sum, across all patch types, of the proportional abundance of each patch type multiplied by that proportion |
Name | In-Home | Working | Social Activities |
---|---|---|---|
Count | 14,470,460 | 10,459,657 | 6,738,925 |
Ratio | 45.7% | 33.0% | 21.3% |
Ratio in the household travel investigation 2010 dataset | 42.8% | 34.3% | 22.9% |
Name | No. of Cells | Area (km2) | Landscape Composition (ha/cell) | Human Activity (n/ha) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Built-Up Area | Water | Green Land | Road | Developing Area | In-Home | Working | Social Activity | ||||
Global | 476 | 1845 | 148.6 | 17.8 | 186.3 | 14.0 | 24.3 | 78.4 | 56.7 | 36.5 | |
Urban functional zones | Urban center | 42 | 164.2 | 206.7 | 15.0 | 146.1 | 12.7 | 10.4 | 322 | 260.7 | 195.2 |
Sub-center | 108 | 425.8 | 268.8 | 10.4 | 76.2 | 29.4 | 9.7 | 128.4 | 82 | 51.5 | |
Suburbs | 78 | 308.5 | 226.9 | 13.1 | 131.8 | 13.1 | 14.8 | 60 | 45.4 | 24.1 | |
Transit region | 89 | 342.8 | 109.8 | 17.6 | 188.7 | 11.3 | 57.3 | 28 | 18 | 7.8 | |
Urban buffer | 40 | 141.4 | 56.2 | 77.6 | 196.6 | 20.3 | 12.9 | 21 | 15.2 | 11 | |
Ecological area | 119 | 462.3 | 28.8 | 8.6 | 330.9 | 1.3 | 27.8 | 13.5 | 8.3 | 3.8 |
Urban Center | Sub-Center | Suburbs | Transit Region | Urban Buffer | Ecological Area | ||
---|---|---|---|---|---|---|---|
Remote sensing images based clusters | A | 0 | 0 | 0 | 0 | 4 | 42 |
B | 1 | 0 | 1 | 25 | 19 | 65 | |
C | 3 | 3 | 2 | 54 | 17 | 0 | |
D | 3 | 2 | 71 | 8 | 0 | 12 | |
E | 34 | 103 | 4 | 3 | 0 | 0 | |
Human sensing data based clusters | A | 0 | 1 | 7 | 31 | 21 | 68 |
B | 0 | 20 | 39 | 51 | 7 | 46 | |
C | 0 | 0 | 0 | 9 | 0 | 0 | |
D | 10 | 79 | 32 | 7 | 11 | 5 | |
E | 31 | 8 | 0 | 0 | 0 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, W.; Hu, Z.; Li, L.; Cao, J.; Jiang, J.; Li, Q.; Li, Q. Portraying Urban Functional Zones by Coupling Remote Sensing Imagery and Human Sensing Data. Remote Sens. 2018, 10, 141. https://doi.org/10.3390/rs10010141
Tu W, Hu Z, Li L, Cao J, Jiang J, Li Q, Li Q. Portraying Urban Functional Zones by Coupling Remote Sensing Imagery and Human Sensing Data. Remote Sensing. 2018; 10(1):141. https://doi.org/10.3390/rs10010141
Chicago/Turabian StyleTu, Wei, Zhongwen Hu, Lefei Li, Jinzhou Cao, Jincheng Jiang, Qiuping Li, and Qingquan Li. 2018. "Portraying Urban Functional Zones by Coupling Remote Sensing Imagery and Human Sensing Data" Remote Sensing 10, no. 1: 141. https://doi.org/10.3390/rs10010141