Glacial Lakes in the Nepal Himalaya: Inventory and Decadal Dynamics (1977–2017)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Method
3. Results
3.1. Glacial Lakes in 2017, Nepal
3.2. Decadal Dynamics of Glacial Lakes
3.2.1. Glacial Lake Changes by Various Size Classes and Different Types
3.2.2. Spatial and Temporal Dynamics of Lakes Across Different Basins and Elevation Zones
3.2.3. Emergence and Disappearance of Lakes
4. Discussion
4.1. Mapping and Comparison with the Previous Studies
4.2. Evolution of the Lowest Elevation Glacial Lake
4.3. Causes of the Differential Expansion of the Glacial Lakes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, G.; Yao, T.; Xie, H.; Wang, W.; Yang, W. An Inventory of Glacial Lakes in the Third Pole Region and Their Changes in Response to Global Warming. Glob. Planet. Chang. 2015, 131, 148–157. [Google Scholar] [CrossRef]
- Gardelle, J.; Arnaud, Y.; Berthier, E. Contrasted Evolution of Glacial Lakes along the Hindu Kush Himalaya Mountain Range between 1990 and 2009. Glob. Planet. Chang. 2011, 75, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Ives, J.D.; Shrestha, R.B.; Mool, P.K. Formation of Glacial Lakes in the Hindu Kush-Himalayas and Glof Risk Assessment; ICIMOD: Kathmandu, Nepal, 2010. [Google Scholar]
- Bajracharya, S.R.; Mool, P.K.; Shrestha, B.R. Impact of Climate Change on Himalayan Glaciers and Glacial Lakes: Case Studies on Glof and Associated Hazards in Nepal and Bhutan; International Centre for Integrated Mountain Development: Kathmandu, Nepal, 2007. [Google Scholar]
- Ren, J.; Qin, D.; Kang, S.; Hou, S.; Pu, J.; Jing, Z. Glacier Variations and Climate Warming and Drying in the Central Himalayas. Sci. Bull. 2004, 49, 65–69. [Google Scholar] [CrossRef]
- Lutz, A.; Immerzeel, W.; Bajracharya, S.; Litt, M.; Shrestha, A. Impacts of Climate Change on the Cryosphere, Hydrological Regimes and Glacial Lakes of the Hindu Kush Himalayas: A Review of Current Knowledge; ICIMOD Working Paper (Nepal) Eng No. 2016/3; ICIMOD: Kathmandu, Nepal, 2016. [Google Scholar]
- Richardson, S.D.; Reynolds, J.M. An Overview of Glacial Hazards in the Himalayas. Quat. Int. 2000, 65, 31–47. [Google Scholar] [CrossRef]
- Nie, Y.; Sheng, Y.; Liu, Q.; Liu, L.; Liu, S.; Zhang, Y.; Song, C. A Regional-Scale Assessment of Himalayan Glacial Lake Changes Using Satellite Observations from 1990 to 2015. Remote Sens. Environ. 2017, 189, 1–13. [Google Scholar] [CrossRef]
- Shijin, W.; Tao, Z. Spatial Change Detection of Glacial Lakes in the Koshi River Basin, the Central Himalayas. Environ. Earth Sci. 2014, 72, 4381–4391. [Google Scholar] [CrossRef]
- Nie, Y.; Liu, Q.; Wang, J.; Zhang, Y.; Sheng, Y.; Liu, S. An Inventory of Historical Glacial Lake Outburst Floods in the Himalayas Based on Remote Sensing Observations and Geomorphological Analysis. Geomorphology 2018, 308, 91–106. [Google Scholar] [CrossRef]
- Somos-Valenzuela, M.; McKinney, D.C.; Rounce, D.R.; Byers, A. Changes in Imja Tsho in the Mount Everest Region of Nepal. Cryosphere 2014, 8, 1661–1671. [Google Scholar] [CrossRef]
- Watanabe, T.; Lamsal, D.; Ives, J.D. Evaluating the Growth Characteristics of a Glacial Lake and Its Degree of Danger of Outburst Flooding: Imja Glacier, Khumbu Himal, Nepal. Nor. Geogr. Tidsskr. J. Geogr. 2009, 63, 255–267. [Google Scholar] [CrossRef]
- Carrivick, J.L.; Tweed, F.S. A Global Assessment of the Societal Impacts of Glacier Outburst Floods. Glob. Planet. Chang. 2016, 144, 1–16. [Google Scholar] [CrossRef]
- Yamada, T.; Sharma, C. Glacier Lakes and Outburst Floods in the Nepal Himalaya. Publ. Int. Assoc. Hydrol. Sci. 1993, 218, 319–330. [Google Scholar]
- Harrison, S.; Kargel, J.S.; Huggel, C.; Reynolds, J.; Shugar, D.H.; Betts, R.A.; Emmer, A.; Glasser, N.; Haritashya, U.K.; Klimeš, J. Climate Change and the Global Pattern of Moraine-Dammed Glacial Lake Outburst Floods. Cryosphere 2018, 12, 1195–1209. [Google Scholar] [CrossRef]
- Salerno, F.; Thakuri, S.; D’Agata, C.; Smiraglia, C.; Manfredi, E.C.; Viviano, G.; Tartari, G. Glacial Lake Distribution in the Mount Everest Region: Uncertainty of Measurement and Conditions of Formation. Glob. Planet. Chang. 2012, 92, 30–39. [Google Scholar] [CrossRef]
- Bolch, T.; Buchroithner, M.; Peters, J.; Baessler, M.; Bajracharya, S. Identification of Glacier Motion and Potentially Dangerous Glacial Lakes in the Mt. Everest Region/Nepal Using Spaceborne Imagery. Nat. Hazards Earth Syst. Sci. 2008, 8, 1329–1340. [Google Scholar] [CrossRef]
- Quincey, D.; Richardson, S.; Luckman, A.; Lucas, R.M.; Reynolds, J.; Hambrey, M.; Glasser, N. Early Recognition of Glacial Lake Hazards in the Himalaya Using Remote Sensing Datasets. Glob. Planet. Chang. 2007, 56, 137–152. [Google Scholar] [CrossRef]
- ICIMOD. Glacial Lakes and Glacial Lakes Outburst Floods in Nepal; ICIMOD: Kathmandu, Nepal, 2011. [Google Scholar]
- Watanabe, T.; Ives, J.D.; Hammond, J.E. Rapid Growth of a Glacial Lake in Khumbu Himal, Himalaya: Prospects for a Catastrophic Flood. Mt. Res. Dev. 1994, 14, 329–340. [Google Scholar] [CrossRef]
- Shrestha, A.; Eriksson, M.; Mool, P.; Ghimire, P.; Mishra, B.; Khanal, N. Glacial Lake Outburst Flood Risk Assessment of Sun Koshi Basin, Nepal. Geomat. Nat. Hazards Risk 2010, 1, 157–169. [Google Scholar] [CrossRef]
- Rounce, D.R.; Watson, C.S.; McKinney, D.C. Identification of Hazard and Risk for Glacial Lakes in the Nepal Himalaya Using Satellite Imagery from 2000–2015. Remote Sens. 2017, 9, 654. [Google Scholar] [CrossRef]
- Khanal, N.R.; Mool, P.K.; Shrestha, A.B.; Rasul, G.; Ghimire, P.K.; Shrestha, R.B.; Joshi, S.P. A Comprehensive Approach and Methods for Glacial Lake Outburst Flood Risk Assessment, with Examples from Nepal and the Transboundary Area. Int. J. Water Resour. Dev. 2015, 31, 219–237. [Google Scholar] [CrossRef]
- Khanal, N.R.; Hu, J.-M.; Mool, P. Glacial Lake Outburst Flood Risk in the Poiqu/Bhote Koshi/Sun Koshi River Basin in the Central Himalayas. Mt. Res. Dev. 2015, 35, 351–364. [Google Scholar] [CrossRef]
- Lamsal, D.; Sawagaki, T.; Watanabe, T.; Byers, A.C. Assessment of Glacial Lake Development and Prospects of Outburst Susceptibility: Chamlang South Glacier, Eastern Nepal Himalaya. Geomat. Nat. Hazards Risk 2016, 7, 403–423. [Google Scholar] [CrossRef]
- Chen, N.S.; Hu, G.S.; Deng, W.; Khanal, N.; Zhu, Y.; Han, D. On the Water Hazards in the Trans-Boundary Kosi River Basin. Nat. Hazards Earth Syst. Sci. 2013, 13, 795–808. [Google Scholar] [CrossRef]
- Xu, D. Characteristics of Debris Flow Caused by Outburst of Glacial Lake in Boqu River, Xizang, China, 1981. GeoJournal 1988, 17, 569–580. [Google Scholar] [CrossRef]
- Chen, X.Q.; Cui, P.; Li, Y.; Yang, Z.; Qi, Y.Q. Changes in Glacial Lakes and Glaciers of Post-1986 in the Poiqu River Basin, Nyalam, Xizang (Tibet). Geomorphology 2007, 88, 298–311. [Google Scholar] [CrossRef]
- Qiu, J. Glacial Lakes Threaten Himalayan Dams. Scientific American. 2016. Available online: https://www.scientificamerican.com/article/glacial-lakes-threaten-himalayan-dams/ (accessed on 23 October 2018).
- DOED. List of Issued Generation Licenses. 2018. Available online: http://doed.gov.np/construction_license_for_generation.php (accessed on 23 October 2018).
- King, O.; Quincey, D.J.; Carrivick, J.L.; Rowan, A.V. Spatial Variability in Mass Loss of Glaciers in the Everest Region, Central Himalayas, between 2000 and 2015. Cryosphere 2017, 11, 407–426. [Google Scholar] [CrossRef]
- Jiang, S.; Nie, Y.; Liu, Q.; Wang, J.; Liu, L.; Hassan, J.; Liu, X.; Xu, X. Glacier Change, Supraglacial Debris Expansion and Glacial Lake Evolution in the Gyirong River Basin, Central Himalayas, between 1988 and 2015. Remote Sens. 2018, 10, 986. [Google Scholar] [CrossRef]
- Mool, P.K.; Bajracharya, S.R.; Joshi, S.P. Inventory of Glaciers, Glacial Lakes and Glacial Lake Outburst Floods: Monitoring and Early Warning Systems in the Hindu Kush-Himalayan Region, Nepal; International Centre for Integrated Mountain Development: Kathmandu, Nepal, 2001. [Google Scholar]
- Thompson, S.; Benn, D.I.; Mertes, J.; Luckman, A. Stagnation and Mass Loss on a Himalayan Debris-Covered Glacier: Processes, Patterns and Rates. J. Glaciol. 2016, 62, 467–485. [Google Scholar] [CrossRef]
- Nie, Y.; Liu, Q.; Liu, S. Glacial Lake Expansion in the Central Himalayas by Landsat Images, 1990–2010. PLoS ONE 2013, 8, e83973. [Google Scholar] [CrossRef] [PubMed]
- Le Fort, P. Himalayas: The Collided Range. Present Knowledge of the Continental Arc. Am. J. Sci. 1975, 275, 1–44. [Google Scholar]
- Salerno, F.; Guyennon, N.; Thakuri, S.; Viviano, G.; Romano, E.; Vuillermoz, E.; Cristofanelli, P.; Stocchi, P.; Agrillo, G.; Ma, Y. Weak Precipitation, Warm Winters and Springs Impact Glaciers of South Slopes of Mt. Everest (Central Himalaya) in the Last 2 Decades (1994–2013). Cryosphere 2015, 9, 1229–1247. [Google Scholar] [CrossRef]
- Shrestha, A.B.; Wake, C.P.; Dibb, J.E.; Mayewski, P.A. Precipitation Fluctuations in the Nepal Himalaya and Its Vicinity and Relationship with Some Large Scale Climatological Parameters. Int. J. Clim. 2000, 20, 317–327. [Google Scholar] [CrossRef]
- Hannah, D.M.; Kansakar, S.R.; Gerrard, A.; Rees, G. Flow Regimes of Himalayan Rivers of Nepal: Nature and Spatial Patterns. J. Hydrol. 2005, 308, 18–32. [Google Scholar] [CrossRef]
- CBS Nepal. National Population and Housing Census 2011; National Report; CBS Nepal: Kathmandu, Nepal, 2012.
- Bajracharya, S.R.; Maharjan, S.B.; Shrestha, F.; Bajracharya, O.R.; Baidya, S. Glacier Status in Nepal and Decadal Change from 1980 to 2010 Based on Landsat Data; International Centre for Integrated Mountain Development: Kathmandu, Nepal, 2014. [Google Scholar]
- Veh, G.; Korup, O.; Roessner, S.; Walz, A. Detecting Himalayan Glacial Lake Outburst Floods from Landsat Time Series. Remote Sens. Environ. 2018, 207, 84–97. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.; Loveland, T.R.; Woodcock, C.; Allen, R.; Anderson, M.; Helder, D.; Irons, J.; Johnson, D.; Kennedy, R. Landsat-8: Science and Product Vision for Terrestrial Global Change Research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Wang, X.; Siegert, F.; Zhou, A.G.; Franke, J. Glacier and Glacial Lake Changes and Their Relationship in the Context of Climate Change, Central Tibetan Plateau 1972–2010. Glob. Planet. Chang. 2013, 111, 246–257. [Google Scholar] [CrossRef]
- Mergili, M.; Müller, J.P.; Schneider, J.F. Spatio-Temporal Development of High-Mountain Lakes in the Headwaters of the Amu Darya River (Central Asia). Glob. Planet. Chang. 2013, 107, 13–24. [Google Scholar] [CrossRef]
- Li, J.; Sheng, Y. An Automated Scheme for Glacial Lake Dynamics Mapping Using Landsat Imagery and Digital Elevation Models: A Case Study in the Himalayas. Int. J. Remote Sens. 2012, 33, 5194–5213. [Google Scholar] [CrossRef]
- Shrestha, F.; Gao, X.; Khanal, N.R.; Maharjan, S.B.; Shrestha, R.B.; Wu, L.Z.; Mool, P.K.; Bajracharya, S.R. Decadal Glacial Lake Changes in the Koshi Basin, Central Himalaya, from 1977 to 2010, Derived from Landsat Satellite Images. J. Mt. Sci. 2017, 14, 1969–1984. [Google Scholar] [CrossRef]
- Wang, X.; Ding, Y.; Liu, S.; Jiang, L.; Wu, K.; Jiang, Z.; Guo, W. Changes of Glacial Lakes and Implications in Tian Shan, Central Asia, Based on Remote Sensing Data from 1990 to 2010. Environ. Res. Lett. 2013, 8, 044052. [Google Scholar] [CrossRef]
- Wang, W.; Xiang, Y.; Gao, Y.; Lu, A.; Yao, T. Rapid Expansion of Glacial Lakes Caused by Climate and Glacier Retreat in the Central Himalayas. Hydrol. Process. 2015, 29, 859–874. [Google Scholar] [CrossRef]
- Worni, R.; Huggel, C.; Stoffel, M. Glacial Lakes in the Indian Himalayas—From an Area-Wide Glacial Lake Inventory to On-Site and Modeling Based Risk Assessment of Critical Glacial Lakes. Sci. Total Environ. 2013, 468, S71–S84. [Google Scholar] [CrossRef] [PubMed]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (Ndwi) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Gao, B.-C. Ndwi—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Barsi, J.A.; Lee, K.; Kvaran, G.; Markham, B.L.; Pedelty, J.A. The Spectral Response of the Landsat-8 Operational Land Imager. Remote Sens. 2014, 6, 10232–10251. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Zheng, G.; Gao, Y.; Xiang, Y.; Lei, Y.; Li, J. Automated Water Classification in the Tibetan Plateau Using Chinese Gf-1 Wfv Data. Photogramm. Eng. Remote Sens. 2017, 83, 509–519. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Ghimire, B. Glacial Lake at Just 2,546m, Govt yet to Fathom Its Potential. In The Kathmandu Post; 8 April 2015. Available online: http://kathmandupost.ekantipur.com/news/2015-04-08/glacial-lake-at-just-2546m-govt-yet-to-fathom-its-potential.html (accessed on 15 October 2018).
- Fujita, K.; Sakai, A.; Takenaka, S.; Nuimura, T.; Surazakov, A.; Sawagaki, T.; Yamanokuchi, T. Potential Flood Volume of Himalayan Glacial Lakes. Nat. Hazards Earth Sys. Sci. 2013, 13, 1827–1839. [Google Scholar] [CrossRef]
- King, O.; Dehecq, A.; Quincey, D.; Carrivick, J. Contrasting Geometric and Dynamic Evolution of Lake and Land-Terminating Glaciers in the Central Himalaya. Glob. Planet. Chang. 2018, 167, 46–60. [Google Scholar] [CrossRef]
- Reynolds, J.M. On the Formation of Supraglacial Lakes on Debris-Covered Glaciers; IAHS Press: Wallingford, UK, 2000; pp. 153–164. [Google Scholar]
- Watson, C.S.; Quincey, D.J.; Carrivick, J.L.; Smith, M.W. The Dynamics of Supraglacial Ponds in the Everest Region, Central Himalaya. Glob. Planet. Chang. 2016, 142, 14–27. [Google Scholar] [CrossRef]
- Thakuri, S.; Salerno, F.; Smiraglia, C.; Bolch, T.; D’Agata, C.; Viviano, G.; Tartari, G. Tracing Glacier Changes Since the 1960s on the South Slope of Mt. Everest (Central Southern Himalaya) Using Optical Satellite Imagery. Glob. Planet. Chang. 2014, 8, 1297–1315. [Google Scholar] [CrossRef] [Green Version]
- Benn, D.; Bolch, T.; Hands, K.; Gulley, J.; Luckman, A.; Nicholson, L.; Quincey, D.; Thompson, S.; Toumi, R.; Wiseman, S. Response of Debris-Covered Glaciers in the Mount Everest Region to Recent Warming, and Implications for Outburst Flood Hazards. Earth Sci. Rev. 2012, 114, 156–174. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Sheng, Y.; Wang, J.; Ke, L.; Madson, A.; Nie, Y. Heterogeneous Glacial Lake Changes and Links of Lake Expansions to the Rapid Thinning of Adjacent Glacier Termini in the Himalayas. Geomorphology 2017, 280, 30–38. [Google Scholar] [CrossRef]
- Haritashy, U.K.; Kargel, J.S.; Shugar, D.H.; Leonard, G.J.; Strattman, K.; Watson, C.S.; Shean, D.; Harrison, S.; Mandli, K.T.; Regmi, D. Evolution and Controls of Large Glacial Lakes in the Nepal Himalaya. Remote Sens. 2018, 10, 798. [Google Scholar] [CrossRef]
- Miles, E.S.; Willis, I.C.; Arnold, N.S.; Steiner, J.; Pellicciotti, F. Spatial, Seasonal and Interannual Variability of Supraglacial Ponds in the Langtang Valley of Nepal, 1999–2013. J. Glaciol. 2017, 63, 88–105. [Google Scholar] [CrossRef]
- Xin, W.; Shiyin, L.; Wanqin, G.; Xiaojun, Y.; Zongli, J.; Yongshun, H. Using Remote Sensing Data to Quantify Changes in Glacial Lakes in the Chinese Himalaya. Mt. Res. Dev. 2012, 32, 203–212. [Google Scholar] [CrossRef]
- Bajracharya, S.R. Change in Glacial Environment of Everest Region, Nepal; International Centre for Integrated Mountain Development: Kathmandu, Nepal, 2008. [Google Scholar]
- Song, C.; Sheng, Y.; Ke, L.; Nie, Y.; Wang, J. Glacial Lake Evolution in the Southeastern Tibetan Plateau and the Cause of Rapid Expansion of Proglacial Lakes Linked to Glacial-Hydrogeomorphic Processes. J. Hydrol. 2016, 540, 504–514. [Google Scholar] [CrossRef]
- DHM. Observed Climatic Trend Analysis in the Districts and Physiographic Zones of Nepal (1971–2014); Department of Hydrology and Meteorology: Kathmandu, Nepal, 2017. [Google Scholar]
- Salerno, F.; Thakuri, S.; Guyennon, N.; Viviano, G.; Tartari, G. Glacier Melting and Precipitation Trends Detected by Surface Area Changes in Himalayan Ponds. Cryosphere 2016, 10, 1433–1448. [Google Scholar] [CrossRef]
- Shrestha, A.B.; Wake, C.P.; Mayewski, P.A.; Dibb, J.E. Maximum Temperature Trends in the Himalaya and Its Vicinity: An Analysis Based on Temperature Records from Nepal for the Period 1971–1994. J. Clim. 1999, 12, 2775–2786. [Google Scholar] [CrossRef]
- Basnett, S.; Kulkarni, A.V.; Bolch, T. The Influence of Debris Cover and Glacial Lakes on the Recession of Glaciers in Sikkim Himalaya, India. J. Glaciol. 2013, 59, 1035–1046. [Google Scholar] [CrossRef] [Green Version]
- Benn, D.I.; Warren, C.R.; Mottram, R.H. Calving Processes and the Dynamics of Calving Glaciers. Earth Sci. Rev. 2007, 82, 143–179. [Google Scholar] [CrossRef]
- Thakuri, S.; Salerno, F.; Bolch, T.; Guyennon, N.; Tartari, G. Factors Controlling the Accelerated Expansion of Imja Lake, Mount Everest Region, Nepal. Ann. Glaciol. 2016, 57, 245–257. [Google Scholar] [CrossRef]
- Shea, J.; Immerzeel, W.; Wagnon, P.; Vincent, C.; Bajracharya, S. Modelling Glacier Change in the Everest Region, Nepal Himalaya. Cryosphere 2015, 9, 1105–1128. [Google Scholar] [CrossRef] [Green Version]
Acquired Date | Number of Scenes | Study Area | Sensor * | Repeat Cycle (Days) | Spatial Resolution (m) | Number of Bands |
---|---|---|---|---|---|---|
1977 ± 1 | 9 | Nepal | MSS | 16 | 60 | 4 |
1987 ± 1 | 9 | Nepal | TM | 16 | 30 | 6 |
1997 ± 2 | 9 | Nepal | TM | 16 | 30 | 6 |
2007 ± 1 | 9 | Nepal | TM | 16 | 30 | 6 |
2017 ± 1 | 9 | Nepal | OLI | 16 | 30/15 ** | 9 |
River Basin | Sub-Basin | Nepal Glacial Lakes | ||
---|---|---|---|---|
Number | Area (km2) | Mean Area | ||
Koshi | Indrawati | 9 | 0.1 | 0.01 |
BhoteKoshi | 15 | 0.35 | 0.02 | |
Tama Koshi | 34 | 2.91 | 0.09 | |
Likhu | 12 | 0.44 | 0.04 | |
DudhKoshi | 234 | 16.82 | 0.07 | |
Arun | 79 | 4.7 | 0.06 | |
Tamor | 254 | 8.73 | 0.03 | |
Subtotal | 637 (414) | 34.05 (28.04) | ||
Gandaki | Trishuli | 71 | 2.21 | 0.03 |
Budhi–Gandaki | 32 | 1.12 | 0.04 | |
Marsyangdi | 65 | 6.62 | 0.1 | |
Seti | 3 | 0.13 | 0.04 | |
Kali–Gandaki | 70 | 3.01 | 0.04 | |
Subtotal | 241 (205) | 13.09 (11.78) | ||
Karnali | HumlaKarnali | 237 | 12.63 | 0.05 |
MuguKarnali | 174 | 5.65 | 0.03 | |
Kawari | 21 | 0.95 | 0.05 | |
Karnali sub-part | 4 | 0.3 | 0.08 | |
Tila | 57 | 3.76 | 0.07 | |
Bheri | 129 | 9.09 | 0.07 | |
West Seti | 23 | 1.12 | 0.05 | |
Subtotal | 645 (427) | 33.50 (24.56) | ||
Mahakali | 18 (18) | 0.33 (0.33) | 0.02 | |
Grand Total | 1541 (1064) | 80.95 (64.69) | 0.05 |
Lake Type | 1977 | 1987 | 1997 | 2007 | 2017 | Overall Change (%, 1987–2017) | |
---|---|---|---|---|---|---|---|
Glacier-fed | Supraglacial | 21 (0.88) | 98 (2.21) | 101 (2.25) | 158 (2.35) | 166 (2.33) | 69 (6) |
Proglacial | 87 (13.59) | 124 (16.77) | 170 (19.42) | 275 (24.76) | 349 (30.52) | 181 (82) | |
Unconnected | 252 (26.71) | 445 (29.37) | 476 (30.20) | 540 (30.72) | 549 (31.84) | 23 (8) | |
Nonglacier-fed | 246 (14.37) | 470 (16.01) | 481 (16.94) | 516 (16.36) | 477 (16.24) | 1 (1) | |
Total | 606 (55.53 ± 16.52) | 1137 (64.56 ± 11.64) | 1228 (68.87 ± 12.18) | 1489 (74.2 ± 14.22) | 1541 (80.95 ± 15.25) | 36 (25) | |
Total decadal change (%) | - | 87.62 (16.3) | 8 (6.68) | 21.25 (7.74) | 3.49 (9.1) |
Region | Study Period | Lake Expansion (%) | Lake Number | Lake Area (km2) | Source |
---|---|---|---|---|---|
Third Pole | 1990–2010 | 23.2 | 5701 | 682 | [1] |
* Himalaya | 1990–2015 | 14.1 | 4950 | 455 | [9] |
* South-Central Himalaya | 23 | 1104 | 86.3 | ||
Hindu Kush | 1990–2009 | −50 | 102 | 0.7 | [2] |
Karakoram | −30 | 422 | 3.7 | ||
Everest | 40 | 583 | 29 | ||
Central Himalaya | 1990–2010 | 17.11 | 1314 | 197 | [36] |
Chinese Himalaya | 1970s–2000s | 29.7 | 1680 | 215 | [67] |
Nepal Himalaya | 2009/10 | - | 1466 | 65 | [20] |
Koshi basin (Nepal) | 2010 | 955 | 34.01 | [48] | |
Nepal Himalaya | 1987–2017 | 25 | 1541 | 80.95 | This study |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khadka, N.; Zhang, G.; Thakuri, S. Glacial Lakes in the Nepal Himalaya: Inventory and Decadal Dynamics (1977–2017). Remote Sens. 2018, 10, 1913. https://doi.org/10.3390/rs10121913
Khadka N, Zhang G, Thakuri S. Glacial Lakes in the Nepal Himalaya: Inventory and Decadal Dynamics (1977–2017). Remote Sensing. 2018; 10(12):1913. https://doi.org/10.3390/rs10121913
Chicago/Turabian StyleKhadka, Nitesh, Guoqing Zhang, and Sudeep Thakuri. 2018. "Glacial Lakes in the Nepal Himalaya: Inventory and Decadal Dynamics (1977–2017)" Remote Sensing 10, no. 12: 1913. https://doi.org/10.3390/rs10121913
APA StyleKhadka, N., Zhang, G., & Thakuri, S. (2018). Glacial Lakes in the Nepal Himalaya: Inventory and Decadal Dynamics (1977–2017). Remote Sensing, 10(12), 1913. https://doi.org/10.3390/rs10121913