On the Use of the Eddy Covariance Latent Heat Flux and Sap Flow Transpiration for the Validation of a Surface Energy Balance Model
Abstract
:1. Introduction
- (i)
- the evaporative fraction at the acquisition time, Λ(-), is assumed equal to its average diurnal value; in other words, the fraction of available energy used for the evapotranspiration process is almost constant during diurnal hours (self-preservation hypothesis);
- (ii)
- the daily soil heat flux at ground level can be neglected when compared to the daily net radiation, Rn,D, since, during a day cycle, daytime heat flux almost balances the nighttime one.
2. Methods
2.1. The Surface Energy Balance Model
2.2. The Flux Time-Scaling via Micro-Meteorological Measurements
2.3. Tree Transpiration Measurement: The Heat Dissipation Technique
2.4. Eddy Covariance and Sap-Flow Diurnal Behavior and Time Lag between EC and SF Measurements
2.5. The Surface Energy Balance Model Validation
2.6. Spatial Resolution Analysis
3. Materials
3.1. The Experimental Farm
3.2. In Situ Measurements: Sensors and Data
4. Results and Discussion
4.1. Fluxes Temporal Behavior
4.2. Diachronic Analysis
4.3. Spatial Resolution Analysis
4.4. Absolute Difference Analysis (FT)
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix
cf | time unit conversion factor (=86,400) | (s·d−1) |
q | sap flux within S | (m3·s−1) |
r2 | determination coefficient | (-) |
t | half-hourly time step | (s) |
AD | absolute difference in the estimate of λET | (mm·d−1) |
ADΛ | AD in the estimate of ETD based on Λ | (mm·d−1) |
ADRs | AD in the estimate of ETD based on Rs | (mm·d−1) |
AP | plant pertinence area | (m2) |
ET | actual hourly evapotranspiration | (mm·d−1) |
ETD | actual daily evapotranspiration | (mm·d−1) |
ETD,βR | ETD adjusted by preserving βR | (mm·d−1) |
ETD,Rs | ETD based on Rs as integration factor | (mm·d−1) |
ETD,Λ | ETD based on the self-preservation hypothesis of Λ | (mm·d−1) |
FP0.70 | average footprint determining 70% of the fluxes | (m) |
G0 | soil heat flux at ground level at the acquisition time | (W·m−2) |
H | sensible heat flux | (W·m−2) |
LAI | leaf Area Index | (m2·m−2) |
LAIp | LAI of a single plant | (m2·m−2) |
Rn | net radiation at the acquisition time | (W·m−2) |
Rn,D | daily net radiation | (W·m−2) |
Rs | hourly incoming shortwave radiation | (W·m−2) |
S | the cross-sectional area of conducting sapwood | (m2) |
T | hourly transpiration of an entire field | (mm·d−1) |
Tp | hourly transpiration of a single plant | (mm·d−1) |
Xmax | distance determining the maximum flux contribution | (m) |
α | multiplicative coefficient of the sap flow Equation (5) | (m·s−1) |
βR | Bowen ratio | (-) |
β | power coefficient of the sap flow Equation (5) | (-) |
ΔT | temperature difference between two sap flow probes | (K) |
ΔTmax | maximum ΔT occurring when sap velocity is minimum | (K) |
Λ | hourly evaporative fraction | (-) |
Λd | average diurnal evaporative fraction | (-) |
λ | latent heat of vaporization | (MJ·kg−1) |
λET | actual hourly latent heat flux | (W·m−2) |
λETβR | λET adjusted by preserving βR | (W·m−2) |
ρw | water density | (kg·m−3) |
ASD | analytical spectral device |
CCD | charge coupled device |
CW | clockwise |
EC | eddy covariance |
EPSG | European Petroleum Survey Group geodetic parameters dataset |
FT | flux tower |
IRGA | infrared gas analyzer |
IRTS-P | precision infrared thermocouple sensor |
P1, P2, P3 | olives trees where sap flow probes were installed |
SEBAL | surface energy balance algorithm for land |
SF | sap flow |
SFS2 | sapflow sensor |
TIR | thermal infrared |
USDA | United States Department of Agriculture |
References
- Khadra, R.; Moreno, M.A.; Awada, H.; Lamaddalena, N. Energy and Hydraulic Performance-Based Management of Large-Scale Pressurized Irrigation Systems. Water Resour. Manag. 2016, 30, 3493–3506. [Google Scholar] [CrossRef]
- Ciraolo, G.; Cammalleri, C.; Capodici, F.; D’Urso, G.; Maltese, A. Mapping evapotranspiration on vineyards: A comparison between Penman-Monteith and energy balance approaches for operational purposes. In Proceedings of the SPIE—The International Society for Optical Engineering, Edinburgh, UK, 23 October 2012; Volume 8531, pp. 85310Q1–85310Q9. [Google Scholar]
- Verstraeten, W.W.; Veroustraete, F.; Feyen, J. Assessment of evapotranspiration and soil moisture content across different scales of observation. Sensors 2008, 8, 70–117. [Google Scholar] [CrossRef] [PubMed]
- Cammalleri, C.; Rallo, G.; Agnese, C.; Ciraolo, G.; Minacapilli, M.; Provenzano, G. Combined use of eddy covariance and sap flow techniques for partition of et fluxes and water stress assessment in an irrigated olive orchard. Agric. Water Manag. 2013, 120, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Granier, A. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann. Sci. For. 1985, 42, 193–200. [Google Scholar] [CrossRef]
- Derbyshire, S.H. Atmospheric boundary layer flows—their structure and measurement. by J. C. Kaimal and J. J. Finnigan. Oxford University Press. 1994. pp. 289. ISBN 0 19 506239 6. Q. J. R. Meteorol. Soc. 1995, 121, 1177. [Google Scholar] [CrossRef]
- Chávez, J.L.; Neale, C.M.U.; Prueger, J.H.; Kustas, W.P. Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing et values. Irrig. Sci. 2008, 27, 67–81. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Cammalleri, C.; Ciraolo, G.; La, L.; Maltese, A. Daily evapotranspiration assessment by means of residual surface energy balance modeling: A critical analysis under a wide range of water availability. J. Hydrol. 2012, 452–453, 119–129. [Google Scholar] [CrossRef]
- Crago, R.D. Conservation and variability of the evaporative fraction during the daytime. J. Hydrol. 1996, 180, 173–194. [Google Scholar] [CrossRef]
- Jackson, R.D.; Hatfield, J.L.; Reginato, R.J.; Idso, S.B.; Pinter, J. Estimation of daily evapotranspiration from one time-of-day measurements. Agric. Water Manag. 1983, 7, 351–362. [Google Scholar] [CrossRef]
- Meijninger, W.M.L.; Beyrich, F.; Lüdi, A.; Kohsiek, W.; De Bruin, H.A.R. Scintillometer-based turbulent fluxes of sensible and latent heat over a heterogeneous land surface—A contribution to LITFASS-2003. Bound. Layer Meteorol. 2006, 121, 89–110. [Google Scholar] [CrossRef]
- Opperman, D.P.J.; Roberts, B.R. Evapotranspiration studies on themeda triandra under field conditions: A study in lysimeter methodology [Evapotranspirasie-studies op themeda triandra onder veld-toestande: ’N studie in lisimeter metodes]. Proc. Annu. Congr. Grassl. Soc. South. Afr. 1975, 10, 103–109. [Google Scholar] [CrossRef]
- Castellví, F.; Cammalleri, C.; Ciraolo, G.; Maltese, A.; Rossi, F. Daytime sensible heat flux estimation over heterogeneous surfaces using multitemporal land-surface temperature observations. Water Resour. Res. 2016, 52, 3457–3476. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Diak, G.R.; Kustas, W.P.; Mecikalski, J.R. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ. 1997, 60, 195–216. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Noordman, E.J.M.; Pelgrum, H.; Davids, G.; Thoreson, B.P.; Allen, R.G. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. J. Irrig. Drain. Eng. 2005, 131, 85–93. [Google Scholar] [CrossRef]
- Gentine, P.; Entekhabi, D.; Chehbouni, A.; Boulet, G.; Duchemin, B. Analysis of evaporative fraction diurnal behaviour. Agric. For. Meteorol. 2007, 143, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Malek, E. Night-time evapotranspiration vs. daytime and 24 h evapotranspiration. J. Hydrol. 1992, 138, 119–129. [Google Scholar] [CrossRef]
- Hoedjes, J.C.B.; Chehbouni, A.; Jacob, F.; Ezzahar, J.; Boulet, G. Deriving daily evapotranspiration from remotely sensed instantaneous evaporative fraction over olive orchard in semi-arid Morocco. J. Hydrol. 2008, 354, 53–64. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Lhomme, J.-P.; Elguero, E. Examination of evaporative fraction diurnal behaviour using a soil-vegetation model coupled with a mixed-layer model. Hydrol. Earth Syst. Sci. 1999, 3, 259–270. [Google Scholar] [CrossRef]
- Brutsaert, W.; Sugita, M. Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation. J. Geophys. Res. 1992, 97, 18377–18382. [Google Scholar] [CrossRef]
- Franks, S.W.; Beven, K.J. Estimation of evapotranspiration at the landscape scale: A fuzzy disaggregation approach. Water Resour. Res. 1997, 33, 2929–2938. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; p. 326. [Google Scholar]
- Foken, T.; Wimmer, F.; Mauder, M.; Thomas, C.; Liebethal, C. Some aspects of the energy balance closure problem. Atmos. Chem. Phys. 2006, 6, 4395–4402. [Google Scholar] [CrossRef]
- Prueger, J.H.; Hatfield, J.L.; Kustas, W.P.; Hipps, L.E.; MacPherson, J.I.; Neale, C.M.U.; Eichinger, W.E.; Cooper, D.I.; Parkin, T.B. Tower and aircraft eddy covariance measurements of water vapor, energy and carbon dioxide fluxes during SMACEX. J. Hydrometeorol. 2005, 6, 954–960. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef]
- Schuepp, P.H.; Leclerc, M.Y.; MacPherson, J.I.; Desjardins, R.L. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound. Layer Meteorol. 1990, 50, 355–373. [Google Scholar] [CrossRef]
- Granier, A. Evaluation of Transpiration in a Douglas-Fir Stand by Means of Sap Flow Measurements. Tree Physiol. 1987, 3, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Motisi, A.; Consoli, S.; Papa, R.; Cammalleri, C.; Rossi, F.; Minacapilli, M.; Rallo, G. Eddy covariance and sap flow measurement of energy and mass exchanges of woody crops in a Mediterranean environment. Acta Hortic. 2012, 951, 121–128. [Google Scholar] [CrossRef]
- Rallo, G.; Provenzano, G. Modelling eco-physiological response of table olive trees (Olea europaea L.) To soil water deficit conditions. Agric. Water Manag. 2013, 120, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Phillips, N.; Nagchaudhuri, A.; Oren, R.; Katul, G. Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and stem sapflow. Trees Struct. Funct. 1997, 11, 412–419. [Google Scholar] [CrossRef]
- Kumagai, T. Modeling water transportation and storage in sapwood—Model development and validation. Agric. For. Meteorol. 2001, 109, 105–115. [Google Scholar] [CrossRef]
- Ford, C.R.; Goranson, C.E.; Mitchell, R.J.; Will, R.E.; Teskey, R.O. Modeling canopy transpiration using time series analysis: A case study illustrating the effect of soil moisture deficit on Pinus taeda. Agric. For. Meteorol. 2005, 130, 163–175. [Google Scholar] [CrossRef]
- Phillips, N.G.; Ryan, M.G.; Bond, B.J.; McDowell, N.G.; Hinckley, T.M.; Čermák, J. Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiol. 2003, 23, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Bohrer, G.; Mourad, H.; Laursen, T.A.; Drewry, D.; Avissar, R.; Poggi, D.; Oren, R.; Katul, G.G. Finite element tree crown hydrodynamics model (FETCH) using porous media flow within branching elements: A new representation of tree hydrodynamics. Water Resour. Res. 2005, 41, 1–17. [Google Scholar] [CrossRef]
- Phillips, N.G.; Scholz, F.G.; Bucci, S.J.; Goldstein, G.; Meinzer, F.C. Using branch and basal trunk sap flow measurements to estimate whole-plant water capacitance: Comment on Burgess and Dawson (2008). Plant Soil 2009, 315, 315–324. [Google Scholar] [CrossRef]
- Dichio, B.; Xiloyannis, C.; Sofo, A.; Montanaro, G. Osmotic regulation in leaves and roots of olive trees during a water deficit and rewatering. Tree Physiol. 2006, 26, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J. Plant-Based Methods for Irrigation Scheduling of Woody Crops. Horticulturae 2017, 3, 35. [Google Scholar] [CrossRef]
- Gentine, P.; Entekhabi, D.; Polcher, J. The Diurnal Behavior of Evaporative Fraction in the Soil–Vegetation–Atmospheric Boundary Layer Continuum. J. Hydrometeorol. 2011, 12, 1530–1546. [Google Scholar] [CrossRef] [Green Version]
Time | Wind Speed | Wind Direction | Xmax | FP0.70 |
---|---|---|---|---|
(hh:mm) | (m·s−1) | (° CW from N) | (m) | (m) |
8:00 | 0.80 | 246 | 6 | 32 |
8:30 | 1.40 | 247 | 9 | 49 |
9:00 | 1.29 | 230 | 8 | 45 |
9:30 | 1.15 | 211 | 7 | 38 |
10:00 | 1.00 | 214 | 6 | 35 |
10:30 | 1.99 | 287 | 11 | 60 |
11:00 | 2.68 | 276 | 13 | 72 |
11:30 | 3.43 | 275 | 17 | 93 |
12:00 | 3.67 | 278 | 18 | 98 |
8:00–10:00 | 1.1 | 230 | 7 | 40 |
10:30–12:00 | 2.9 | 279 | 15 | 81 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maltese, A.; Awada, H.; Capodici, F.; Ciraolo, G.; La Loggia, G.; Rallo, G. On the Use of the Eddy Covariance Latent Heat Flux and Sap Flow Transpiration for the Validation of a Surface Energy Balance Model. Remote Sens. 2018, 10, 195. https://doi.org/10.3390/rs10020195
Maltese A, Awada H, Capodici F, Ciraolo G, La Loggia G, Rallo G. On the Use of the Eddy Covariance Latent Heat Flux and Sap Flow Transpiration for the Validation of a Surface Energy Balance Model. Remote Sensing. 2018; 10(2):195. https://doi.org/10.3390/rs10020195
Chicago/Turabian StyleMaltese, Antonino, Hassan Awada, Fulvio Capodici, Giuseppe Ciraolo, Goffredo La Loggia, and Giovanni Rallo. 2018. "On the Use of the Eddy Covariance Latent Heat Flux and Sap Flow Transpiration for the Validation of a Surface Energy Balance Model" Remote Sensing 10, no. 2: 195. https://doi.org/10.3390/rs10020195
APA StyleMaltese, A., Awada, H., Capodici, F., Ciraolo, G., La Loggia, G., & Rallo, G. (2018). On the Use of the Eddy Covariance Latent Heat Flux and Sap Flow Transpiration for the Validation of a Surface Energy Balance Model. Remote Sensing, 10(2), 195. https://doi.org/10.3390/rs10020195