Estimating Soil Evaporation Using Drying Rates Determined from Satellite-Based Soil Moisture Records
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaporation and Water Balance of the Surface Soil Layer
2.2. Soil Moisture Data and Spatial Support
2.3. Precipitation
2.4. Bottom Flux
2.5. Transpiration from the Surface Soil
3. Results
3.1. Vertical Flux in the Soil
3.2. Transpiration from the Surface Layer
3.3. Soil Drying and Evaporation
3.4. Simulated Water Balance
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Description | Units |
---|---|---|
qbot | Flux of water across the bottom boundary of the surface soil layer sensed by SMAP (0–50 mm). Downward fluxes out of the surface soil layer were considered positive; whereas upwards fluxes into the surface soil layer were considered negative. | mm day−1 |
ET_s | Transpiration from the surface soil layer (0–50 mm) | mm day−1 |
Esoil | Soil evaporation from the surface soil layer (00–50 mm) | mm day−1 |
ESMAPsoil | Soil evaporation from the surface soil layer (0–50 mm) estimated with the presented ESMAP approach | mm day−1 |
References
- Tateishi, R.; Ahn, C.H. Mapping Evapotranspiration and Water Balance for Global Land Surfaces. ISPRS J. Photogramm. Remote Sens. 1996, 51, 209–215. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef] [Green Version]
- Dolman, A.J.; De Jeu, R.A.M. Evaporation in Focus. Nat. Geosci. 2010, 3, 296. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; de Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global Land-Surface Evaporation Estimated from Satellite-Based Observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, D.M.; Thornton, P.E.; Oleson, K.W.; Bonan, G.B. The Partitioning of Evapotranspiration into Transpiration, Soil Evaporation, and Canopy Evaporation in a GCM: Impacts on Land–Atmosphere Interaction. J. Hydrometeorol. 2007, 8, 862–880. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M. Evaluation of Soil and Vegetation Heat Flux Predictions Using a Simple Two-Source Model with Radiometric Temperatures for Partial Canopy Cover. Agric. For. Meteorol. 1999, 94, 13–29. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R.; Wright, J.L.; Bastiaanssen, W.; Kramber, W.; Lorite, I.; Robison, C.W. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications. J. Irrig. Drain. Eng. 2007, 133, 395–406. [Google Scholar] [CrossRef]
- Anderson, M. A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing. Remote Sens. Environ. 1997, 60, 195–216. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Heitman, J.L.; Xiao, X.; Horton, R.; Sauer, T.J. Sensible Heat Measurements Indicating Depth and Magnitude of Subsurface Soil Water Evaporation. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Xiao, Z.; Lu, S.; Heitman, J.; Horton, R.; Ren, T. Measuring Subsurface Soil-Water Evaporation with an Improved Heat-Pulse Probe. Soil Sci. Soc. Am. J. 2012, 76, 876. [Google Scholar] [CrossRef]
- Stannard, D.I.; Weltz, M.A. Partitioning Evapotranspiration in Sparsely Vegetated Rangeland Using a Portable Chamber. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Shawcroft, R.W.; Gardner, H.R. Direct Evaporation from Soil under a Row Crop Canopy. Agric. Meteorol. 1983, 28, 229–238. [Google Scholar] [CrossRef]
- Herbst, M.; Kappen, L.; Thamm, F.; Vanselow, R. Simultaneous Measurements of Transpiration, Soil Evaporation and Total Evaporation in a Maize Field in Northern Germany. J. Exp. Bot. 1996, 47, 1957–1962. [Google Scholar] [CrossRef]
- Wullschleger, S.D.; Hanson, P.J.; Tschaplinski, T.J. Whole-Plant Water Flux in Understory Red Maple Exposed to Altered Precipitation Regimes. Tree Physiol. 1998, 18, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.V.; Peters-Lidard, C.D.; Santanello, J.A.; Reichle, R.H.; Draper, C.S.; Koster, R.D. Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes. Hydrol. Earth Syst. Sci. 2015, 19, 4463–4478. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; Jimenez, C.; Jung, M.; Michel, D.; Ershadi, A.; McCabe, M.F.; Hirschi, M.; Martes, B.; Dolman, A.J.; Fisher, J.B.; et al. The WACMOS-ET project—Part 2: Evaluation of global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci. 2016, 20, 823–842. [Google Scholar] [CrossRef] [Green Version]
- Talsma, C.J.; Good, S.P.; Jimenez, C.; Martens, B.; Fisher, J.B.; Miralles, D.G.; McCabe, M.F.; Purdy, A.J. Partitioning of evapotranspiration in remote sensing-based models. Agric. For. Meteorol. 2018, 260, 131–143. [Google Scholar] [CrossRef]
- Moran, M.S.; Scott, R.L.; Keefer, T.O.; Emmerich, W.E.; Hernandez, M.; Nearing, G.S.; Paige, G.B.; Cosh, M.H.; O’Neil, P.E. Partitioning Evapotranspiration in Semiarid Grassland and Shrubland Ecosystems Using Time Series of Soil Surface Temperature. Agric. For. Meteorol. 2009, 149, 59–72. [Google Scholar] [CrossRef]
- Jasechko, S.; Sharp, Z.D.; Gibson, J.J.; Birks, S.J.; Yi, Y.; Fawcett, P.J. Terrestrial Water Fluxes Dominated by Transpiration. Nature 2013, 496, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.R.; Barnard, H.R.; Coulombe, R.; McDonnell, J.J. Ecohydrologic Separation of Water between Trees and Streams in a Mediterranean Climate. Nat. Geosci. 2009, 3, 100–104. [Google Scholar] [CrossRef]
- Coenders-Gerrits, A.M.J.; van der Ent, R.J.; Bogaard, T.A.; Wang-Erlandsson, L.; Hrachowitz, M.; Savenije, H.H.G. Uncertainties in Transpiration Estimates. Nature 2014, 506. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Good, S.P.; Caylor, K.K. Global Synthesis of Vegetation Control on Evapotranspiration Partitioning. Geophys. Res. Lett. 2014, 41, 6753–6757. [Google Scholar] [CrossRef]
- Choudhury, B.J.; Monteith, J.L. A Four-Layer Model for the Heat Budget of Homogeneous Land Surfaces. Q. J. R. Meteorol. Soc. 1988, 114, 373–398. [Google Scholar] [CrossRef]
- Dirmeyer, P.A. The Land Surface Contribution to the Potential Predictability of Boreal Summer Season Climate. J. Hydrometeorol. 2005, 6, 618–632. [Google Scholar] [CrossRef]
- Kool, D.; Ben-Gal, A.; Agam, N.; Šimůnek, J.; Heitman, J.L.; Sauer, T.J.; Lazarovitch, N. Spatial and Diurnal below Canopy Evaporation in a Desert Vineyard: Measurements and Modeling. Water Resour. Res. 2014, 50, 7035–7049. [Google Scholar] [CrossRef]
- Troch, P.A.; Martinez, G.F.; Pauwels, V.R.N.; Durcik, M.; Sivapalan, M.; Harman, C.; Brooks, P.D.; Gupta, H.; Huxman, T. Climate and Vegetation Water Use Efficiency at Catchment Scales. Hydrol. Processes 2009, 23, 2409–2414. [Google Scholar] [CrossRef]
- Wang, L.; Caylor, K.K.; Villegas, J.C.; Barron-Gafford, G.A.; Breshears, D.D.; Huxman, T.E. Partitioning Evapotranspiration across Gradients of Woody Plant Cover: Assessment of a Stable Isotope Technique. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Shellito, P.J.; Small, E.E.; Colliander, A.; Bindlish, R.; Cosh, M.H.; Berg, A.A.; Bosch, D.D.; Caldwell, T.G.; Goodrich, D.C.; McNairn, H.; et al. SMAP Soil Moisture Drying More Rapid than Observed in Situ Following Rainfall Events. Geophys. Res. Lett. 2016, 43, 8068–8075. [Google Scholar] [CrossRef]
- McColl, K.A.; Alemohammad, S.H.; Akbar, R.; Konings, A.G.; Yueh, S.; Entekhabi, D. The Global Distribution and Dynamics of Surface Soil Moisture. Nat. Geosci. 2017, 10, 100–104. [Google Scholar] [CrossRef]
- Shellito, P.J.; Small, E.E. Controls on Surface Soil Drying Rates Observed by SMAP and Simulated by the Noah Land Surface Model. Hydrol. Earth Syst. Sci. 2018, 22, 1649–1663. [Google Scholar] [CrossRef]
- Kurc, S.A.; Small, E.E. Soil Moisture Variations and Ecosystem-Scale Fluxes of Water and Carbon in Semiarid Grassland and Shrubland. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Entekhabi, D.; Yueh, S.; O’Neill, P.E.; Kellogg, K.H.; Allen, A.; Bindlish, R.; Brown, M.; Chan, S.; Colliander, A.; Crow, W.T.; et al. SMAP Handbook; Laboratory, J.P., Ed.; JPL Publication JPL 400-1567; NASA CalTech: Pasadena, CA, USA, 2014.
- Njoku, E.G.; Kong, J.A. Theory for Passive Microwave Remote Sensing of near-Surface Soil Moisture. J. Geophys. Res. 1977, 82, 3108–3118. [Google Scholar] [CrossRef]
- Zeng, X. Global Vegetation Root Distribution for Land Modeling. J. Hydrometeorol. 2001, 2, 525–530. [Google Scholar] [CrossRef]
- Chan, S.; Bindlish, R.; O’Neill, P.E.; Jackson, T.J.; Njoku, E.; Dunbar, R.S.; Chaubell, J.; Peipmeier, J.; Yueh, S.; Entekhabi, D.; et al. Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sens. Environ. 2018, 204, 931–941. [Google Scholar] [CrossRef]
- Chapin, E.; Chau, A.; Chen, J.; Heavey, B.; Hensley, S.; Lou, Y.; Machuzak, R.; Moghaddam, M. AirMOSS: An Airborne P-Band SAR to Measure Root-Zone Soil Moisture. In Proceedings of the 2012 IEEE Radar Conference, Atlanta, GA, USA, 7–11 May 2012. [Google Scholar] [CrossRef]
- O’Neill, P.E.; Chan, S.; Njoku, E.G.; Jackson, T.; Bindlish, R. SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil Moisture, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2016. [CrossRef]
- Jackson, T.J.; Bindlish, R.; Cosh, M.H.; Zhao, T.; Starks, P.J.; Bosch, D.D.; Seyfried, M.; Moran, M.S.; Goodrich, D.C.; Kerr, Y.H.; et al. Validation of Soil Moisture and Ocean Salinity (SMOS) Soil Moisture Over Watershed Networks in the U.S. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1530–1543. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.K.; Bindlish, R.; O’Neil, P.E.; Njoku, E.; Jackson, T.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.; Piepmeier, J.; et al. Assessment of the SMAP passive soil moisture product. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4994–5007. [Google Scholar] [CrossRef]
- O’Neill, P.E.; Chan, S.; Njoku, E.G.; Jackson, T.; Bindlish, R. SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil Moisture, Version 2; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2018. [CrossRef]
- Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.B.; Cosh, M.H.; Dunbar, R.S.; Dang, L.; Pashaian, L.; et al. Validation of SMAP surface soil moisture products with core validation sites. Remote Sens. Environ. 2017, 191, 215–231. [Google Scholar] [CrossRef]
- Lawston, P.M.; Santanello, J.A.; Franz, T.E.; Rodell, M. Assessment of irrigation physics in a land surface modelling framework using non-traditional and human-practice datasets. Hydrol. Earth Syst. Sci. 2017, 21, 2953–2966. [Google Scholar] [CrossRef]
- NCEP/EMC. NLDAS Primary Forcing Data L4 Hourly 0.125 × 0.125 Degree V002; Goddard Earth Sciences Data and Information Services Center (GESDISC): Greenbelt, MD, USA, 2009. [CrossRef]
- Xia, Y.; Mitchell, K.; Ek, M.; Sheffield, J.; Cosgrove, B.; Wood, E.; Luo, L.; Alonge, C.; Wei, H.; Meng, J.; et al. Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res. 2012, 117, D03109. [Google Scholar] [CrossRef]
- Daly, C.; Neilson, R.P.; Philips, D.L. A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain. J. Appl. Meteorol. 1994, 33, 140–158. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, B.R. Water and heat fluxes in desert soils—1. Field Studies. Water Resour. Res. 1994, 30, 709–719. [Google Scholar] [CrossRef]
- Šimůnek, J.; Jarvis, N.J.; Van Genuchten, M.T.; Gärdenäs, A.L. Review and Comparison of Models for Describing Non-Equilibrium and Preferential Flow and Transport in the Vadose Zone. J. Hydrol. 2003, 272, 14–35. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Gutmann, E.; Small, E. The effect of soil hydraulic properties versus soil texture in land surface models. Geophys. Res. Lett. 2005, 32, L02402. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS Global Terrestrial Evapotranspiration Algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a Global Evapotranspiration Algorithm Based on MODIS and Global Meteorology Data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Didan, K.; Barreto Munoz, A.; Solano, R.; Huete, A. MODIS Vegetation Index User’s Guide; Collection 6; NASA: Washington, DC, USA, 2015.
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. 2003, 108, 8851. [Google Scholar] [CrossRef]
- Xia, Y.; Mitchell, K.; Ek, M.; Cosgrove, B.; Sheffield, J.; Luo, L.; Alonge, C.; Wei, H.; Meng, J.; Livneh, B.; et al. Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res. 2012, 117, D03110. [Google Scholar] [CrossRef]
- Guswa, A.J.; Celia, M.A.; Rodriguez-Iturbe, I. Models of soil moisture dynamics in ecohydrology: A comparative study. Water Resour. Res. 2002, 38, 5-1–5-15. [Google Scholar] [CrossRef]
- Colliander, A. SMAP/In Situ Core Validation Site Land Surface Parameters Match-Up Data, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2017. [CrossRef]
- Gutmann, E.D.; Small, E.E. A comparison of land surface model soil hydraulic properties estimated by inverse modeling and pedotransfer functions. Water Resour. Res. 2007, 43, W05418. [Google Scholar] [CrossRef]
- Kurc, S.A.; Small, E.E. Dynamics of evapotranspiration in semiarid grassland and shrubland ecosystems during the summer monsoon season, central New Mexico. Water Resour. Res. 2004, 40, W09305. [Google Scholar] [CrossRef]
Site | Latitude | Longitude | Vegetation | Soil Type |
---|---|---|---|---|
Fort Cobb | 35.42 | −98.62 | Grasslands | Silt loam |
Little River | 31.62 | −83.59 | Cropland/natural mosaic | Loamy sand |
Little Washita | 34.88 | −98.09 | Grasslands | Sandy loam |
Reynolds Creek | 43.14 | −116.76 | Grasslands | Loam |
South Fork | 42.47 | −93.39 | Croplands | Loam |
St. Josephs | 41.4 | −85.02 | Croplands | Silt loam |
Tonzi Ranch | 38.47 | −121 | Woody Savannas | Sandy loam |
TxSON | 30.31 | −98.78 | Grasslands | Clay loam |
Walnut Gulch | 31.68 | −110.04 | Open Shrublands | Loam |
Viara Ranch | 38.41 | −120.95 | Grasslands | Silt loam |
Site | ubRMSE of VSM | r | MeanVSM Bias | Drying Rate | qbot | ET_s | Noah Esoil | Mosaic Esoil | ESMAPsoil | Precip. | Valid Days | Invalid Days |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fort Cobb | 0.04 | 0.90 | 0.14 | 0.53 | −0.27 | 0.08 | 0.32 | 0.88 | 0.69 | 4.31 | 583 | 347 |
Little River | 0.04 | 0.82 | −0.02 | 0.48 | −0.19 | 0.15 | 0.18 | 0.38 | 0.48 | 6.10 | 499 | 430 |
Little Washita | 0.04 | 0.88 | 0.13 | 0.40 | −0.27 | 0.12 | 0.33 | 0.58 | 0.52 | 5.25 | 551 | 379 |
Reynolds Creek | 0.04 | 0.84 | 0.03 | 0.20 | −0.04 | 0.03 | 0.20 | 0.39 | 0.16 | 1.33 | 605 | 323 |
South Fork | 0.05 | 0.62 | 0.08 | 0.42 | 0.02 | 0.08 | 0.25 | 0.69 | 0.35 | 6.99 | 375 | 553 |
St. Josephs | 0.04 | 0.73 | 0.11 | 0.63 | −0.12 | 0.18 | 0.26 | 0.70 | 0.48 | 6.26 | 401 | 527 |
Tonzi Ranch | 0.04 | 0.91 | 0.08 | 0.17 | −0.09 | 0.07 | 0.06 | 0.26 | 0.16 | 2.65 | 722 | 208 |
TxSON | 0.05 | 0.91 | 0.01 | 0.32 | −0.18 | 0.07 | 0.33 | 0.60 | 0.38 | 3.69 | 578 | 352 |
Walnut Gulch | 0.03 | 0.89 | 0.04 | 0.14 | −0.06 | 0.01 | 0.17 | 0.23 | 0.19 | 1.68 | 655 | 273 |
Vaira Ranch | 0.05 | 0.90 | 0.09 | 0.16 | −0.09 | 0.03 | 0.14 | 0.39 | 0.19 | 3.42 | 694 | 236 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Small, E.E.; Badger, A.M.; Abolafia-Rosenzweig, R.; Livneh, B. Estimating Soil Evaporation Using Drying Rates Determined from Satellite-Based Soil Moisture Records. Remote Sens. 2018, 10, 1945. https://doi.org/10.3390/rs10121945
Small EE, Badger AM, Abolafia-Rosenzweig R, Livneh B. Estimating Soil Evaporation Using Drying Rates Determined from Satellite-Based Soil Moisture Records. Remote Sensing. 2018; 10(12):1945. https://doi.org/10.3390/rs10121945
Chicago/Turabian StyleSmall, Eric E., Andrew M. Badger, Ronnie Abolafia-Rosenzweig, and Ben Livneh. 2018. "Estimating Soil Evaporation Using Drying Rates Determined from Satellite-Based Soil Moisture Records" Remote Sensing 10, no. 12: 1945. https://doi.org/10.3390/rs10121945
APA StyleSmall, E. E., Badger, A. M., Abolafia-Rosenzweig, R., & Livneh, B. (2018). Estimating Soil Evaporation Using Drying Rates Determined from Satellite-Based Soil Moisture Records. Remote Sensing, 10(12), 1945. https://doi.org/10.3390/rs10121945