Multilayer Perceptron Neural Network for Surface Water Extraction in Landsat 8 OLI Satellite Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Dataset
2.2. Methods
2.2.1. Image Preprocessing
2.2.2. Multilayer Perceptron
- Sample selection: The training samples for each scene are manually labeled and cover all water types and non-water types. In this paper, all training samples are manually labeled in ENVI 5.3 using ROI for water and no-water. Each ROI consists of pixels within a polygon feature. The distribution of these samples is based on manual experience, and we try our best to improve representativeness and randomness of the spatial distribution. To ensure the accuracy of the sample, only identified non-water and water bodies will be selected as samples. The mixed pixels in coastal area, river banks and wetlands will not be considered. The sample numbers for all water and non-water types in each image are shown in Table 3. These samples are randomly divided into training samples and validation samples. According to the experiment, by setting different training sample percentages (Figure 5b), 80% of the total sample is used to train the model and to generate the fitting accuracy, and 20% of the total sample is used to verify the accuracy. To ensure the comparability of the algorithm accuracy, the training samples of the water and non-water bodies via the MLP and support vector machine are the same.
- Model training: Based on these training samples and the architecture, the surface reflectance variables of the seven bands in the labeled pixel are input into the model. During the forward propagation process, the activation function is used to compute the weights and biases with the labeled training samples. To optimize the weights and minimize the errors, a gradient descent algorithm is applied to train the network and identify the weights and biases of each layer during the back-propagation process.
- Classification generation: With the trained model, the probability of water and non-water types for each pixel are computed. The classification type depends on the probability value. Then, the classification results, which are labeled with different colors, can be generated.
2.2.3. Accuracy Assessment
3. Results
3.1. Classification Results and Accuracy Comparisons
3.2. Performance Comparison When Extracting Different Water Types
3.3. Performance Comparison When Suppressing Noise
3.4. Band Optimization for the Multilayer Perceptron Neural Network Method
4. Discussion
5. Conclusions
- (1)
- Based on a visual comparison, the performance of the MLP when extracting surface water is better than those with the water index and support vector machine. Moreover, a quantitative evaluation shows that the overall accuracy and kappa coefficients of the MLP are higher than those of the other two classifiers. The overall accuracy of the MLP ranges from 98.25–100%, and the kappa coefficients of the MLP range from 0.965–1.
- (2)
- Compared with the water index and the support vector machine, the performance of the MLP demonstrates that it can precisely extract six types of surface water bodies (i.e., lakes, thin rivers, sea water, open ponds, turbid waters and aquacultural water), and detailed surface water can be identified. Furthermore, the MLP can effectively suppress noise when extracting surface water, such as cloud shadows, mountain shadows, building shadows and ice/snow.
- (3)
- For the MLP algorithm, the 1–7-band composite is a better band optimization strategy, and image preprocessing and high-quality samples can reduce the uncertainty of the extraction. Based on newly-released surface water products, automation of the proposed algorithm will be improved. Moreover, the algorithm is also suitable for Landsat series images or other high-resolution images when identifying surface water.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Florke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J.; et al. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3251–3256. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Sexton, J.O.; Channan, S.; Townshend, J.R. A global, high-resolution (30-m) inland water body dataset for 2000: First results of a topographic-spectral classification algorithm. Int. J. Digit. Earth 2016, 9, 113–133. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Pahl-Wostl, C. Transitions towards adaptive management of water facing climate and global change. Water Resour. Manag. 2007, 21, 49–62. [Google Scholar] [CrossRef]
- Vorosmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Chini, M.; Hostache, R.; Giustarini, L.; Matgen, P. A hierarchical split-based approach for parametric thresholding of SAR images: Flood inundation as a test case. IEEE Geosci. Remote Sens. 2017, 55, 6975–6988. [Google Scholar] [CrossRef]
- Yamazaki, D.; Trigg, M.A.; Ikeshima, D. Development of a global similar to 90 m water body map using multi-temporal landsat images. Remote Sens. Environ. 2015, 171, 337–351. [Google Scholar] [CrossRef] [Green Version]
- Milly, P.C.D.; Dunne, K.A.; Vecchia, A.V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 2005, 438, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Carroll, M.L.; Townshend, J.R.; DiMiceli, C.M.; Noojipady, P.; Sohlberg, R.A. A new global raster water mask at 250 m resolution. Int. J. Digit. Earth 2009, 2, 291–308. [Google Scholar] [CrossRef]
- Valentini, N.; Saponieri, A.; Molfetta, M.G.; Damiani, L. New algorithms for shoreline monitoring from coastal video systems. Earth Sci. Inform. 2017, 10, 495–506. [Google Scholar] [CrossRef]
- Bruno, M.F.; Molfetta, M.G.; Mossa, M.; Nutricato, R.; Morea, A.; Chiaradia, M.T. Coastal observation through COSMO-skymed high-resolution SAR images. J. Coast. Res. 2016, 75, 795–799. [Google Scholar] [CrossRef]
- Ji, L.Y.; Gong, P.; Geng, X.R.; Zhao, Y.C. Improving the accuracy of the water surface cover type in the 30 m from-glc product. Remote Sens. 2015, 7, 13507–13527. [Google Scholar] [CrossRef]
- Liao, A.P.; Chen, L.J.; Chen, J.; He, C.Y.; Cao, X.; Chen, J.; Peng, S.; Sun, F.D.; Gong, P. High-resolution remote sensing mapping of global land water. Sci. China-Earth Sci. 2014, 57, 2305–2316. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Frazier, P.S.; Page, K.J. Water body detection and delineation with Landsat tm data. Photogram. Eng. Remote Sens. 2000, 66, 1461–1467. [Google Scholar]
- Xie, H.; Luo, X.; Xu, X.; Pan, H.Y.; Tong, X.H. Evaluation of Landsat 8 OLI imagery for unsupervised inland water extraction. Int. J. Remote Sens. 2016, 37, 1826–1844. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.H.; Ling, F.; Wang, Q.M.; Li, W.B.; Li, X.D. Water bodies' mapping from sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H.Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated water extraction index: A new technique for surface water mapping using landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.W.; Xiao, X.M.; Xiao, T.; Yang, Z.Q.; Zhao, G.S.; Zou, Z.H.; Qin, Y.W. Open surface water mapping algorithms: A comparison of water-related spectral indices and sensors. Water 2017, 9, 16. [Google Scholar] [CrossRef]
- Huang, X.; Xie, C.; Fang, X.; Zhang, L.P. Combining pixel- and object-based machine learning for identification of water-body types from urban high-resolution remote-sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2097–2110. [Google Scholar] [CrossRef]
- Yang, F.; Guo, J.H.; Tan, H.; Wang, J.X. Automated extraction of urban water bodies from zy-3 multi-spectral imagery. Water 2017, 9, 27. [Google Scholar] [CrossRef]
- Shao, P.; Yang, G.D.; Niu, X.F.; Zhang, X.Q.; Zhan, F.L.; Tang, T.Q. Information extraction of high-resolution remotely sensed image based on multiresolution segmentation. Sustainability 2014, 6, 5300–5310. [Google Scholar] [CrossRef]
- Zhao, P.X.; Zhao, J.; Wu, J.H.; Yang, Y.Z.; Xue, W.; Hou, Y.C. Integration of multi-classifiers in object-based methods for forest classification in the loess plateau, china. Scienceasia 2016, 42, 283–289. [Google Scholar] [CrossRef]
- Vanderhoof, M.K.; Distler, H.E.; Mendiola, D.T.G.; Lang, M. Integrating radarsat-2, lidar, and worldview-3 imagery to maximize detection of forested inundation extent in the delmarva peninsula, USA. Remote Sens. 2017, 9, 25. [Google Scholar] [CrossRef]
- Isikdogan, F.; Bovik, A.C.; Passalacqua, P. Surface water mapping by deep learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4909–4918. [Google Scholar] [CrossRef]
- Yao, F.F.; Wang, C.; Dong, D.; Luo, J.C.; Shen, Z.F.; Yang, K.H. High-resolution mapping of urban surface water using zy-3 multi-spectral imagery. Remote Sens. 2015, 7, 12336–12355. [Google Scholar] [CrossRef]
- Acharya, T.D.; Lee, D.H.; Yang, I.T.; Lee, J.K. Identification of water bodies in a Landsat 8 OLI image using a j48 decision tree. Sensors 2016, 16, 1075. [Google Scholar] [CrossRef] [PubMed]
- Rokni, K.; Ahmad, A.; Solaimani, K.; Hazini, S. A new approach for surface water change detection: Integration of pixel level image fusion and image classification techniques. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 226–234. [Google Scholar] [CrossRef]
- Ji, L.Y.; Geng, X.R.; Sun, K.; Zhao, Y.C.; Gong, P. Target detection method for water mapping using Landsat 8 OLI/TIRS imagery. Water 2015, 7, 794–817. [Google Scholar] [CrossRef]
- Guo, Y.M.; Liu, Y.; Oerlemans, A.; Lao, S.Y.; Wu, S.; Lew, M.S. Deep learning for visual understanding: A review. Neurocomputing 2016, 187, 27–48. [Google Scholar] [CrossRef]
- Zhang, L.P.; Zhang, L.F.; Du, B. Deep learning for remote sensing data a technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Taravat, A.; Proud, S.; Peronaci, S.; Del Frate, F.; Oppelt, N. Multilayer perceptron neural networks model for meteosat second generation SEVIRI daytime cloud masking. Remote Sens. 2015, 7, 1529–1539. [Google Scholar] [CrossRef] [Green Version]
- Li, W.J.; Fu, H.H.; Yu, L.; Cracknell, A. Deep learning based oil palm tree detection and counting for high-resolution remote sensing images. Remote Sens. 2017, 9, 13. [Google Scholar] [CrossRef]
- Albert, A.; Kaur, J.; Gonzalez, M.C. Using convolutional networks and satellite imagery to identify patterns in urban environments at a large scale. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017. [Google Scholar]
- Yu, X.R.; Wu, X.M.; Luo, C.B.; Ren, P. Deep learning in remote sensing scene classification: A data augmentation enhanced convolutional neural network framework. GISci. Remote Sens. 2017, 54, 741–758. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Zhao, W.Z.; Guo, Z.; Yue, J.; Zhang, X.Y.; Luo, L.Q. On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery. Int. J. Remote Sens. 2015, 36, 3368–3379. [Google Scholar] [CrossRef]
- Yu, L.; Wang, Z.; Tian, S.; Ye, F.; Ding, J.; Kong, J. Convolutional neural networks for water body extraction from Landsat imagery. Int. J. Comput. Intell. Appl. 2017, 16, 1750001. [Google Scholar] [CrossRef]
- Thakur, A.; Mishra, D. Hyper Spectral Image Classification Using Multilayer Perceptron Neural Network & Functional Link Ann; IEEE: New York, NY, USA, 2017; pp. 639–642. [Google Scholar]
- Patra, S.; Ghosh, S.; Ghosh, A. Change detection of remote sensing images with semi-supervised multilayer perceptron. Fundam. Inform. 2008, 84, 429–442. [Google Scholar]
- USGS Global Visualization Viewer (GloVis). Available online: https://glovis.usgs.gov/ (accessed on 2 December 2017).
- Peng, Y.; He, G.J.; Zhang, Z.M.; Long, T.F.; Wang, M.M.; Ling, S.G. Study on atmospheric correction approach of landsat-8 imageries based on 6s model and look-up table. J. Appl. Remote Sens. 2016, 10, 045006. [Google Scholar] [CrossRef]
- Yang, Y.H.; Liu, Y.X.; Zhou, M.X.; Zhang, S.Y.; Zhan, W.F.; Sun, C.; Duan, Y.W. Landsat 8 OLI image based terrestrial water extraction from heterogeneous backgrounds using a reflectance homogenization approach. Remote Sens. Environ. 2015, 171, 14–32. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Tatnall, A.R.L. Neural networks in remote sensing–introduction. Int. J. Remote Sens. 1997, 18, 699–709. [Google Scholar] [CrossRef]
- Iliadis, M.; Spinoulas, L.; Katsaggelos, A.K. Deep fully-connected networks for video compressive sensing. Digit. Signal Prog. 2018, 72, 9–18. [Google Scholar] [CrossRef]
- Madhiarasan, M.; Deepa, S.N. Comparative analysis on hidden neurons estimation in multi layer perceptron neural networks for wind speed forecasting. Artif. Intell. Rev. 2017, 48, 449–471. [Google Scholar] [CrossRef]
- Tensorflow. Available online: https://www.tensorflow.org/ (accessed on 2 March 2018).
- Maulik, U.; Chakraborty, D. Remote sensing image classification a survey of support-vector-machine-based advanced techniques. IEEE Geosci. Remote Sens. Mag. 2017, 5, 33–52. [Google Scholar] [CrossRef]
- Cao, X.; Chen, J.; Matsushita, B.; Imura, H.; Wang, L. An automatic method for burn scar mapping using support vector machines. Int. J. Remote Sens. 2009, 30, 577–594. [Google Scholar] [CrossRef]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Zhai, K.; Wu, X.; Qin, Y.; Du, P. Comparison of surface water extraction performances of different classic water indices using OLI and TM imageries in different situations. Geo-Spat. Inf. Sci. 2015, 18, 32–42. [Google Scholar] [CrossRef]
- Lu, S.L.; Wu, B.F.; Yan, N.N.; Wang, H. Water body mapping method with hj-1a/b satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 428–434. [Google Scholar] [CrossRef]
- Lacaux, J.P.; Tourre, Y.M.; Vignolles, C.; Ndione, J.A.; Lafaye, M. Classification of ponds from high-spatial resolution remote sensing: Application to rift valley fever epidemics in Senegal. Remote Sens. Environ. 2007, 106, 66–74. [Google Scholar] [CrossRef]
- Rogers, A.S.; Kearney, M.S. Reducing signature variability in unmixing coastal marsh thematic mapper scenes using spectral indices. Int. J. Remote Sens. 2004, 25, 2317–2335. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, W.; Zhu, L. A study on information extraction of water body using band1 and band7 of tm imagery. Sci. Surv. Map. 2010, 35, 226–227. [Google Scholar]
- Shen, L.; Li, C.C. Water body extraction from Landsat ETM+ imagery using adaboost algorithm. In Proceedings of the 2010 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; Volume 4. [Google Scholar]
- Zhang, L.P.; Xia, G.S.; Wu, T.F.; Lin, L.; Tai, X.C. Deep learning for remote sensing image understanding. J. Sens. 2016, 2016, 7954154. [Google Scholar] [CrossRef]
- Zou, Q.; Ni, L.H.; Zhang, T.; Wang, Q. Deep learning based feature selection for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2321–2325. [Google Scholar] [CrossRef]
- Das, M.; Ghosh, S.K. Deep-step: A deep learning approach for spatiotemporal prediction of remote sensing data. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1984–1988. [Google Scholar] [CrossRef]
Study Area | Landsat Scene ID | Path/Row | Data Acquisition | Cloud Cover | Site Center | Water Type | Major Noise Source |
---|---|---|---|---|---|---|---|
a | LC081190282013090501T1 | 119/28 | 2 May 2017 | 4.25% | 46.0381°N 124.859°E | River channel, lake cluster | Cloud shadows, wetland |
b | LC81220332015163LGN00 | 122/33 | 12 June 2015 | 0.43% | 38.9007°N 117.8280°E | Sea water, river, artificial pond | Dark built-up surface, cloud shadows, mudflat |
c | LC81220442015291BJC00 | 122/44 | 19 October 2015 | 1.12% | 23.1221°N 113.6062°E | River network, sea water | Built-up shadows, mountain shadows |
d | LC081280402017052601T1 | 128/40 | 15 June 2017 | 2.70% | 28.8657°N 105.7404°E | Thin river | Dark built-up surface, cloud shadows, paddy field |
e | LC81290432015148LGN00 | 129/43 | 28 May 2015 | 0.48% | 24.5307°N 103.1013°E | Lake, artificial pond | Dark built-up surface, mountain shadows |
f | LC81420352015255LGN00 | 142/35 | 12 September 2015 | 1.30% | 36.0229°N 86.0493°E | Lake cluster | Snow, cloud shadows, mudflat |
g | LC81470282015194LGN00 | 147/28 | 13 July 2015 | 0.03% | 46.0227°N 81.5998°E | Lake, thin river | Mountain shadows, snow, wetland |
h | LC81490342015288LGN00 | 149/34 | 15 October 2015 | 3.80% | 37.4712°N 75.6858°E | Thin river | Mountain shadows, snow, ice |
MLP | Support Vector Machine | ||
---|---|---|---|
input variables | surface reflectance via seven bands | kernel type | radial basis function (RBF) |
activation function | ReLU | gamma in the kernel function | 0.143 |
classification rule | based on the probability of each class | penalty parameter | 100 |
loss function for training | softmax cross-entropy with logits | pyramid levels | 0 |
number of hidden layers | 4 | probability threshold | 0 |
number of neurons in the first layer | 30 | number of classes | 2 |
number of neurons in the second layer | 30 | ||
number of neurons in the third layer | 30 | ||
number of neurons in the fourth layer | 10 | ||
learning rate | 10−4 | ||
training epochs | 200 | ||
batch size | 100 | ||
display step | 1 | ||
number of classes | 2 |
Study Area | Water | Non-Water | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Lake | River | Sea Water | Open Pond | Turbid Water | Aquacultural Water | Land | Ice/Snow | Cloud | Cloud Shadow | |
a | 11,829 | 4116 | 0 | 10,294 | 1079 | 1074 | 30,084 | 0 | 25,669 | 19,242 |
b | 1150 | 1022 | 2348 | 607 | 1108 | 1963 | 22,027 | 0 | 8743 | 2771 |
c | 5164 | 1472 | 1123 | 688 | 512 | 1272 | 22,797 | 0 | 7241 | 1026 |
d | 641 | 1534 | 0 | 303 | 0 | 131 | 12,087 | 0 | 242,458 | 7307 |
e | 73,112 | 1006 | 0 | 6265 | 1575 | 2655 | 219,108 | 0 | 74,832 | 22,057 |
f | 8747 | 1003 | 0 | 17,133 | 1495 | 0 | 103,737 | 260,507 | 18,757 | 1523 |
g | 138,269 | 252 | 0 | 2497 | 131 | 0 | 247,367 | 38,112 | 8711 | 1230 |
h | 0 | 1297 | 0 | 1837 | 33 | 0 | 289,476 | 208,986 | 0 | 0 |
Study Region | Overall Accuracy (%) | Kappa Coefficients | ||||
---|---|---|---|---|---|---|
Water Index | Support Vector Machine | MLP | Water Index | Support Vector Machine | MLP | |
a | 98.25 | 98.25 | 98.75 | 0.965 | 0.965 | 0.975 |
b | 87.25 | 98.53 | 99.25 | 0.745 | 0.971 | 0.985 |
c | 96.75 | 97.00 | 99.75 | 0.935 | 0.940 | 0.995 |
d | 90.25 | 91.75 | 98.75 | 0.805 | 0.835 | 0.975 |
e | 79.75 | 97.75 | 98.25 | 0.595 | 0.955 | 0.965 |
f | 97.75 | 98.50 | 99.00 | 0.955 | 0.970 | 0.980 |
g | 98.50 | 99.00 | 100.00 | 0.970 | 0.980 | 1.000 |
h | 76.75 | 91.02 | 98.50 | 0.535 | 0.821 | 0.970 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; He, G.; Long, T.; Ni, Y.; Liu, H.; Peng, Y.; Lv, K.; Wang, G. Multilayer Perceptron Neural Network for Surface Water Extraction in Landsat 8 OLI Satellite Images. Remote Sens. 2018, 10, 755. https://doi.org/10.3390/rs10050755
Jiang W, He G, Long T, Ni Y, Liu H, Peng Y, Lv K, Wang G. Multilayer Perceptron Neural Network for Surface Water Extraction in Landsat 8 OLI Satellite Images. Remote Sensing. 2018; 10(5):755. https://doi.org/10.3390/rs10050755
Chicago/Turabian StyleJiang, Wei, Guojin He, Tengfei Long, Yuan Ni, Huichan Liu, Yan Peng, Kenan Lv, and Guizhou Wang. 2018. "Multilayer Perceptron Neural Network for Surface Water Extraction in Landsat 8 OLI Satellite Images" Remote Sensing 10, no. 5: 755. https://doi.org/10.3390/rs10050755
APA StyleJiang, W., He, G., Long, T., Ni, Y., Liu, H., Peng, Y., Lv, K., & Wang, G. (2018). Multilayer Perceptron Neural Network for Surface Water Extraction in Landsat 8 OLI Satellite Images. Remote Sensing, 10(5), 755. https://doi.org/10.3390/rs10050755