Segment-Based Spatial Analysis for Assessing Road Infrastructure Performance Using Monitoring Observations and Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Road Condition Data
2.2. Explanatory Variables
2.3. Methods
2.3.1. Segment-Based Factor Detector Model
2.3.2. Optimal Discretization for Segment-Level Variables
2.3.3. Segment-Based Interaction Detector and Risk Detector Models
3. Results
3.1. Optimal Discretization
3.2. Segment-Based Factor Detector
3.3. Segment-Based Interaction Detector
3.4. Segment-Based Risk Detector
4. Discussion
4.1. The Segment-Based Spatial Stratified Heterogeneity Analysis
4.2. Comprehensive Impacts of Climate and Heavy Vehicles
4.3. Practical Recommendations
4.4. Recommendations for Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Main Roads Western Australia. Road Maintenance: Issues and Directions; Main Roads Western Australia: Perth, Australia, 1996.
- Underwood, B.S.; Guido, Z.; Gudipudi, P.; Feinberg, Y. Increased costs to us pavement infrastructure from future temperature rise. Nat. Clim. Chang. 2017, 7, 704. [Google Scholar] [CrossRef]
- Commonwealth Grants Commission—Australian Government. Australian Local Governments Association, Study of Local Roads Funding in Australia 1999–00 to 2019–20, 2010; Commonwealth Grants Commission: Braddon, Australia, 2011.
- Department of Infrastructure and Transport—Australia Government. Public Road-Related Expenditure and Revenue in Australia; Department of Infrastructure and Transport: Canberra, Australia, 2011.
- Department of Infrastructure and Regional Development—Australia Government. Australian Infrastructure Statistics Yearbook 2017; Department of Infrastructure and Regional Development: Canberra, Australia, 2017.
- Neumann, J.E.; Price, J.; Chinowsky, P.; Wright, L.; Ludwig, L.; Streeter, R.; Jones, R.; Smith, J.B.; Perkins, W.; Jantarasami, L. Climate change risks to us infrastructure: Impacts on roads, bridges, coastal development, and urban drainage. Clim. Chang. 2015, 131, 97–109. [Google Scholar] [CrossRef]
- Ede, A.N. Cumulative damage effects of truck overloads on nigerian road pavement. Int. J. Civ. Environ. Eng. 2014, 14, 21–26. [Google Scholar]
- Wang, T.; Wang, J.; Wu, P.; Wang, J.; He, Q.; Wang, X. Estimating the environmental costs and benefits of demolition waste using life cycle assessment and willingness-to-pay: A case study in Shenzhen. J. Clean. Prod. 2018, 172, 14–26. [Google Scholar] [CrossRef]
- Salour, F.; Erlingsson, S. Investigation of a pavement structural behaviour during spring thaw using falling weight deflectometer. Road Mater. Pavement Des. 2013, 14, 141–158. [Google Scholar] [CrossRef]
- Flintsch, G.; Katicha, S.; Bryce, J.; Ferne, B.; Nell, S.; Diefenderfer, B. Assessment of Continuous Pavement Deflection Measuring Technologies; The National Academies Press: Washington, DC, USA, 2013. [Google Scholar]
- Bridgelall, R. Connected vehicle approach for pavement roughness evaluation. J. Infrastruct. Syst. 2013, 20, 04013001. [Google Scholar] [CrossRef]
- Shah, Y.U.; Jain, S.; Tiwari, D.; Jain, M. Development of overall pavement condition index for urban road network. Procedia-Soc. Behav. Sci. 2013, 104, 332–341. [Google Scholar] [CrossRef]
- Solla, M.; Lagüela, S.; González-Jorge, H.; Arias, P. Approach to identify cracking in asphalt pavement using gpr and infrared thermographic methods: Preliminary findings. NDT E Int. 2014, 62, 55–65. [Google Scholar] [CrossRef]
- Yang, Q.; Deng, Y. Evaluation of cracking in asphalt pavement with stabilized base course based on statistical pattern recognition. Int. J. Pavement Eng. 2017, 1–8. [Google Scholar] [CrossRef]
- Smith, K.; Peshkin, D. Pavement preservation on high-traffic-volume roadways. Transp. Res. Rec. 2011, 54–65. [Google Scholar] [CrossRef]
- Steenkamp, A.; Berman, R.; Benade, R. Modelling the vertical uniform contact stress of heavy vehicle tyres: Transportation engineering. Civ. Eng. 2016, 24, 52–56. [Google Scholar]
- Lee, K.W.; Peckham, W.L. Assessment of Damage Caused to Pavements by Heavy Trucks in New England. Transp. Res. Rec. 1990, 1286, 164–172. [Google Scholar]
- Pais, J.C.; Amorim, S.I.; Minhoto, M.J. Impact of traffic overload on road pavement performance. J. Transp. Eng. 2013, 139, 873–879. [Google Scholar] [CrossRef]
- Van Cauwenberg, J.; Clarys, P.; De Bourdeaudhuij, I.; Ghekiere, A.; de Geus, B.; Owen, N.; Deforche, B. Environmental influences on older adults’ transportation cycling experiences: A study using bike-along interviews. Landsc. Urban Plan. 2018, 169, 37–46. [Google Scholar] [CrossRef]
- Gao, Y.; Babin, N.; Turner, A.J.; Hoffa, C.R.; Peel, S.; Prokopy, L.S. Understanding urban-suburban adoption and maintenance of rain barrels. Landsc. Urban Plan. 2016, 153, 99–110. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Lukanen, E.O.; Stubstad, R.; Briggs, R. Temperature Predictions and Adjustment Factors for Asphalt Pavement; Turner-Fairbank Highway Research Center, Federal Highway Administration, United States Department of Transportation: McLean, VA, USA, 2000.
- Yu, H.; Khazanovich, L.; Darter, M.; Ardani, A. Analysis of concrete pavement responses to temperature and wheel loads measured from Intrumented slabs. Transp. Res. Rec. 1998, 1, 94–101. [Google Scholar] [CrossRef]
- Mohd Hasan, M.R.; Hiller, J.E.; You, Z. Effects of mean annual temperature and mean annual precipitation on the performance of flexible pavement using me design. Int. J. Pavement Eng. 2016, 17, 647–658. [Google Scholar] [CrossRef]
- Yin, J.; Soleimanbeigi, A.; Likos, W.J.; Edil, T.B. Effects of temperature on creep behavior of compacted recycled asphalt pavement. J. Geotech. Geoenviron. Eng. 2016, 143, 06016028. [Google Scholar] [CrossRef]
- Fletcher, C.G.; Matthews, L.; Andrey, J.; Saunders, A. Projected changes in mid-twenty-first-century extreme maximum pavement temperature in Canada. J. Appl. Meteorol. Climatol. 2016, 55, 961–974. [Google Scholar] [CrossRef]
- Mndawe, M.; Ndambuki, J.; Kupolati, W.; Badejo, A. Assessment of the effects of climate change on the performance of pavement subgrade. Afr. J. Sci. Technol. Innov. Dev. 2015, 7, 111–115. [Google Scholar] [CrossRef]
- Chatti, K.; Kutay, M.E.; Lajnef, N.; Zaabar, I.; Varma, S.; Lee, H.S. Enhanced Analysis of Falling Weight Deflectometer Data for Use with Mechanistic-Empirical Flexible Pavement Design and Analysis and Recommendations for Improvements to Falling Weight Deflectometers; Turner-Fairbank Highway Research Center: McLean, VA, USA, 2017.
- Gu, F.; Zhang, Y.; Luo, X.; Sahin, H.; Lytton, R.L. Characterization and prediction of permanent deformation properties of unbound granular materials for pavement me design. Construct. Build. Mater. 2017, 155, 584–592. [Google Scholar] [CrossRef]
- Yang, X.; You, Z.; Hiller, J.; Watkins, D. Sensitivity of flexible pavement design to Michigan’s climatic inputs using pavement me design. Int. J. Pavement Eng. 2017, 18, 622–632. [Google Scholar] [CrossRef]
- Priest, A.L.; Timm, D.H. Methodology and Calibration of Fatigue Transfer Functions for Mechanistic Empirical Flexible Pavement Design; NCAT: Greensboro, NC, USA, 2006. [Google Scholar]
- Li, B.Q.; Mills, L.; McNeil, S. The Implications of Climate Change on Pavement Performance and Design; University of Delaware University Transportation Center: Newark, DE, USA, 2011. [Google Scholar]
- Caliendo, C.; Guida, M.; Pepe, E. Seemingly unrelated regression equations for developing a pavement performance model. Mod. Appl. Sci. 2015, 9, 199. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Tan, Y.; Wu, P.; Sutrisna, M.; Cheng, J.C.; Hampson, K. Trends and opportunities of bim-gis integration in the architecture, engineering and construction industry: A review from a spatio-temporal statistical perspective. ISPRS Int. J. Geo-Inf. 2017, 6, 397. [Google Scholar] [CrossRef]
- Song, Y.; Ge, Y.; Wang, J.; Ren, Z.; Liao, Y.; Peng, J. Spatial distribution estimation of malaria in northern China and its scenarios in 2020, 2030, 2040 and 2050. Malar. J. 2016, 15, 345. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Song, Y.; Wang, J.; Liu, W.; Ren, Z.; Peng, J.; Lu, B. Geographically weighted regression-based determinants of malaria incidences in northern China. Trans. GIS 2017, 21, 934–953. [Google Scholar] [CrossRef]
- Song, Y.-Z.; Yang, H.-L.; Peng, J.-H.; Song, Y.-R.; Sun, Q.; Li, Y. Estimating pm2. 5 concentrations in Xi’an city using a generalized additive model with multi-source monitoring data. PLoS ONE 2015, 10, e0142149. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Huang, B.; Song, Y. Using multi-source geospatial big data to identify the structure of polycentric cities. Remote Sens. Environ. 2017, 202, 210–221. [Google Scholar] [CrossRef]
- Song, Y.; Long, Y.; Wu, P.; Wang, X. Are all cities with similar urban form or not? Redefining cities with ubiquitous points of interest and evaluating them with indicators at city and block levels in China. Int. J. Geogr. Inf. Sci. 2018, 32, 2447–2476. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Ge, E.; Zhang, R.; Li, D.; Wei, X.; Wang, X.; Lai, P.-C. Estimating risks of inapparent avian exposure for human infection: Avian influenza virus a (h7n9) in Zhejiang province, China. Sci. Rep. 2017, 7, 40016. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Lu, A.; Pan, Y.; Huo, L.; Gao, Y.; Li, X.; Li, S.; Chen, Z. Additional sampling layout optimization method for environmental quality grade classifications of farmland soil. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5350–5358. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, L.; Ren, Z.; Yang, Y.; Mou, C.; Qu, Q. Spatial heterogeneity of energy-related CO2 emission growth rates around the world and their determinants during 1990–2014. Energies 2017, 10, 367. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, J.; Wang, S. Examining the effects of socioeconomic development on fine particulate matter (pm 2.5) in China’s cities using spatial regression and the geographical detector technique. Sci. Total Environ. 2018, 619, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Hu, S.; Li, W.; Zhang, C.; Torres, J.A. Spatiotemporal effects of main impact factors on residential land price in major cities of China. Sustainability 2017, 9, 2050. [Google Scholar] [CrossRef]
- Wang, J. Geodetector and Its Applications in Environmental and Social Sciences; State Key Laboratory of Resource & Environmental Information System, Institute of Geographical Science & Nature Resources Research, Chinese Academy of Sciences: Beijing, China, 2017. [Google Scholar]
- Wang, J.-F.; Zhang, T.-L.; Fu, B.-J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef] [Green Version]
- Ju, H.; Zhang, Z.; Zuo, L.; Wang, J.; Zhang, S.; Wang, X.; Zhao, X. Driving forces and their interactions of built-up land expansion based on the geographical detector—A case study of Beijing, China. Int. J. Geogr. Inf. Sci. 2016, 30, 2188–2207. [Google Scholar] [CrossRef]
- Chong, H.Y.; Lopez, R.; Wang, J.; Wang, X.; Zhao, Z. Comparative analysis on the adoption and use of bim in road infrastructure projects. J. Manag. Eng. 2016, 32, 05016021. [Google Scholar] [CrossRef]
- Main Roads Western Australia. Falling Weight Deflectometer. Available online: https://www.mainroads.wa.gov.au/BuildingRoads/StandardsTechnical/MaterialsEngineering/Pages/Falling_Weight_Deflectometer.aspx (accessed on 30 January 2018).
- Main Roads Western Australia. Calibration of Falling Weight Deflectometers, Calibration Method Wa 2060.5; Main Roads Western Australia: Perth, Australia, 2017.
- Main Roads Western Australia. Main Roads Western Australia—Annual Report 2015; Main Roads Western Australia: Perth, Australia, 2015.
- Song, Y.; Wang, X.; Wright, G.; Thatcher, D.; Wu, P.; Felix, P. Traffic volume prediction with segment-based regression kriging and its implementation in assessing the impact of heavy vehicles. IEEE Trans. Intell. Transp. Syst. 2018. [Google Scholar] [CrossRef]
- Bureau of Meteorology Australian Government. Australian Landscape Water Balance. Available online: http://www.bom.gov.au/water/landscape (accessed on 30 May 2017).
- Jones, D.A.; Wang, W.; Fawcett, R. High-quality spatial climate data-sets for Australia. Aust. Meteorol. Ocean 2009, 58, 233. [Google Scholar] [CrossRef]
- Wan, Z.; Hook, S.; Hulley, G. Mod11a2 Modis/Terra Land Surface Temperature/Emissivity 8-Day l3 Global 1 Km sin Grid v006; NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2015; 10. Available online: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11a2_v006 (accessed on 16 June 2016).
- Ashton, L.; McKenzie, N. Conversion of the Atlas of Australian Soils to the Australian Soil Classification; CSIRO Land and Water: Acton, Australia, 2001. [Google Scholar]
- State of the Environment in Australia. 2016 Soe Land Australian Soil Classification Orders; State of the Environment in Australia: Canberra, ACT, Australia, 2017.
- Johnston, R.; Barry, S.; Bleys, E.; Bui, E.N.; Moran, C.; Simon, D.; Carlile, P.; McKenzie, N.; Henderson, B.; Chapman, G. Asris: The database. Soil Res. 2003, 41, 1021–1036. [Google Scholar] [CrossRef]
- Didan, K. MOD13A2 MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN Grid V006; NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2015. Available online: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13a2_v006 (accessed on 30 January 2017).
- NASA. Gridded Population of the World (gpw), v4. Available online: http://beta.sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-adjusted-to-2015-unwpp-country-totals/data-download (accessed on 30 March 2016).
- Department of Transport—The Government of Western Australia. Driver and Vehicle Services, Licensing Fees and Charges; Department of Transport: Perth, WA, Australia, 2016.
- Main Roads Western Australia. Prime Mover, Trailer Combinations—Vehicle Categories, Rav 2016; Main Roads Western Australia: Perth, Australia, 2016.
- Keese, K.; Scanlon, B.; Reedy, R. Assessing controls on diffuse groundwater recharge using unsaturated flow modeling. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef] [Green Version]
- Gash, J. An analytical model of rainfall interception by forests. Q. J. R. Meteorol. Soc. 1979, 105, 43–55. [Google Scholar] [CrossRef]
- Van Dijk, A.; Bruijnzeel, L. Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 1. Model description. J. Hydrol. 2001, 247, 230–238. [Google Scholar] [CrossRef]
- Mullaney, J.; Lucke, T.; Trueman, S.J. A review of benefits and challenges in growing street trees in paved urban environments. Landsc. Urban Plan. 2015, 134, 157–166. [Google Scholar] [CrossRef]
- Main Roads Western Australia. Heavy Vehicle Services—Standard Restricted Access Vehicle (RAV) Route Assessment Guidelines; Main Roads Western Australia: Perth, Australia, 2017.
- Main Roads Western Australia. Prime Mover Trailer Combinations and Truck Trailer Combinations. Available online: https://www.mainroads.wa.gov.au/UsingRoads/HeavyVehicles/notices/Pages/default.aspx (accessed on 20 August 2016).
- Main Roads Western Australia. Restricted Access Vehicle Networks MRWA. Available online: https://catalogue.data.wa.gov.au/dataset/restricted-access-vehicle-networks-mrwa (accessed on 20 August 2016).
- Main Roads Western Australia. Legal Speed Limit (mrwa-520). Available online: https://catalogue.data.wa.gov.au/dataset/rivn-legal-speed-limit (accessed on 30 December 2017).
- Song, Y.; Tan, Y.; Song, Y.; Wu, P.; Cheng, J.C.P.; Kim, M.J.; Wang, X. Spatial and temporal variations of spatial population accessibility to public hospitals: A case study of rural-urban comparison. GISci. Remote Sens. 2018. [Google Scholar] [CrossRef]
- Jelinski, D.E.; Wu, J. The modifiable areal unit problem and implications for landscape ecology. Landsc. Ecol. 1996, 11, 129–140. [Google Scholar] [CrossRef]
- Fischer, M.M.; Wang, J. Spatial Data Analysis: Models, Methods and Techniques; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
- Cao, F.; Ge, Y.; Wang, J.-F. Optimal discretization for geographical detectors-based risk assessment. GISci. Remote Sens. 2013, 50, 78–92. [Google Scholar] [CrossRef]
- Cebon, D. Theoretical road damage due to dynamic tyre forces of heavy vehicles Part 1: Dynamic analysis of vehicles and road surfaces. Proc. Inst. Mech. Eng. Part C 1988, 202, 103–108. [Google Scholar] [CrossRef]
- Chinowsky, P.S.; Price, J.C.; Neumann, J.E. Assessment of climate change adaptation costs for the US road network. Glob. Environ. Chang. 2013, 23, 764–773. [Google Scholar] [CrossRef]
- Chinowsky, P.; Schweikert, A.; Strzepek, N.; Manahan, K.; Strzepek, K.; Schlosser, C.A. Climate change adaptation advantage for african road infrastructure. Clim. Chang. 2013, 117, 345–361. [Google Scholar] [CrossRef]
- Byram, D.; Xiao, D.X.; Wang, K.C.; Hall, K.D. Sensitivity Analysis of Climatic Influence on Mepdg Flexible Pavement Performance Predictions. In Proceedings of the Transportation Research Board 91st Annual Meeting, Washington, DC, USA, 22–26 January 2012. [Google Scholar]
- Qiao, Y.; Flintsch, G.; Dawson, A.; Parry, T. Examining effects of climatic factors on flexible pavement performance and service life. Transp. Res. Rec. 2013, 2349, 100–107. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Jiang, B.; Wen, Z.; Yang, N.; Li, L. Tree survival and growth are impacted by increased surface temperature on paved land. Landsc. Urban Plan. 2017, 162, 68–79. [Google Scholar] [CrossRef]
- Timm, A.; Kluge, B.; Wessolek, G. Hydrological balance of paved surfaces in moist mid-latitude climate—A review. Landsc. Urban Plan. 2018, 175, 80–91. [Google Scholar] [CrossRef]
- Bianchini, A.; Bandini, P. Prediction of pavement performance through neuro-fuzzy reasoning. Comput.-Aided Civ. Infrastruct. Eng. 2010, 25, 39–54. [Google Scholar] [CrossRef]
- Marcelino, P.; Lurdes Antunes, M.d.; Fortunato, E. Comprehensive performance indicators for road pavement condition assessment. Struct. Infrastruct. Eng. 2018, 1–13. [Google Scholar] [CrossRef]
- Xue, Q.; Liu, L.; Zhao, Y.; Chen, Y.-J.; Li, J.-S. Dynamic behavior of asphalt pavement structure under temperature-stress coupled loading. Appl. Therm. Eng. 2013, 53, 1–7. [Google Scholar] [CrossRef]
- Wang, Y. Ordinal logistic regression model for predicting ac overlay cracking. J. Perform. Construct. Facil. 2012, 27, 346–353. [Google Scholar] [CrossRef]
- Wen, Y.; Wang, Y.; Zhao, K.; Sumalee, A. The use of natural rubber latex as a renewable and sustainable modifier of asphalt binder. Int. J. Pavement Eng. 2017, 18, 547–559. [Google Scholar] [CrossRef]
- Austroads Ltd. Austroads Annual Report 2015–16; Austroads Ltd.: Sydney, Australia, 2016. [Google Scholar]
Category | No. | Code | Name (Unit) | Data Source |
---|---|---|---|---|
Vehicles and heavy vehicles (C1) | 1 | vlmsum | Total volume of vehicles | Main Roads Western Australia [52] and calculating using segment-based regression kriging methods [53]. |
2 | pcthvvlm | Percentage of heavy vehicle volume (%) | ||
3 | masssum | Total mass of vehicles (t/(km·day) | ||
4 | pcthvmass | Percentage of heavy vehicle mass (%) | ||
Climate and environment (C2) | 5 | ap | Annual precipitation (mm) | Bureau of Meteorology, Australia [54,55]. |
6 | maxtemp | Annual maximum temperature (°C) | Land surface temperature (LST) MOD11A2 from Moderate Resolution Imaging Spectroradiometer (MODIS) [56]. | |
7 | mintemp | Annual minimum temperature (°C) | ||
8 | meantemp | Annual mean temperature (°C) | ||
9 | tempdif | Annual temperature difference (°C) | ||
10 | soiltype 1 | Soil type | 2016 State of the Environment (SoE) Land Australian Soil Classification Orders dataset [57,58]. | |
11 | rzsm | Root-zone soil moisture (%) | Bureau of Meteorology, Australia, and the Australian Soil Resources Information System (ASRIS) dataset [54,59]. | |
12 | usm | Upper soil moisture (%) | ||
13 | lsm | Lower soil moisture (%) | ||
14 | dsm | Deep soil moisture (%) | ||
15 | dd | Deep drainage (mm) | ||
16 | ae | Actual evapotranspiration (mm) | ||
17 | evi | Enhanced vegetation index (EVI) | Enhanced vegetation index (EVI) MOD13A2 from Moderate Resolution Imaging Spectroradiometer (MODIS) [60]. | |
Road characteristics (C3) | 18 | ravnw 1 | Restricted access vehicles (RAV) network | Main Roads Western Australia. |
19 | speed 1 | Road speed limit (km/h) | ||
20 | surftype 1 | Road surfacing type | ||
Socioeconomic factors (C4) | 21 | popbf1 | Population within 1 km | Population data with 1-km spatial resolution is from Gridded Population of the World fourth version (GPWv4) [61]. |
22 | popbf5 | Population within 5 km | ||
23 | popbf10 | Population within 10 km | ||
24 | wpop | Weighted population within 50 km |
No. | Code | Min | Max | Method | Number of Intervals |
---|---|---|---|---|---|
1 | vlmsum | 100 | 5105 | standard deviation (SD) | 7 |
2 | pcthvvlm | 6.1 | 56.4 | quantile | 6 |
3 | masssum | 1780.1 | 138,391.3 | equal | 6 |
4 | pcthvmass | 67.5 | 98.0 | quantile | 7 |
5 | ap | 237.6 | 761.8 | geometric | 7 |
6 | maxtemp | 20.7 | 33.9 | SD | 6 |
7 | mintemp | 9.8 | 15.4 | natural | 6 |
8 | meantemp | 16.4 | 24.0 | geometric | 4 |
9 | tempdif | 8.6 | 20.6 | SD | 6 |
10 | soiltype | Categorical variable, including Calcarosol, Chromosol, Hydrosol, Kandosol, Podosol, Rudosol, Sodosol and Tenosol. | 8 | ||
11 | rzsm | 4.64 | 33.11 | equal | 6 |
12 | usm | 1.96 | 10.43 | natural | 7 |
13 | lsm | 4.12 | 37.33 | equal | 6 |
14 | dsm | 9.84 | 54.31 | equal | 5 |
15 | dd | 0.5 | 179.3 | natural | 7 |
16 | ae | 239.3 | 807.4 | equal | 5 |
17 | evi | 0.04 | 0.38 | SD | 6 |
18 | ravnw | Categorical variable, including 3, 4, 5, 6, 7 and 10. | 6 | ||
19 | speed | Categorical variable, including 50, 60, 70, 80, 90, 100 and 110 (km/h). | 7 | ||
20 | surftype | Categorical variable, including single seal, two coat seal, slurry seal, primer seal, asphalt dense graded, asphalt intersection mix, rubberized seal and asphalt open graded. | 8 | ||
21 | popbf1 | 1 | 2490 | geometric | 7 |
22 | popbf5 | 13 | 6946 | geometric | 7 |
23 | popbf10 | 49 | 12,422 | quantile | 6 |
24 | wpop | 8 | 2787 | geometric | 7 |
Category | C1 1 | C2 2 | |||||
---|---|---|---|---|---|---|---|
Variable | vlmsum | pcthvvlm | masssum | pcthvmass | ap | dd | |
C1 | vlmsum | ||||||
pcthvvlm | 0.543 *,3 | ||||||
masssum | 0.451 | ||||||
pcthvmass | 0.457 | 0.532 | |||||
C2 | ap | 0.535 | 0.505 | ||||
soiltype | 0.481 | 0.464 | 0.566 * | ||||
dd | 0.496 | 0.544 | 0.525 | ||||
ae | 0.516 | 0.435 | |||||
C4 4 | popbf1 | 0.407 * | |||||
popbf5 | 0.393 | ||||||
wpop | 0.385 | 0.384 | 0.453 * | 0.423 |
Level of Risk | Description |
---|---|
Very high risk | Road segments within the sub-region of the highest risk of pavement deflections. |
High risk | Road segments within the sub-region of the second highest risk of pavement deflections. |
Medium risk | Road segments within the sub-regions of median risks of pavement deflections, and outside of other levels of risks. |
Low risk | Road segments within the sub-region of the second lowest risk of pavement deflections. |
Very low risk | Road segments within the sub-region of the lowest risk of pavement deflections. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Wright, G.; Wu, P.; Thatcher, D.; McHugh, T.; Li, Q.; Li, S.J.; Wang, X. Segment-Based Spatial Analysis for Assessing Road Infrastructure Performance Using Monitoring Observations and Remote Sensing Data. Remote Sens. 2018, 10, 1696. https://doi.org/10.3390/rs10111696
Song Y, Wright G, Wu P, Thatcher D, McHugh T, Li Q, Li SJ, Wang X. Segment-Based Spatial Analysis for Assessing Road Infrastructure Performance Using Monitoring Observations and Remote Sensing Data. Remote Sensing. 2018; 10(11):1696. https://doi.org/10.3390/rs10111696
Chicago/Turabian StyleSong, Yongze, Graeme Wright, Peng Wu, Dominique Thatcher, Tom McHugh, Qindong Li, Shuk Jin Li, and Xiangyu Wang. 2018. "Segment-Based Spatial Analysis for Assessing Road Infrastructure Performance Using Monitoring Observations and Remote Sensing Data" Remote Sensing 10, no. 11: 1696. https://doi.org/10.3390/rs10111696
APA StyleSong, Y., Wright, G., Wu, P., Thatcher, D., McHugh, T., Li, Q., Li, S. J., & Wang, X. (2018). Segment-Based Spatial Analysis for Assessing Road Infrastructure Performance Using Monitoring Observations and Remote Sensing Data. Remote Sensing, 10(11), 1696. https://doi.org/10.3390/rs10111696