Airborne Doppler Wind Lidar Observations of the Tropical Cyclone Boundary Layer
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kaplan, J.; Rozoff, C.M.; DeMaria, M.; Sampson, C.R.; Kossin, J.P.; Velden, C.S.; Cione, J.J.; Dunion, J.P.; Knaff, J.A.; Zhang, J.A.; et al. Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Weather Forecast. 2015, 30, 1374–1396. [Google Scholar] [CrossRef]
- Emanuel, K.A. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci. 1995, 52, 3969–3976. [Google Scholar] [CrossRef]
- Smith, R.K.; Montgomery, M.T.; Nguyen, S.V. Tropical cyclone spin-up revisited. Q. J. R. Meteorol. Soc. 2009, 135, 1321–1335. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, M.T.; Smith, R.K. Recent developments in the fluid dynamics of tropical cyclones. Ann. Rev. Fluid Mech. 2017, 49, 541–574. [Google Scholar] [CrossRef]
- Braun, S.A.; Tao, W.-K. Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Weather Rev. 2000, 128, 3941–3961. [Google Scholar] [CrossRef]
- Nolan, D.S.; Zhang, J.A.; Stern, D.P. Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in-situ data and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and outer core boundary layer structure. Mon. Weather Rev. 2009, 137, 3651–3674. [Google Scholar] [CrossRef]
- Smith, R.K.; Thomsen, G.L. Dependence of tropical-cyclone intensification on the boundary layer representation in a numerical model. Q. J. R. Meteorol. Soc. 2010, 136, 1671–1685. [Google Scholar] [CrossRef]
- Kepert, J. Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Weather Rev. 2012, 140, 1427–1445. [Google Scholar] [CrossRef]
- Bu, Y.P.; Fovell, R.G.; Corbosiero, K.L. The influences of boundary layer vertical mixing and cloud-radiative forcing on tropical cyclone size. J. Atmos. Sci. 2017, 74, 1273–1292. [Google Scholar] [CrossRef]
- Black, P.G.; D’Asaro, E.A.; Drennan, W.M.; French, J.R.; Niiler, P.P.; Sanford, T.B.; Terrill, E.J.; Walsh, E.J.; Zhang, J.A. Air-sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air-Sea Transfer Experiment. Bull. Am. Meteorol. Soc. 2007, 88, 357–374. [Google Scholar] [CrossRef]
- Potter, H.; Graber, H.C.; Williams, N.J.; Collins, C.O., III; Ramos, R.J.; Drennan, W.M. In situ measurements of momentum fluxes in typhoons. J. Atmos. Sci. 2015, 72, 104–118. [Google Scholar] [CrossRef]
- Zhang, J.A.; Gopalakrishnan, S.G.; Marks, F.D.; Rogers, R.F.; Tallapragada, V. A developmental framework for improving hurricane model physical parameterization using aircraft observations. Trop. Cyclone Res. Rev. 2012, 1, 419–429. [Google Scholar]
- Zhang, J.A.; Nolan, D.S.; Rogers, R.F.; Tallapragada, V. Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Weather Rev. 2015, 143, 3136–3155. [Google Scholar] [CrossRef]
- Franklin, J.L.; Black, M.L.; Valde, K. GPS dropwindsonde wind profiles in hurricanes and their operational implications. Weather Forecast. 2003, 18, 32–44. [Google Scholar] [CrossRef]
- Rogers, R.F.; Reasor, P.D.; Zhang, J.A. Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Weather Rev. 2015, 143, 536–562. [Google Scholar] [CrossRef]
- Rogers, R.F.; Zhang, J.A.; Zawislak, J.; Jiang, H.; Alvey, G.R.; Zipser, E.J.; Stevenson, S.N. Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change, Part II: Kinematic structure and the distribution of deep convection. Mon. Weather Rev. 2016, 144, 3355–3376. [Google Scholar] [CrossRef]
- Zhang, J.A.; Rogers, R.F.; Nolan, D.S.; Marks, F.D. On the characteristic height scales of the hurricane boundary layer. Mon. Weather Rev. 2011, 139, 2523–2535. [Google Scholar] [CrossRef]
- Zhang, J.A.; Rogers, R.F.; Reasor, P.D.; Uhlhorn, E.W.; Marks, F.D. Asymmetric hurricane boundary layer structure from dropsonde composites in relation to the environmental vertical wind shear. Mon. Weather Rev. 2013, 141, 3968–3984. [Google Scholar] [CrossRef]
- Baker, W.E.; Atlas, R.; Cardinali, C.; Clement, A.; Emmitt, G.D.; Gentry, B.M.; Hardesty, R.M.; Kallen, E.; Kavaya, M.J.; Langland, R.; et al. Lidar-measured wind profiles: The missing link in the global observing system. Bull. Am. Meteorol. Soc. 2014, 95, 543–564. [Google Scholar] [CrossRef]
- Pu, Z.; Zhang, L.; Emmitt, G.D. Impact of airborne Doppler Wind Lidar data on numerical simulation of a tropical cyclone. Geophys. Res. Lett. 2010, 37, L05801. [Google Scholar] [CrossRef]
- Atlas, R. Atmospheric observations and experiments to assess their usefulness in data assimilation. J. Meteorol. Soc. Jpn. 1997, 75, 111–130. [Google Scholar] [CrossRef]
- Atlas, R.; Hoffman, R.N.; Ma, Z.; Emmitt, G.D.; Wood, S.A.; Greco, S.; Tucker, S.; Bucci, L.; Annane, B.; Murillo, S. Observing system simulation experiments (OSSEs) to evaluate the potential impact of an optical autocovariance wind lidar (OAWL) on numerical weather prediction. J. Atmos. Ocean. Technol. 2015, 32, 1593–1613. [Google Scholar] [CrossRef]
- Atlas, R.; Zhang, J.A.; Emmitt, G.D.; Bucci, L.; Ryan, K. Application of Doppler wind lidar observations to hurricane analysis and prediction. In Proceedings of the 2017 Symposium on Lidar Remote Sensing for Environmental Monitoring, San Diego, CA, USA, 6–10 August 2017; Singh, U.N., Ed.; International Society for Optical Engineering: Bellingham, WA, USA, 2017; p. 10406. [Google Scholar] [CrossRef]
- Emmitt, G.D.; Greco, S.; Garstang, M.; Beaubien, M. CPEX 2017: Utilizing the airborne Doppler aerosol wind lidar and dropsondes for convective process studies. In Proceedings of the 22nd Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface, Austin, TX, USA, 7–11 January 2018; American Meteorological Society: Boston, MA, USA, 2018. [Google Scholar]
- Emmitt, G.D. Hybrid technology Doppler wind lidar: Assessment of simulated data products for a space-based system concept. In Proceedings of the A Symposium on Lidar Remote Sensing for Industry and Environment Monitoring, Sendai, Japan, 9–12 October 2000; Singh, U.N., Asai, J., Ogawa, T., Itabe, T., Sugimoto, N., Eds.; International Society for Optical Engineering: Bellingham, WA, USA, 2000; p. 4153. [Google Scholar] [CrossRef]
- Willoughby, H.E.; Chelmow, M.B. Objective determination of hurricane tracks from aircraft observations. Mon. Weather Rev. 1982, 110, 1298–1305. [Google Scholar] [CrossRef]
- Weissmann, M.; Busen, R.; Dörnbrack, A.; Rahm, S.; Reitebuch, O. Targeted observations with an airborne wind lidar. J. Atmos. Ocean. Technol. 2015, 22, 1706–1719. [Google Scholar] [CrossRef]
- Chouza, F.; Reitebuch, O.; Groß, S.; Rahm, S.; Freudenthaler, V.; Toledano, C.; Weinzierl, B. Retrieval of aerosol backscatter and extinction from airborne coherent Doppler wind lidar measurements. Atmos. Meas. Technol. 2015, 8, 2909–2926. [Google Scholar] [CrossRef]
- Chouza, F.; Reitebuch, O.; Jähn, M.; Rahm, S.; Weinzierl, B. Vertical wind retrieved by airborne lidar and analysis of island induced gravity waves in combination with numerical models and in situ particle measurements. Atmos. Chem. Phys. 2016, 16, 4675–4692. [Google Scholar] [CrossRef] [Green Version]
- Witschas, B.; Rahm, S.; Dörnbrack, A.; Wagner, J.; Rapp, M. Airborne wind lidar measurements of vertical and horizontal winds for the investigation of orographically induced gravity waves. J. Atmos. Ocean. Technol. 2017, 34, 1371–1386. [Google Scholar] [CrossRef]
- Lux, O.; Lemmerz, C.; Weiler, F.; Marksteiner, U.; Witschas, B.; Rahm, S.; Schafler, A.; Reitebuch, O. Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus. Atmos. Meas. Technol. 2018. [Google Scholar] [CrossRef]
- Uhlhorn, E.W.; Black, P.G.; Franklin, J.L.; Goodberlet, M.; Carswell, J.; Goldstein, A.S. Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon. Weather Rev. 2007, 135, 3070–3085. [Google Scholar] [CrossRef]
- Klotz, B.W.; Uhlhorn, E.W. Improved stepped frequency microwave radiometer tropical cyclone surface winds in heavy precipitation. J. Atmos. Ocean. Technol. 2014, 31, 2392–2408. [Google Scholar] [CrossRef]
- Zhang, J.A.; Cione, J.J.; Kalina, E.A.; Uhlhorn, E.W.; Hock, T.; Smith, J.A. Observations of infrared sea surface temperature and air-sea interaction in Hurricane Edouard (2014) using GPS dropsondes. J. Atmos. Ocean. Technol. 2017, 34, 1333–1349. [Google Scholar] [CrossRef]
- Emmitt, G.D. Airborne Doppler wind lidar atmospheric boundary layer research. In Proceedings of the Workshop on the Future of Boundary Layer Observing, Warrenton, VA, USA, 24–26 October 2017; National Academy of Sciences: Washington, DC, USA, 2017. [Google Scholar]
- Lussier, L.L.; Montgomery, M.T.; Bell, M.M. The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment–Part 3: Dynamics of low-level spin-up during the genesis. Atmos. Chem. Phys. 2014, 14, 8795–8812. [Google Scholar] [CrossRef] [Green Version]
- Worsnop, R.; Bryan, G.H.; Lundquist, J.K.; Zhang, J.A. Using large-eddy simulations to define spectral and coherence characteristics of the hurricane boundary layer for wind energy applications. Bound. Layer Meteorol. 2017, 165, 55–86. [Google Scholar] [CrossRef]
Parameter (units) | Value | Comments |
---|---|---|
Wavelength (nm) | 1600 | Eyesafe for NOAA P3 DWL configuration |
Pulse energy (Joules) | 0.0015 | 0.0023 maximum |
Pulse repetition frequency (Hz) | 500 | Due to data processing limitations, the effective pulse repetition frequency is 166 Hz |
Pulse full width half maximum (m) | 90 | Full width half maximum of Gaussian pulse; duration is 320 ns |
Telescope diameter (m) | 0.10 | |
Scanner | Biaxial conical scanner side mounted starboard on P3 | |
Digitization rate (MHz) | 250 | |
Line of sight range gate (m) | ~90 | Sliding gate provides 45 m line of sight product |
Shot integration, nominal (seconds) | 1 | Nominal scan consists of 12 point step and stares with 1-s dwells |
Time between u,v,w profiles (seconds) | ~25 | Assumes 1 s dwells |
Distance between u,v,w profiles (km) | 3.75 | Assumes 150 m/s P3 ground velocity |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.A.; Atlas, R.; Emmitt, G.D.; Bucci, L.; Ryan, K. Airborne Doppler Wind Lidar Observations of the Tropical Cyclone Boundary Layer. Remote Sens. 2018, 10, 825. https://doi.org/10.3390/rs10060825
Zhang JA, Atlas R, Emmitt GD, Bucci L, Ryan K. Airborne Doppler Wind Lidar Observations of the Tropical Cyclone Boundary Layer. Remote Sensing. 2018; 10(6):825. https://doi.org/10.3390/rs10060825
Chicago/Turabian StyleZhang, Jun A., Robert Atlas, G. David Emmitt, Lisa Bucci, and Kelly Ryan. 2018. "Airborne Doppler Wind Lidar Observations of the Tropical Cyclone Boundary Layer" Remote Sensing 10, no. 6: 825. https://doi.org/10.3390/rs10060825
APA StyleZhang, J. A., Atlas, R., Emmitt, G. D., Bucci, L., & Ryan, K. (2018). Airborne Doppler Wind Lidar Observations of the Tropical Cyclone Boundary Layer. Remote Sensing, 10(6), 825. https://doi.org/10.3390/rs10060825