Semi-Automated Classification of Lake Ice Cover Using Dual Polarization RADARSAT-2 Imagery
Abstract
:1. Introduction
2. Study Area
3. Data
3.1. Synthetic Aperture Radar
3.2. CIS Image Analysis Charts
4. Methodology
4.1. “Glocal” Iterative Region Growing with Semantics Classification
4.2. Dual-Pol vs. Single-Pol
4.3. Accuracy Assessment
5. Results and Discussion
5.1. Overall Results
5.2. Analysis of Specific Cases
5.2.1. Ice-Water Classification
5.2.2. Dual-Pol vs. Single-Pol
5.2.3. Ice Type Classification
5.3. Classification Errors
5.4. Limitations
5.4.1. Ice-Water Classification
5.4.2. Ice Type Classification
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, L.C.; Duguay, C.R. The response and role of ice cover in lake-climate interactions. Prog. Phys. Geogr. 2010, 34, 671–704. [Google Scholar] [CrossRef]
- Duguay, C.R.; Prowse, T.D.; Bonsal, B.R.; Brown, R.D.; Lacroix, M.P.; Menard, P. Recent trends in Canadian lake ice cover. Hydrol. Process. 2006, 20, 781–801. [Google Scholar] [CrossRef]
- Livingstone, D.M.; Adrian, R. Modeling the duration of intermittent ice cover on a lake for climate-change studies. Limnol. Oceanogr. 2009, 54, 1709–1722. [Google Scholar] [CrossRef] [Green Version]
- Leshkevich, G.; Nghiem, S.V. Great Lakes ice classification using satellite C-band SAR multi-polarization data. J. Great Lakes Res. 2013, 39, 55–64. [Google Scholar] [CrossRef]
- Bertoia, C.; Manore, M.; Andersen, H.S.; O’Connors, C.; Hansen, K.Q.; Evanego, C. Synthetic Aperture Radar for Operational Ice Observation and Analysis at the US, Canadian, and Danish National Ice Centers. In Synthetic Aperture Radar Marine User’s Manual; Jackson, C.R., Apel, J.R., Eds.; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2004; Volume 574, pp. 417–442. [Google Scholar]
- Zakhvatkina, N.; Korosov, A.; Muckenhuber, S.; Sandven, S.; Babiker, M. Operational algorithm for ice-water classification on dual-polarized RADARSAT-2 images. Cryosphere 2017, 11, 33–46. [Google Scholar] [CrossRef]
- Ramsay, B.; Flett, D.; Andersen, H.S.; Gill, R.; Nghiem, S.; Bertoia, C. Preparation for the operational use of RADARSAT-2 for ice monitoring. Can. J. Remote Sens. 2004, 30, 415–423. [Google Scholar] [CrossRef]
- Moen, M.A.N.; Doulgeris, A.P.; Anfinsen, S.N.; Renner, A.H.H.; Hughes, N.; Gerland, S.; Eltoft, T. Comparison of feature based segmentation of full polarimetric SAR satellite sea ice images with manually drawn ice charts. Cryosphere 2013, 7, 1693–1705. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R.; Rignot, E.; Holt, B. Identification of sea ice types in spaceborne synthetic aperture radar data. J. Geophys. Res. 1992, 97, 2391–2402. [Google Scholar] [CrossRef] [Green Version]
- Zakhvatkina, N.Y.; Alexandrov, V.Y.; Johannessen, O.M.; Sandvenand, S.; Frolov, I.Y. Classification of sea ice types in ENVISAT synthetic aperture radar images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2587–2600. [Google Scholar] [CrossRef]
- Hara, Y.; Atkins, R.G.; Shin, R.T.; Kong, J.A.; Yueh, S.H.; Kwok, R. Application of neural networks for sea ice classification in polarimetric SAR images. IEEE Trans. Geosci. Remote Sens. 1995, 33, 740–748. [Google Scholar] [CrossRef]
- Wang, L.; Scott, K.A.; Xu, L.; Clausi, D.A. Sea Ice Concentration Estimation during Melt from Dual-Pol SAR Scenes Using Deep Convolutional Neural Networks: A Case Study. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4524–4533. [Google Scholar] [CrossRef]
- Soh, L.K.; Tsatsoulis, C. Texture analysis of sar sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 1999, 37, 780–795. [Google Scholar] [CrossRef]
- Soh, L.; Tsatsoulis, C.; Gineris, D.; Bertoia, C. ARKTOS: An intelligent system for SAR sea ice image classification. IEEE Trans. Geosci. Remote Sens. 2004, 42, 229–248. [Google Scholar] [CrossRef]
- Sobiech, J.; Dierking, W. Observing lake- and river-ice decay with SAR: Advantages and limitations of the unsupervised k-means classification approach. Ann. Glaciol. 2013, 54, 65–72. [Google Scholar] [CrossRef]
- Haarpaintner, J.; Solbø, S. Automatic Ice-Ocean Discrimination in SAR Imagery; NORUT Northern Research Institute: Tromsø, Norway, 2007. [Google Scholar]
- Deng, H.; Clausi, D.A. Unsupervised Segmentation of Synthetic Aperture Radar Sea Ice Imagery Using a Novel Markov Random Field Model. IEEE Geosci. Remote Sens. Lett. 2005, 43, 528–538. [Google Scholar] [CrossRef]
- Sandven, S.; Johannessen, O.M.; Miles, M.W.; Pettersson, L.H.; Kloster, K. Barents Sea seasonal ice zone features and processes from ERS 1 synthetic aperture radar: Seasonal Ice Zone Experiment 1992. J. Geophys. Res. 1999. [Google Scholar] [CrossRef]
- Dierking, W. Mapping of different sea ice regimes using images from sentinel-1 and ALOS synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1045–1058. [Google Scholar] [CrossRef]
- Shokr, M. Compilation of a radar backscatter database of sea ice types and open water using operational analysis of heterogeneous ice regimes. Can. J. Remote Sens. 2009, 35, 369–384. [Google Scholar] [CrossRef]
- Shokr, M.E.; Jessup, R.; Ramsay, B. An interactive algorithm for derivation of sea ice classifications and concentrations from SAR images. Can. J. Remote Sens. 1999, 25, 70–79. [Google Scholar] [CrossRef]
- Karvonen, J.; Cheng, B.; Vihma, T.; Arkett, M.; Carrieres, T. The Cryosphere A method for sea ice thickness and concentration analysis based on SAR data and a thermodynamic model. Cryosphere 2012, 6, 1507–1526. [Google Scholar] [CrossRef]
- Leigh, S.; Wang, Z.; Clausi, D.A. Automated ice-water classification using dual polarization SAR satellite imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5529–5539. [Google Scholar] [CrossRef]
- Gill, R.S. SAR ice classification using fuzzy screening method. In Proceedings of the Workshop on Applications of SAR Polarimetry and Polarimetric Interferometry (POLinSAR), Frascati, Italy, 14–16 January 2003. [Google Scholar]
- Karvonen, J.; Similä, M.; Mäkynen, M. Open water detection from Baltic Sea ice. IEEE Geosci. Remote Sens. Lett. 2005, 2, 275–279. [Google Scholar] [CrossRef]
- Geldsetzer, T.; Van Der Sanden, J.; Brisco, B. Monitoring lake ice during spring melt using RADARSAT-2 SAR. Can. J. Remote Sens. 2010, 36, 391–400. [Google Scholar] [CrossRef]
- Ochilov, S.; Clausi, D.A. Operational SAR sea-ice image classification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4397–4408. [Google Scholar] [CrossRef]
- Yu, Q.; Clausi, D.A. IRGS: Image segmentation using edge penalties and region growing. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 2126–2139. [Google Scholar] [CrossRef]
- Surdu, C.M.; Duguay, C.R.; Brown, L.C.; Fernández Prieto, D. Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950–2011): Radar remote-sensing and numerical modeling data analysis. Cryosphere 2014, 8, 167–180. [Google Scholar] [CrossRef] [Green Version]
- Qin, A.K.; Clausi, D.A. Multivariate image segmentation using semantic region growing with adaptive edge penalty. IEEE Trans. Image Process. 2010, 19, 2157–2170. [Google Scholar] [CrossRef]
- Williams, G.P. Correlating freeze-up and break-up with weather conditions. Can. Geotech. J. 1965, 2, 313–326. [Google Scholar] [CrossRef]
- Jeffries, M.O.; Morris, K. Some aspects of ice phenology on ponds in central Alaska, USA. Ann. Glaciol. 2007, 46, 397–403. [Google Scholar] [CrossRef]
- Cordeira, J.M.; Laird, N.F. The influence of ice cover on two lake-effect snow events over Lake Erie. Mon. Weather Rev. 2008, 136, 2747–2763. [Google Scholar] [CrossRef]
- NOAA/GLERL NOAA Great Lakes Environmental Research Laboratory—Historical Ice Cover. Available online: https://www.glerl.noaa.gov/data/ice/#historical (accessed on 13 September 2018).
- CIS. MANICE: Manual of Standard Procedures for Observing and Reporting Ice Conditions, 9th ed.; Canadian Ice Service (CIS), Meteorological Service of Canada: Ottawa, ON, Canada, 2005; ISBN 0660628589.
- CIS Interpreting Ice Charts—World Meteorological Organization Colour Code. Available online: http://ec.gc.ca/glaces-ice/default.asp?lang=En&n=D5F7EA14-1&offset=2&toc=show (accessed on 13 September 2018).
- Clausi, D.A.; Qin, A.K.; Chowdhury, M.S.; Yu, P.; Maillard, P. MAGIC: MAp-Guided Ice Classification System. Can. J. Remote Sens. 2010, 36, 13–25. [Google Scholar] [CrossRef]
- Yu, Q. Automated SAR Sea Ice Interpretation; University of Waterloo: Waterloo, ON, Canada, 2006. [Google Scholar]
- Vincent, L.; Soille, P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 583–598. [Google Scholar] [CrossRef]
- Duguay, C.R.; Bernier, M.; Gauthier, Y.; Kouraev, A. Remote sensing of lake and river ice. In Remote Sensing of the Cryosphere; Tedesco., M., Ed.; John Wiley & Sons, Ltd.: New York, NY, USA, 2015; pp. 273–306. [Google Scholar]
- Duguay, C.R.; Pultz, T.J.; Lafleur, P.M.; Drai, D. RADARSAT backscatter characteristics of ice growing on shallow sub-Arctic lakes, Churchill, Manitoba, Canada. Hydrol. Process. 2002, 16, 1631–1644. [Google Scholar] [CrossRef]
- Karvonen, J.; Vainio, J.; Marnela, M.; Eriksson, P.; Niskanen, T. A Comparison Between High-Resolution EO-Based and Ice Analyst-Assigned Sea Ice Concentrations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1799–1807. [Google Scholar]
- Jeffries, M.O.; Morris, K. Instantaneous daytime conductive heat flow through snow on lake ice in Alaska. Hydrol. Process. 2006, 20, 803–815. [Google Scholar] [CrossRef]
Winter (DJF) | Spring (MAM) | Summer (JJA) | Fall (SON) | Annual Temp | |
---|---|---|---|---|---|
2013 | −1.38 | 6.96 | 19.90 | 10.54 | 8.66 |
2014 | −6.36 | 5.33 | 19.44 | 9.91 | 7.46 |
2015 | 0.71 | 6.56 | 19.19 | 12.55 | 8.53 |
2016 | 0.56 | 7.41 | 20.97 | 13.10 | 10.05 |
2017 | −0.22 | 7.73 | 20.31 | 11.78 | 9.46 |
Mean | 0.64 | 6.80 | 19.96 | 11.58 | 8.83 |
SAR Acquisition Date (M/D/Y) | Ascending (A)/Descending (D) Mode | Acquisition Time (UTC: hh:mm:ss) | Incidence Angle Range for Lake Erie | Average Wind Speed (m/s) |
---|---|---|---|---|
1/11/2014 | A | 23:15:15 | 19.4°–21.3° | 8.53 |
1/12/2014 | D | 11:26:48 | 29.5°–49.4° | 8.26 |
1/14/2014 | A | 23:27:48 | 32.6°–49.4° | 12.01 |
1/15/2014 | D | 11:40:02 | 19.6°–35.1° | 6.64 |
1/18/2014 | A | 23:11:16 | 19.3°–35.8° | 15.28 |
1/19/2014 | D | 11:22:45 | 34.4°–49.4° | 9.84 |
1/22/2014 | D | 11:35:00 | 19.9°–35.1° | - |
1/28/2014 | A | 23:19:24 | 22.8°–45.5° | - |
1/29/2014 | D | 11:31:04 | 24.8°–44.9° | - |
2/4/2014 | A | 23:15:17 | 19.4°–40.7° | - |
2/12/2014 | D | 11:22:49 | 34.3°–49.4° | - |
2/14/2014 | A | 23:23:34 | 27.5°–49.3° | - |
2/21/2014 | A | 23:19:22 | 22.9°–45.5° | 11.63 |
2/22/2014 | D | 11:31:03 | 24.8°–45.0° | 6.69 |
2/25/2014 | D | 11:44:06 | 19.5°–30.3° | - |
3/1/2014 | D | 11:26:47 | 29.6°–49.4° | - |
3/3/2014 | A | 23:27:43 | 32.5°–49.4° | - |
3/4/2014 | D | 11:40:00 | 19.6°–35.3° | - |
3/7/2014 | A | 23:11:06 | 19.3°–35.8° | - |
3/18/2014 | D | 11:31:03 | 24.8°–44.9° | - |
3/20/2014 | A | 23:31:55 | 37.4°–49.4° | - |
3/21/2014 | D | 11:44:13 | 19.5°–30.3° | - |
3/25/2014 | D | 11:26:48 | 29.5°–49.4° | 9.80 |
3/28/2014 | D | 11:40:15 | 19.6°–35.3° | 1.95 |
4/1/2014 | D | 11:22:38 | 34.3°–49.4° | 5.44 |
4/4/2014 | D | 11:35:02 | 19.9°–38.9° | 10.88 |
Stage of Development | Thickness (cm) | Ice-Type Code |
---|---|---|
New lake ice | <5 | 1 |
Thin lake ice | 5–15 | 4 |
Medium lake ice | 15–30 | 5 |
Thick lake ice | 30–70 | 7 |
Very thick lake ice | >70 | 1 |
SAR Acquisition Date (M/D/Y) | Pixel-by-Pixel Difference with Image Analysis Charts | Pixel-by-Pixel Difference Against Original SAR Images (400 Randomly Selected Pixels per Scene) | ||||
---|---|---|---|---|---|---|
Overall Accuracy | Open Water Error | Ice Error | Overall Accuracy | Open Water Error | Ice Error | |
1/11/2014 | 84.8% | 0.6% | 14.5% | 91.5% | 1.0% | 7.5% |
1/12/2014 | 84.1% | 7.6% | 8.3% | 87.0% | 6.5% | 6.5% |
1/14/2014 | 88.0% | 0.5% | 11.5% | 94.0% | 1.5% | 4.5% |
1/15/2014 | 87.8% | 1.8% | 10.4% | 90.8% | 4.0% | 5.2% |
1/18/2014 | 84.9% | 0.9% | 14.9% | 92.3% | 1.0% | 6.7% |
1/19/2014 | 85.2% | 0.1% | 14.7% | 88.3% | 0.0% | 11.7% |
2/21/2014 | 91.7% | 0.9% | 7.4% | 96.5% | 0.0% | 3.5% |
2/22/2014 | 78.9% | 0.1% | 21.0% | 81.8% | 0.0% | 18.2% |
3/25/2014 | 88.7% | 0.7% | 10.6% | 92.0% | 1.0% | 7.0% |
3/28/2014 | 89.1% | 2.8% | 8.1% | 90.0% | 2.5% | 7.5% |
4/1/2014 | 93.8% | 0.6% | 5.6% | 94.5% | 2.0% | 3.5% |
4/4/2014 | 86.2% | 5.7% | 8.1% | 86.0% | 5.8% | 8.2% |
Average | 86.9% | 1.9% | 11.3% | 90.4% | 2.1% | 7.5% |
Polygon ID | Egg Code CT (%) | IRGS CT (%) |
---|---|---|
A | 0 | 2.54 |
B | 80 | 79.77 |
C | 70 | 68.43 |
D | 90 | 95.69 |
E | 100 | 87.13 |
F | 100 | 74.67 |
G | 100 | 95.51 |
H | 100 | 73.96 |
I | 80 | 68.39 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Duguay, C.R.; Clausi, D.A.; Pinard, V.; Howell, S.E.L. Semi-Automated Classification of Lake Ice Cover Using Dual Polarization RADARSAT-2 Imagery. Remote Sens. 2018, 10, 1727. https://doi.org/10.3390/rs10111727
Wang J, Duguay CR, Clausi DA, Pinard V, Howell SEL. Semi-Automated Classification of Lake Ice Cover Using Dual Polarization RADARSAT-2 Imagery. Remote Sensing. 2018; 10(11):1727. https://doi.org/10.3390/rs10111727
Chicago/Turabian StyleWang, Junqian, Claude R. Duguay, David A. Clausi, Véronique Pinard, and Stephen E. L. Howell. 2018. "Semi-Automated Classification of Lake Ice Cover Using Dual Polarization RADARSAT-2 Imagery" Remote Sensing 10, no. 11: 1727. https://doi.org/10.3390/rs10111727