Retrieval of Maize Leaf Area Index Using Hyperspectral and Multispectral Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Characteristics of the Sampled Fields
2.3. Data Collection
2.3.1. Field LAI Data Collection
2.3.2. Field Equivalent Water Thickness and Dry Mater Content
2.3.3. Field Spectral Data Collection
2.3.4. Spectral Data from Sentinel-2
2.4. Data Analysis
2.4.1. Field Spectral Data Pre-Processing
2.4.2. Statistical Modelling of LAI Based on Vegetation Indices
2.4.3. Statistical Modelling of LAI Based on Machine Learning Regression Algorithms
2.4.4. Retrieval of LAI Based on Radiative Transfer Models
Simulation of the Look-Up-Table (LUT)
LUT Inversion for LAI Retrieval
2.5. LAI Model Calibration, Cross Validation, and External Validation
2.6. Model Assumptions, Accuracy Assessment, and Selection
3. Results
3.1. LAI Ground Measurements and Derived from Sentinel-2
3.2. Vegetation Index Based LAI Models and Validation
3.2.1. Field Spectral Data Resampled to 10 nm (FSP_10)
3.2.2. Field Spectral Data Resampled to Sentinel-2 (FSP_S2)
3.2.3. Sentinel-2 Spectral Data (SP_S2)
3.3. Machine Learning Regression Based LAI Models and Validation
3.3.1. Field Spectral Data Resampled to 10 nm (FSP_10)
3.3.2. Field Spectral Data Resampled to Sentinel-2 Bands (FSP_S2)
3.3.3. Sentinel-2 Spectral Data (SP_S2)
3.4. LUT Inversion Based LAI Estimation and Validation
LUT Inversion
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Authors | [56] | [67] | [84] | [85] | [2] | [86] | [14] |
---|---|---|---|---|---|---|---|
Model: PROSPECT 5 | |||||||
Ca+b: Clorofila a+b (µg/cm²) | 30–70 | 20–80 | 15–55 | 5–70 | 10–70 | 10–70 | 05–75 |
Equivalent water thickness (g/cm2) | 0.01–0.06 | 0.01–0.04 | 0.01–0.02 | - | - | 0.01–0.03 | 0.002–0.05 |
N: Leaf Structural Parameter | 1–3 | 1 | 1.5–1.9 | 1.5 | 1.3–1.7 | 1–1.6 | 1.3–2.5 |
Car: Carotenoids (µg/cm²) | - | 1 | - | - | - | - | - |
Cbrown: Brown pigments (g/cm²) | - | 0.05 | - | - | - | 0–2 | - |
Cm: Dry matter content (g/cm²) | 0.008–0.025 | 0.0046 | 0.005–0.01 | 0.009 | 0.004–0.007 | 0.005–0.021 | 0.001–0.03 |
Model: 4SAIL | |||||||
LAI: Leaf area Index | 1–7 | 0.1–6 | 0.3–7.5 | 0–8 | 0–6 | 0–7 | 0.1–7 |
ALA: Leaf angle distribution (°) | 20–60 | 70, 57, 45 | 40–70 | 35 | 40–70 | 40–70 | 40–70 |
skyl: Diffuse/Direct light | - | 0.1 | - | - | - | 10 | 0.05 |
psoil: Soil Coefficient | - | 0.1 | 0.5–1.5 | - | 0.7–1.3 | 0–1 | 0–1 |
hspot: Hot spot | 0.5/LAI | 0.78, 0.40, 0.32 | 0.05–0.1 | 0.01 | 0.05–1 | 1–1.6 | 0.05–0.5 |
tts: Solar Zenit Angle (°) | −20–+80 | 51, 45, 33 | - | 30 | 35 | 20–50 | 22.3 |
tto: Observer zenit Angle (°) | 0–55 | 0 | - | 10 | 0 | 0 | 20.19 |
psi: Azimut Angle (°) | −120–+120 | 0 | - | - | 0 | 0 | 0 |
Crop/vegetation type | Wheat | Wheat | Rangelands | Maize, vegetables, sunflower, alfafa and vine | Maize and sugar beet | Maize, vegetables and alfafa | Maize, vegetables, alfafa, sunflower, vines |
Dataset | Modelling Approach | CV | EV | |||
---|---|---|---|---|---|---|
BP | JB | BP | JB | |||
FSP_10 | VI | mSRb | 0.95 | 13.4 | 0.12 | 6.18 |
mDId | 0.2 | 3.15 | 0.28 | 6.98 | ||
MLRA | RVM | 0.17 | 12.42 | 0.07 | 7.29 | |
VHGPR | 0.54 | 12.42 | 0.3 | 7.29 | ||
FSP_S2 | VI | mDIc | 0.08 | 5.9 | 0.17 | 4.9 |
mSRc | 0.52 | 13.59 | 0.81 | 2.89 | ||
MLRA | BaT | 0.02 | 12.42 | 0.41 | 7.29 | |
RVM | 0.13 | 12.42 | 0.2 | 7.29 | ||
SP_S2 vs. Field_LAI | VI | mNDc | 0.004 | 0.79 | ||
TBSIb | 0.65 | 6.76 | --- | |||
TBSIc | 0.0003 | 1.89 | ||||
MLRA | GPR | 0.41 | 2.99 | |||
RFF | 0.47 | 2.99 | --- | |||
SVM | 0.18 | 2.99 | ||||
SP_S2 vs. LAI_S2 | VI | SR | 0.77 | 1.22 | ||
TBSIa | 0.88 | 5.68 | --- | |||
TBSIb | 0.88 | 1.83 | ||||
MLRA | RFF | 0.65 | 10.5 | |||
RVM | 0.51 | 10.5 | --- | |||
SMV | 0.39 | 10.5 |
References
- Mananze, S.E.; Pôças, I.; Cunha, M. Maize leaf area estimation in different growth stages based on allometric descriptors. Afr. J. Agric. Res. 2018, 13, 202–209. [Google Scholar] [CrossRef]
- Richter, K.; Atzberger, C.; Vuolo, F.; Weihs, P.; D’Urso, G. Experimental assessment of the Sentinel-2 band setting for RTM-based LAI retrieval of sugar beet and maize. Can. J. Remote Sens. 2009, 35, 230–247. [Google Scholar] [CrossRef]
- Cattanio, J.H. Leaf area index and root biomass variation at different secondary forest ages in the eastern Amazon. For. Ecol. Manag. 2017, 400, 1–11. [Google Scholar] [CrossRef]
- Fang, H.; Ye, Y.; Liu, W.; Wei, S.; Ma, L. Continuous estimation of canopy leaf area index (LAI) and clumping index over broadleaf crop fields: An investigation of the PASTIS-57 instrument and smartphone applications. Agric. For. Meteorol. 2018, 253–254, 48–61. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Rivera, J.P.; Ruiz-Verdú, A.; Moreno, J. Brown and green LAI mapping through spectral indices. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 350–358. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F.; Gao, F. A Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI). Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Mokhtari, A.; Noory, H.; Vazifedoust, M. Improving crop yield estimation by assimilating LAI and inputting satellite-based surface incoming solar radiation into SWAP model. Agric. For. Meteorol. 2018, 250–251, 159–170. [Google Scholar] [CrossRef]
- Thenkabail, P.; Lyon, J.; Huete, A. Advances in Hyperspectral Remote Sensing of Vegetation and Agricultural Croplands. In Hyperspectral Remote Sensing of Vegetation; CRC Press: Boca Raton, FL, USA, 2011; pp. 3–36. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Enclona, E.A.; Ashton, M.S.; Legg, C.; De Dieu, M.J. Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests. Remote Sens. Environ. 2004, 90, 23–43. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Enclona, E.A.; Ashton, M.S.; Van Der Meer, B. Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sens. Environ. 2004, 91, 354–376. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Jones, H.G.; Vaughan, R.A. Remote Sensing of Vegetation: Principles, Techniques, and Applications; Oxford University Press: New York, NY, USA, 2010; p. 353. [Google Scholar]
- Roberts, D.A.; Roth, K.L.; Perroy, R.L. Hyperspectral vegetation indices. In Hyperspectral Remote Sensing of Vegetation; Thenkabail, P.S., Lyon, J.G., Huete, A., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2012; pp. 309–327. [Google Scholar]
- Verrelst, J.; Rivera, J.P.; Veroustraete, F.; Muñoz-Marí, J.; Clevers, J.G.P.W.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods—A comparison. ISPRS J. Photogramm. Remote Sens. 2015, 108, 260–272. [Google Scholar] [CrossRef]
- Rivera, J.; Verrelst, J.; Delegido, J.; Veroustraete, F.; Moreno, J. On the Semi-Automatic Retrieval of Biophysical Parameters Based on Spectral Index Optimization. Remote Sens. 2014, 6, 4927–4951. [Google Scholar] [CrossRef] [Green Version]
- Pôças, I.; Gonçalves, J.; Costa, P.M.; Gonçalves, I.; Pereira, L.S.; Cunha, M. Hyperspectral-based predictive modelling of grapevine water status in the Portuguese Douro wine region. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 177–190. [Google Scholar] [CrossRef]
- Caicedo, J.P.R.; Verrelst, J.; Muñoz-Marí, J.; Moreno, J.; Camps-Valls, G. Toward a Semiautomatic Machine Learning Retrieval of Biophysical Parameters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1249–1259. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.K.; Schlerf, M.; Atzberger, C. Inversion of a radiative transfer model for estimating vegetation LAIA and chlorophyll in a heterogeneous grassland. Remote Sens. Environ. 2008, 112, 2592–2604. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Feret, J.-B.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.R.; Ustin, S.L.; le Maire, G.; Jacquemoud, S. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Mariotto, I.; Thenkabail, P.S.; Huete, A.; Slonecker, E.T.; Platonov, A. Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission. Remote Sens. Environ. 2013, 139, 291–305. [Google Scholar] [CrossRef]
- The World Bank. Climate Change Knowledge Portal for Development Practitioners and Policy Makers. Available online: http://sdwebx.worldbank.org/climateportal/index.cfm?page=country_historical_climate&ThisRegion=Africa&ThisCCode=MOZ (accessed on 7 September 2018).
- Abendroth, L.; Elmore, R.; Boyer, M.; Marlay, S. Corn Growth and Development; Iowa State University Extension: Ames, IA, USA, 2011. [Google Scholar]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Vuolo, F.; Zółtak, M.; Pipitone, C.; Zappa, L.; Wenng, H.T.; Immitzer, M.; Weiss, M.; Baret, F.; Atzberger, C. Data Service Platform for Sentinel-2 Surface Reflectance and Value-Added Products: System Use and Examples. Remote Sens. 2016, 8, 938. [Google Scholar] [CrossRef]
- Pan, H.; Chen, Z.; Ren, J.; Li, H.; Wu, S. Estimating winter wheat leaf area index and canopy water content with three different approaches using Sentinel-2 multi-spectral instrument (S2 MSI) data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 99, 1–11. [Google Scholar]
- Verrelst, J.; Romijn, E.; Kooistra, L. Mapping Vegetation Density in a Heterogeneous River Floodplain Ecosystem Using Pointable CHRIS/PROBA Data. Remote Sens. 2012, 4, 2866–2889. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite Symposium, Washington, DC, USA, 10–14 December 1973; p. 9. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soiladjusted vegetation indices. Remote Sens. Environ. 1996, 55, 12. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Roujean, J.-L.; Breon, F.-M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Chivkunova, O.B.; Merzlyak, M.N. Non destructive estimation of anthocyanins and chlorophylls in anthocyanic leaves. Am. J. Bot. 2009, 96, 7. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Stark, R.; Grits, U.; Rundquist, D.; Kaufman, Y.; Derry, D. Vegetation and soil lines in visible spectral space: a concept and technique for remote estimation of vegetation fraction. Int. J. Remote Sens. 2002, 23, 2537–2562. [Google Scholar] [CrossRef]
- Penuelas, J.; Llusia, J.; Pinol, J.; Filella, I. Photochemical reflectance index and leaf photosynthetic radiation-use-efficiency assessment in Mediterranean trees. Int. J. Remote Sens. 1997, 18, 2863–2868. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Merton, R.; Huntington, J. Early simulation results of the ARIES-1 satellite sensor for multi-temporal vegetation research derived from AVIRIS. In Proceedings of the Eighth Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 8–14 February 1999. [Google Scholar]
- Wang, W.; Yao, X.; Yao, X.; Tian, Y.; Liu, X.; Ni, J.; Cao, W.; Zhu, Y. Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat. Field Crop. Res. 2012, 129, 90–98. [Google Scholar] [CrossRef]
- Tian, Y.C.; Gu, K.J.; Chu, X.; Yao, X.; Cao, W.X.; Zhu, Y. Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice. Plant Soil 2013, 376, 193–209. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Verrelst, J.; Muñoz, J.; Alonso, L.; Delegido, J.; Rivera, J.P.; Camps-Valls, G.; Moreno, J. Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. Remote Sens. Environ. 2012, 118, 127–139. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Stone, C.; Olshen, R. Classification and Regression Trees; Chapman&Hall/CRC: Boca Raton, FL, USA, 1984. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Tipping, M.E. Sparse Bayesian Learning and the Relevance Vector Machine. J. Mach. Learn. Res. 2001, 1, 211–244. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Vandewalle, J. Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: New York, NY, USA, 2006. [Google Scholar]
- Lazaro-Gredilla, M.; Titsias, M.; Verrelst, J.; Camps-Valls, G. Retrieval of biophysical parameters with heteroscedastic gaussian processes. IEEE Geosci. Remote Sens. Lett. 2013, 99, 1–5. [Google Scholar] [CrossRef]
- Chapelle, O.; Vapnik, V. Model Selection for Support Vector Machines. In Proceedings of the 12th International Conference on Neural Information Processing Systems, Denver, CO, USA, 29 November–4 December 2000; pp. 230–236. [Google Scholar]
- Nigam, R.; Bhattacharya, B.K.; Vyas, S.; Oza, M.P. Retrieval of wheat leaf area index from AWiFS multispectral data using canopy radiative transfer simulation. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 173–185. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Kooistra, L.; Schaepman, M.E. Estimating canopy water content using hyperspectral remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 119–125. [Google Scholar] [CrossRef]
- Gonzalez-Sanpedro, M.C.; Toan, T.L.; Moreno, J.F.; Kergoat, L.; Rubio, E. Seasonal variations of Leaf Area Index of agricultural fields retrieved from Landsat data. Remote Sens. Environ. 2008, 112, 810–824. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejadad, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2003, 90, 337–352. [Google Scholar] [CrossRef]
- Reddy, G.S.; Rao, C.L.N.; Venkataratnam, L.; Rao, P.V.K. Influence of plant pigments on spectral reflectance of maize, groundnut and soybean grown in semi-arid environments. Int. J. Remote Sens. 2001, 22, 3373–3380. [Google Scholar] [CrossRef]
- Sanchez, R.A.; Hall, A.J.; Trapani, N.; de Hunau, R.C. Effects of water stress on the chlorophyll content, nitrogen level and photosynthesis of leaves of two maize genotypes. Photosynth. Res. 1983, 4, 35–47. [Google Scholar] [CrossRef]
- Schepers, J.S.; Blackmer, T.M.; Wilhelm, W.W.; Resende, M. Transmittance and reflectance measurements of corn leaves from plants with diferent nitrogen and water supply. J. Plant Physiol. 1996, 148, 523–529. [Google Scholar] [CrossRef]
- Combal, B.; Baret, F.; Weiss, M.; Trubuil, A.; Macé, D.; Pragnère, A.; Myneni, R.; Knyazikhin, Y.; Wang, L. Retrieval of canopy biophysical variables from bidirectional reflectance: Using prior information to solve the ill-posed inverse problem. Remote Sens. Environ. 2003, 84, 1–15. [Google Scholar] [CrossRef]
- Tang, S.; Chen, J.M.; Zhu, Q.; Li, X.; Chen, M.; Sun, R.; Zhou, Y.; Deng, F.; Xie, D. LAI inversion algorithm based on directional reflectance kernels. J. Environ. Manag. 2007, 85, 638–648. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.; Baret, F.; Myneni, R.B.; Pragnère, A.; Knyazikhin, Y. Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data. Agronomie 2000, 20, 3–22. [Google Scholar] [CrossRef]
- Kimes, D.S.; Knyazikhin, Y.; Privette, J.L.; Abuelgasim, A.A.; Gao, F. Inversion methods for physically-based models. Remote Sens. Rev. 2000, 18, 381–439. [Google Scholar] [CrossRef]
- Sehgal, V.K.; Chakraborty, D.; Sahoo, R.N. Inversion of radiative transfer model for retrieval of wheat biophysical parameters from broadband reflectance measurements. Inf. Process. Agric. 2016, 3, 107–118. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.P.; Leonenko, G.; Alonso, L.; Moreno, J. Optimizing LUT-Based RTM Inversion for Semiautomatic Mapping of Crop Biophysical Parameters from Sentinel-2 and -3 Data: Role of Cost Functions. IEEE Trans. Geosci. Remote Sens. 2014, 52, 257–269. [Google Scholar] [CrossRef]
- Leonenko, G.; Los, O.S.; North, P.R.J. Statistical Distances and Their Applications to Biophysical Parameter Estimation: Information Measures, M-Estimates, and Minimum Contrast Methods. Remote Sens. 2013, 5, 1355–1388. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, M. On Estimation of Parameters of Gaussian Stationary Processes. J. Appl. Probab. 1979, 16, 575–591. [Google Scholar] [CrossRef]
- Snee, R.D. Validation of Regression Models: Methods and Examples. Technometrics 1977, 19, 415–428. [Google Scholar] [CrossRef]
- Gujarati, D. Basic Econometrics; McGraw: New York, NY, USA, 1995. [Google Scholar]
- Breusch, T.S.; Pegan, A.R. A simple test for heteroscedasticity and random coefficient variation. Econometrica 1979, 47, 1287–1294. [Google Scholar] [CrossRef]
- Zhao, D.; Huang, L.; Li, J.; Qi, J. A comparative analysis of broadband and narrowband derived vegetation indices in predicting LAI and CCD of a cotton canopy. ISPRS J. Photogramm. Remote Sens. 2007, 62, 25–33. [Google Scholar] [CrossRef]
- Stagakis, S.; Markos, N.; Sykioti, O.; Kyparissis, A. Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations. Remote Sens. Environ. 2010, 114, 977–994. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Vina, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Chen, Z.; Ren, J.; Li, H.; Wu, S. Estimating winter wheat leaf area index and canopy water content with three different approaches using Sentinel - 2 multi-spectral instrument (S2 MSI) data. J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 99, 11. [Google Scholar]
- Liu, K.; Zhou, Q.-B.; Wu, W.-B.; Xia, T.; Tang, H.-J. Estimating the crop leaf area index using hyperspectral remote sensing. J. Integr. Agric. 2016, 15, 475–491. [Google Scholar] [CrossRef]
- Schlerf, M.; Atzberger, C.; Hill, J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sens. Environ. 2005, 95, 177–194. [Google Scholar] [CrossRef] [Green Version]
- Koetz, B.; Kneubühler, M.; Huber, S.; Schopfer, J.; Baret, F. LAI estimation based on multi-temporal CHRIS/PROBA data and radiative transfer modelling. In Proceedings of the Envisat Symposium 2007, Montreux (CH), Switzerland, 23–27 April 2007. [Google Scholar]
- Vuolo, F.; Urso, G.D.; Dini, L. Cost-effectiveness of Vegetation Biophysical Parameters Retrieval from Remote Sensing Data. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 1949–1952. [Google Scholar]
- Wu, J.D.; Wang, D.; Bauer, M.E. Assessing broadband vegetation indices and QuickBird data in estimating leaf area index of corn and potato canopies. Field Crop. Res. 2007, 102, 33–42. [Google Scholar] [CrossRef]
- Andrieu, B.; Baret, F.; Jacquemoud, S.; Malthus, T.; Steven, M. Evaluation of an improved version of SAIL model for simulating bidirectional reflectance of sugar beet canopies. Remote Sens. Environ. 1997, 60, 247–257. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Matkan, A.A.; Dashti Ahangar, A. Inversion of a radiative transfer model for estimation of rice canopy chlorophyll content using a lookup-table approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1222–1230. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef]
- Wenng, H.T. Estimation and Validation of the Biophysical Parameter Leaf Area Index for Agricultural Areas from Satellite Sentinel-2a Data. Master’s Thesis, University of Natural Resources and Life Science, Vienna, Austria, 2017. [Google Scholar]
Item | Field 1 (2015) | Field 2 (2016) | Field 3 (2016) | Field 4 (2018) |
---|---|---|---|---|
Latitude | 21°56′24.19″ | 21°59′02.53″ | 21°56′20.88″ | 21°59′24.62″ |
Longitude | 35°07′24.19″ | 35°09′30.95″ | 35°07′18.12″ | 35°09′55.53″ |
Surface | 3 ha | 1 ha | 1 ha | 3 ha |
Soils | Sandy-loam soils | Sandy-loam soils | Sandy-loam soils | Sandy-loam soils |
Irrigation system and scheduling | Sprinkler: irrigation schedule conditioned by the water pumping availability | Drip irrigation: 3 days interval from V3–V8 and 6 days interval in the following stages | Drip irrigation: 3 days interval from V3–V8 and 6 days interval in the following stages | Central pivot: 5 days irrigation interval (with punctual constraints due power fluctuations) |
Variety | PAN 53, a medium maturity variety (125–140 days to harvest) | PAN 53 | PAN 53 | PAN 67, a medium maturity variety (120–130 days to harvest) |
Planting geometry | 0.5 × 0.25 cm; | 0.75 × 0.2 cm; | 0.75 × 0.2 cm; | 0.9 × 0.15 cm; |
Sowing and harvest dates | 9 June/30 October | 2 June/2 November | 4 July/4 December | 10 December 2017/25 April 2018 |
Crop yield | 2.5 Ton/ha | 5 Ton/ha | 5 Ton/ha | 4 Ton/ha |
Agricultural practices | Surface fertilization with Urea; manual weed removal; insect control of insect Sesamia monogriodes with cipermetrine at stages V8, VT and R | Deep fertilization with Guano (1200 kg/ha) before sowing; 3 applications of Mono-Ammonium Phosphate (MAP) (200 kg/ha) and Ammonium Sulphate (100 kg/ha) throughout the season | Deep fertilization with Guano (1200 kg/ha) before sowing; 3 applications of Mono-Ammonium Phosphate (MAP) (200 kg/ha) and Ammonium Sulphate (100 kg/ha) throughout the season | Deep fertilization with Guano (1200 kg/ha) early before sowing; 3 applications of Mono Amonium-Phosphate (MAP) (200 kg/ha) and Ammonium Sulphate (100 kg/ha) throughout the season; application of insecticides to control the Spodoptera frugiperda |
Crop Stage | Dates of Data Collection | |||
---|---|---|---|---|
Field 1 (2015) | Field 2 (2016) | Field 3 (2016) | Field 4 (2018) | |
V3 | 2 July | 28 Jun | 30 July | 9 January |
V6 | 20 July | 19 July | 12 August | 25/January |
V8 | 31 July | 30 July | 24 August | 5 February |
VT | 28 August | 17 August | 13 August | 4 March |
R1 | 3 September | 28 August | 27 September | |
RT | 16 September | 25 October |
Type of Index | Formulation | Original Index and Source |
---|---|---|
2 bands index | ||
ND | (ρ a − ρ b)/(ρ a + ρ b) | NDVI; [31] |
mNDa | [(ρ a − ρ b)/(ρ a + ρ b + 0.5)] * 1.5 | SAVI; [32] |
SR | ρ a/ρ b | SR; [33] |
mSRa | ρ a/ρ b − 1 | CI Green; [34] |
DI | ρ a − ρ b | DI; [35] |
mDIa | (1/ρ a) − (1/ρ b) | ARI; [36] |
3 bands index | ||
mDIb | (ρ a − ρ b) − 0.2 * (ρ a − ρ c) | CARI; [37] |
mNDb | 2.5 * [(ρ a − ρ b)/(ρ a + 6 * ρ b + 7.5 * ρ c + 1)] | EVI; [38] |
mNDc | (ρ a − ρ b)/(ρ a + ρ b − ρ c) | VARI; [39] |
mSRb | (ρ a − ρ b)/(ρ a − ρ c) | SIPI; [40] |
mSRc | (ρ a − ρ b)/ρ c | PSRI; [41] |
mDIc | [(ρ a − ρ b) − 0.2 * (ρ a − ρ c)] * (ρ a/ρ b) | mCARI; [42] |
mDId | [(1/ρ a) − (1/ρ b)] * ρ c | mARI; [36] |
mDIe | [(ρ a + ρ b)/2] − ρ c | RVSI; [43] |
TBSIa | (ρ a − ρ c)/(ρ b + ρ a) | [14] |
TBSIb | (ρ a − ρ b + 2 ρ c)/(ρ a + ρ b + ρ c) | [44] |
TBSIc | (ρ a − ρ b − ρ c)/(ρ a + ρ b + ρ c) | [45] |
Algorithm | Source |
---|---|
Regression tree (RT) | [48] |
Random Forest (TreeBagger) (RFTB) | [49] |
Bagging trees (BaT) | [50] |
Relevance vector machine (RVM) | [51] |
Kernel ridge regression (KRR) | [52] |
Gaussian process regression (GPR) | [53] |
Variation Heteroscedastic Gaussian process regression (VH-GPR) | [54] |
Support Vector Regression (SVM) | [55] |
Random Forest (Fitensemble) (RFF) | [49] |
Model/Parameter | Abbreviation | Unit | Range of Values | Fixed Values |
---|---|---|---|---|
Prospect 5 model | ||||
Equivalent water thickness | Cw | cm | 0.001–0.030 | - |
Leaf chlorophyll content | Cab | µg/cm² | 5–40 | - |
Leaf structure coefficient | N | No dimension | 1–1.4 | - |
Dry matter content | Cm | g/cm2 | 0.001–0.008 | - |
Carotenoids content | Car | µg/cm² | - | 10 |
Brown pigments content | Cbrown | g/cm² | - | 5 |
4SAIL model | ||||
Leaf area index | LAI | m2/m2 | 0.01–3.5 | - |
Average leaf angle | ALA | Degree | 20–60 | - |
Hot-spot size parameter | Hspot | m/m | 0.25–1 | - |
Diffuse/Direct light | Skyl | No dimension | - | 10 |
Soil Coefficient | Psoil | No dimension | - | 0.6 |
Solar Zenith Angle | Tts | Degree | - | 10 |
Observer zenith Angle | Tto | Degree | - | 5 |
Azimuth Angle | Psi | Degree | - | 0 |
VI | Bands | CA | CV | EV | Equation Parameters | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | R2 | NRMSE | RMSE | R2 | NRMSE | RMSE | R2 | NRMSE | |||
FSP_10 vs. Field_LAI | |||||||||||
Observations | 137 | 137 | 63 | ||||||||
mSRb | 735;565;715 | 0.39 | 0.85 | 13.4 | 0.41 | 0.83 | 16.2 | 0.8 | 0.8 | 20.8 | a2 = 0.07; a1 = −1.056; a0 = 4.65 |
mDId | 725;715;565 | 0.4 | 0.84 | 14.7 | 0.42 | 0.82 | 15.3 | 0.58 | 0.62 | 21.6 | a2 = −319.73; a1 = −64.78; a0 = −0.59 |
mSRa | 705;755 | 0.47 | 0.78 | 15.8 | 0.49 | 0.76 | 17.1 | 1.74 | 0.58 | 19.4 | m = −6.05; b = −0.17 |
FSP_S2 vs. Field_LAI | |||||||||||
Observations | 137 | 137 | 63 | ||||||||
mDIc | 705;740;865 | 0.41 | 0.83 | 12.6 | 0.42 | 0.83 | 13.4 | 0.77 | 0.71 | 22.4 | a2 = −587.33; a1 = −75.51; a0 = 0.37 |
mSRc | 740;705;865 | 0.4 | 0.84 | 12.4 | 0.43 | 0.82 | 14.7 | 0.62 | 0.82 | 23.6 | a2 = −21.63; a1 = 17.03; a0 = −0.63 |
mSRb | 842;783;705 | 0.43 | 0.82 | 14.9 | 0.44 | 0.8 | 15.3 | 0.97 | 0.75 | 21.8 | m = −6.87; b = 3.33 |
SP_S2 vs. Field_LAI | |||||||||||
Observations | 22 | 22 | |||||||||
TBSIb | 665;865;783 | 0.32 | 0.79 | 19.2 | 0.35 | 0.74 | 16.1 | - | - | a2 = 166.6; a1 = 199.5; a0 = 59.9 | |
mDIc | 865;665;705 | 0.36 | 0.74 | 20.3 | 0.38 | 0.71 | 17.4 | - | - | m = 3.1; b = −0.76 | |
TBSIc | 865;665;783 | 0.36 | 0.73 | 20.5 | 0.38 | 0.71 | 19.8 | - | - | m = 9.6; b = 2.6 | |
SP_S2 vs. LAI_S2 | |||||||||||
Observations | 22 | 22 | |||||||||
TBSIb | 705;842;560 | 0.14 | 0.83 | 11.2 | 0.18 | 0.76 | 11.7 | - | - | k = −2.9; n = 0.83 | |
SR | 665;783 | 0.18 | 0.73 | 12.4 | 0.19 | 0.72 | 11.5 | - | - | m = 0.20; b = 0.9 | |
TBSIa | 560;705;842 | 0.17 | 0.75 | 12.2 | 0.19 | 0.73 | 10.3 | - | - | m = −1.07; b = −0.16 |
MLRA/Type of Data | CV | EV | ||||
---|---|---|---|---|---|---|
RMSE | R2 | NRMSE | RMSE | R2 | NRMSE | |
FSP_10 vs. Field_LAI | ||||||
Observations | 137 | 63 | ||||
Support Vector Regression (SVM) | 0.48 | 0.77 | 14.9 | 0.67 | 0.65 | 17.5 |
Variation Heteroscedastic Gaussian Processes Regression (VHGPR) | 0.53 | 0.73 | 16.5 | 0.63 | 0.83 | 16.3 |
Relevance vector Machine (RVM) | 0.54 | 0.72 | 16.7 | 0.5 | 0.67 | 13.9 |
FSP_S2 vs. Field_LAI | ||||||
Observations | 137 | 63 | ||||
Support Vector Regression (SVM) | 0.48 | 0.78 | 14.9 | 0.9 | 0.72 | 24.9 |
Relevance vector Machine (RVM) | 0.52 | 0.73 | 26.3 | 0.53 | 0.62 | 15.9 |
Bagging trees (BaT) | 0.63 | 0.63 | 19.5 | 0.64 | 0.72 | 19.9 |
SP_S2 vs. Field_LAI (n = 22) | ||||||
Observations | 22 | - | ||||
Support Vector Regression (SVM) | 0.51 | 0.52 | 27.6 | - | - | |
Random Forest (Fitensemble) | 0.52 | 0.51 | 28.4 | - | - | |
Gaussian Processes Regression (GPR) | 0.5 | 0.49 | 27.4 | - | - | |
SP_S2 vs. LAI_S2 (n = 22) | ||||||
Observations | 22 | - | ||||
Random Forest (Fitensemble) | 0.22 | 0.64 | 14.1 | - | - | |
Relevance vector Marchine (RVM) | 0.23 | 0.61 | 14.8 | - | - | |
Support Vector Regression (SVM) | 0.23 | 0.6 | 14.9 | - | - |
CF Algorithm | FSP_S2 vs. Field LAI (n = 63) | SP_S2 vs. LAI_S2 (n = 22) | SP_S2 vs. Field LAI (n = 22) | ||||||
---|---|---|---|---|---|---|---|---|---|
RMSE | R2 | NRMSE | RMSE | R2 | NRMSE | RMSE | R2 | NRMSE | |
K(x) = (log(x))2 | 0.43 | 0.82 | 18.2 | 0.28 | 0.71 | 17.9 | 0.53 | 0.6 | 28.9 |
K(x) = x(log(x)) − x | 0.49 | 0.82 | 20.7 | 0.24 | 0.7 | 15.4 | 0.56 | 0.6 | 30.6 |
Bhattacharyya divergence | 0.61 | 0.83 | 25.9 | 0.2 | 0.7 | 12.9 | 0.62 | 0.7 | 33.9 |
RMSE | 0.85 | 0.86 | 36.1 | 0.26 | 0.65 | 16.9 | 0.77 | 0.7 | 41.8 |
K(x) = −log(x) + x | 1.09 | 0.85 | 46.2 | 0.41 | 0.72 | 26.6 | 0.92 | 0.6 | 49.7 |
Spectral Data | Modelling Approach | Field LAI | LAI_S2 | ||
---|---|---|---|---|---|
RMSE | b * | RMSE | b * | ||
FSP_10 | VI | 0.42 | 0.99 | - | - |
FSP_S2 | VI | 0.43 | 1.0 | - | - |
FSP_10 | MLRA | 0.54 | 0.95 | - | - |
FSP_S2 | MLRA | 0.52 | 0.99 | - | - |
FSP_S2 | LUT | 0.43 | 1.11 | - | - |
SP_S2 | VI | 0.35 | 0.82 | 0.18 | 0.80 |
SP_S2 | MLRA | 0.51 | 0.78 | 0.22 | 0.62 |
SP_S2 | LUT | 0.53 | 1.20 | 0.20 | 0.88 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mananze, S.; Pôças, I.; Cunha, M. Retrieval of Maize Leaf Area Index Using Hyperspectral and Multispectral Data. Remote Sens. 2018, 10, 1942. https://doi.org/10.3390/rs10121942
Mananze S, Pôças I, Cunha M. Retrieval of Maize Leaf Area Index Using Hyperspectral and Multispectral Data. Remote Sensing. 2018; 10(12):1942. https://doi.org/10.3390/rs10121942
Chicago/Turabian StyleMananze, Sosdito, Isabel Pôças, and Mario Cunha. 2018. "Retrieval of Maize Leaf Area Index Using Hyperspectral and Multispectral Data" Remote Sensing 10, no. 12: 1942. https://doi.org/10.3390/rs10121942
APA StyleMananze, S., Pôças, I., & Cunha, M. (2018). Retrieval of Maize Leaf Area Index Using Hyperspectral and Multispectral Data. Remote Sensing, 10(12), 1942. https://doi.org/10.3390/rs10121942