Color Enhancement for Four-Component Decomposed Polarimetric SAR Image Based on a CIE-Lab Encoding
Abstract
:1. Introduction
- The discrimination of the variables that represent the specific scattering attribute is essential.
- The temporal or spatial variation by movement of targets is stood out more effectively.
- The reparability in controlling brightness and chromatic expansion can enhance the legibility.
2. Color Space
3. Color Enhancement for Decomposed PolSAR Images
3.1. Data Slicing as Preprocessing
3.2. Mapping from PolSAR Data to Perceptually Uniform Color Space
4. Experiment Results and Discussion
4.1. RGB Color Space
4.2. CIE—Color Space
4.3. Application Examples
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation, 6th ed.; Wiley: New York, NY, USA, 2007. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd ed.; Prentice Hall: New York, NY, USA, 2004. [Google Scholar]
- Robertson, P.K.; Robertson, J.F. The application of perceptual color spaces to the display of remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 1998, 26, 49–59. [Google Scholar] [CrossRef]
- Amitrano, D.; Martino, G.; Iodice, A.; Riccio, D.; Ruello, G. A New Framework for SAR Multitemporal Data RGB Representation: Rationale and Products. IEEE Trans. Geosci. Remote Sens. 2015, 53, 117–133. [Google Scholar] [CrossRef]
- Amitrano, D.; Belfiore, V.; Cecinati, F.; Martino, G.; Iodice, A.; Mathieu, P.P.; Medagli, S.; Poreh, D.; Riccio, D.; Ruello, G. Urban Areas Enhancement in Multitemporal SAR RGB Images Using Adaptive Coherence Window and Texture Information. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3740–3752. [Google Scholar] [CrossRef]
- Kartikeyan, B.; Sarkar, A.; Majumder, K.L. A segmentation approach to classification of remote sensing imagery. Int. J. Remote Sens. 1998, 19, 1695–1709. [Google Scholar] [CrossRef]
- Tyo, J.S.; Pugh, E.N., Jr.; Engheta, N. Colorimetric representations for use with polarization-difference imaging of objects in scattering media. J. Opt. Soc. Am. A 1998, 15, 367–374. [Google Scholar] [CrossRef]
- Aïnouz, S.; Zallat, J.; Martino, A.D.; Collet, C. Physical interpretation of polarization-encoded images by color preview. Opt. Express 2006, 14, 5916–5927. [Google Scholar] [CrossRef] [PubMed]
- Freeman, A.; Durden, S.L. A three component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Baton Rouge, LO, USA, 2009. [Google Scholar]
- Cloude, S.R. Polarisation: Applications in Remote Sensing; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Sato, A.; Boerner, W.M.; Sato, R.; Yamada, H. Four-component scattering power decomposition with rotation of coherency matrix. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2251–2258. [Google Scholar] [CrossRef]
- Hunt, R.W.G.; Pointer, M.R. Measuring Colour, 4th ed.; Wiley: New York, NY, USA, 2011. [Google Scholar]
- Berns, R.S.; Billmeyer, F.W.; Saltzman, M. Billmeyer and Saltzman’s Principles of Color Technology, 3rd ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- MacAdam, D.L. Visual sensitivities to color differences in daylight. J. Opt. Soc. Am. 1942, 60, 247–274. [Google Scholar] [CrossRef]
- Sato, A.; Yamaguchi, Y.; Singh, G.; Park, S.E. Four-component scattering power decomposition with extended volume scattering model. IEEE Geosci. Remote Sens. Lett. 2012, 9, 166–170. [Google Scholar] [CrossRef]
- Cui, Y.; Yamaguchi, Y.; Yang, J.; Park, S.E.; Kobayashi, H.; Singh, G. Three-component power decomposition for polarimetric SAR data based on adaptive volume scatter modeling. Remote Sens. 2012, 4, 1559–1572. [Google Scholar] [CrossRef]
- Lee, J.S.; Ainsworth, T.L.; Wang, Y. Generalized Polarimetric Model-Based Decompositions Using Incoherent Scattering Models. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2474–2491. [Google Scholar] [CrossRef]
- Nunziata, F.; Buono, A.; Migliaccio, M.; Benassai, G. Dual-polarimetric C- and X-band SAR data for coastline extraction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4921–4928. [Google Scholar] [CrossRef]
- Yu, Y.; Acton, S.T. Automated delineation of coastline from polarimetric SAR imagery. Int. J. Remote Sens. 2010, 25, 3423–3438. [Google Scholar] [CrossRef]
- Yuhas, R.H.; Goetz, A.F.H.; Boardman, J.W. Discrimination among Semi-Arid Landscape Endmembers Using the Spectral Angle Mapper (SAM), 1992, 1, 147–149. Available online: https://ntrs.nasa.gov/search.jsp?R=19940012238 (accessed on 6 March 2017).
- Buono, A.; Nunziata, F.; Migliaccio, M.; Yang, X.; Li, X. Classification of the Yellow River delta area using fully polarimetric SAR measurements. Int. J. Remote Sens. 2017, 38, 6714–6734. [Google Scholar] [CrossRef]
- Ferrentino, E.; Nunziata, F.; Migliaccio, M. Full-polarimetric SAR measurements for coastline extraction and coastal area classification. Int. J. Remote Sens. 2017, 38, 7405–7421. [Google Scholar] [CrossRef]
- Makoto, S.; Seiho, U.; Toshihiko, U.; Hideo, M.; Akitsugu, N.; Tatsuharu, K.; Takeshi, M.; Takeshi, M.; Harunobu, M. Flight Experiments of Airborne High-Resolution Multi-Parameter Imaging Radar, Pi-SAR. J. Commun. Res. Lab. 2000, 49, 127–141. [Google Scholar]
Type | CIE-RGB | CIE-Lab |
---|---|---|
Green-Red | 29.17 | 16.72 |
Green-Blue | 3.57 | 8.04 |
Red-Green-Blue | 7.8 | 18.25 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, C.-Y.; Chen, K.-S.; Chu, C.-Y.; Chang, Y.-L.; Fan, K.-C. Color Enhancement for Four-Component Decomposed Polarimetric SAR Image Based on a CIE-Lab Encoding. Remote Sens. 2018, 10, 545. https://doi.org/10.3390/rs10040545
Chiang C-Y, Chen K-S, Chu C-Y, Chang Y-L, Fan K-C. Color Enhancement for Four-Component Decomposed Polarimetric SAR Image Based on a CIE-Lab Encoding. Remote Sensing. 2018; 10(4):545. https://doi.org/10.3390/rs10040545
Chicago/Turabian StyleChiang, Cheng-Yen, Kun-Shan Chen, Chih-Yuan Chu, Yang-Lang Chang, and Kuo-Chin Fan. 2018. "Color Enhancement for Four-Component Decomposed Polarimetric SAR Image Based on a CIE-Lab Encoding" Remote Sensing 10, no. 4: 545. https://doi.org/10.3390/rs10040545
APA StyleChiang, C. -Y., Chen, K. -S., Chu, C. -Y., Chang, Y. -L., & Fan, K. -C. (2018). Color Enhancement for Four-Component Decomposed Polarimetric SAR Image Based on a CIE-Lab Encoding. Remote Sensing, 10(4), 545. https://doi.org/10.3390/rs10040545