Detecting Vegetation Change in Response to Confining Elephants in Forests Using MODIS Time-Series and BFAST
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site—Aberdare National Park, Kenya
2.2. Study Site—Shimba Hills National Reserve, Kenya
2.3. Satellite-Based Data
2.3.1. MODIS EVI
2.3.2. TAMSAT Rainfall
2.3.3. MODIS Burned Area
2.4. BFAST Method
BFAST Parameters
2.5. BFAST Validation
3. Results
3.1. Aberdare National Park
3.2. Shimba Hills National Reserve
3.3. Accuracy Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sexton, J.O.; Noojipady, P.; Song, X.P.; Feng, M.; Song, D.X.; Kim, D.H.; Anand, A.; Huang, C.; Channan, S.; Pimm, S.L.; et al. Conservation policy and the measurement of forests. Nat. Clim. Chang. 2016, 6, 192–196. [Google Scholar] [CrossRef]
- Gichuki, F.N. Threats and Opportunities for Mountain Area Development in Kenya. Ambio 1999, 28, 430–435. [Google Scholar]
- Orodho, A.B. Country Pasture/Forage Resource Profiles KENYA; Food and Agriculture Organization: Rome, Italy, 2006. [Google Scholar]
- Baker, T.J.; Miller, S.N. Using the soil and water assessment tool (SWAT) to assess land use impact on water resources in an East African watershed. J. Hydrol. 2013, 486, 100–111. [Google Scholar] [CrossRef]
- Thornton, P.; Herrero, M.; Freeman, A.; Mwai, O.; Rege, E.; Jones, P.; Mcdermott, J. Vulnerability, Climate change and Livestock—Research Opportunities and Challenges for Poverty Alleviation; ICRISAT International Livestock Research Institute: Nairobi, Kenya, 2007. [Google Scholar]
- Sangeda, A.Z.; Malole, J.L. Tanzanian rangelands in a changing climate: Impacts, adaptations and mitigation. Net J. Agric. Sci. 2014, 2, 1–10. [Google Scholar]
- Sandstrom, S.; Juhola, S. Continue to blame it on the rain? Conceptualization of drought and failure of food systems in the Greater Horn of Africa. Environ. Hazards 2017, 16, 71–91. [Google Scholar] [CrossRef]
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. Africa. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1199–1265. [Google Scholar]
- Christensen, J.H.; Hewitson, B.; Busuioc, A.; Chen, A.; Gao, X.; Held, I.; Jones, R.; Kolli, R.K.; Kwon, W.T.; Laprise, R.; et al. Regional Climate Projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- UNEP. The Role and Contribution of Montane Forests and Related Ecosystem Services to the Kenyan Economy. 2012. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/8513/Montane_Forests_Kenya.pdf?sequence=3&isAllowed= (accessed on 15 April 2018).
- Rhino Ark. Environmental, Social and Economic Assessment of the Fencing of the Aberdare Conservation Area: Executive Summary. 2011. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/7505/Environmental,%20social%20and%20economic%20assessment%20of%20the%20fencing%20of%20the%20Aberdare%20Conservation%20Area%20-%20%20Executive%20Summary-2011Rhino_Ark_Executive_Summary.pdf?sequence=2 (accessed on 5 June 2017).
- Hansen, J.W.; Indeje, M. Linking dynamic seasonal climate forecasts with crop simulation for maize yield prediction in semi-arid Kenya. Agric. For. Meteorol. 2004, 125, 143–157. [Google Scholar] [CrossRef]
- Rarieya, M.; Fortun, K. Food security and seasonal climate information: Kenyan challenges. Sustain. Sci. 2010, 5, 99–114. [Google Scholar] [CrossRef]
- Demos, T.C.; Peterhans, J.C.; Agwanda, B.; Hickerson, M.J. Uncovering cryptic diversity and refugial persistence among small mammal lineages across the Eastern Afromontane biodiversity hotspot. Mol. Phylogenet. Evol. 2014, 71, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Kenya Wildlife Service. Conservation Strategy for Sable Antelopes. 2012. Available online: http://www.kcdp.co.ke/en/reports/communication-strategy-appendices/conservation-strategy-for-sable-antelopes/view (accessed on 4 June 2018).
- Graham, M.D.; Notter, B.; Adams, W.M.; Lee, P.C.; Ochieng, T.N. Patterns of crop-raiding by elephants, Loxodonta africana, in Laikipia, Kenya, and the management of human—Elephant conflict. Syst. Biodivers. 2014, 8, 435–445. [Google Scholar] [CrossRef]
- Knickerbocker, T.J.; Waithaka, J. People and elephants in the Shimba Hills, Kenya. In People and Wildlife; Woodroffe, R., Thirgood, S., Rabinowitz, A., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 224–238. [Google Scholar]
- Penzhorn, B.L.; Robbertse, P.J.; Olivier, M.C. The influence of the African Elephant on the vegetation of the Addo Elephant National Park. Koedoe 1974, 17, 137–158. [Google Scholar] [CrossRef]
- Barratt, D.; Hall-Martin, A. The effects of indigenous browsers on the valley Bushveld of the Addo Elephant National Park. In Proceedings of the First Valley Bushveld/Subtropical Thicket Symposium; Grassland Society of Southern Africa: Howick, South Africa, 1991; pp. 14–16. [Google Scholar]
- Stuart-Hill, G.C. Effects of elephants and goats on the Kaffrarian succulent thicket of the Eastern Cape, South Africa. J. Appl. Ecol. 1992, 29, 699–710. [Google Scholar] [CrossRef]
- Verbesselt, J.; Zeileis, A.; Herold, M. Near real-time disturbance detection using satellite image time series. Remote Sens. Environ. 2012, 123, 98–108. [Google Scholar] [CrossRef]
- DeVries, B.; Verbesselt, J.; Kooistra, L.; Herold, M. Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series. Remote Sens. Environ. 2015, 161, 107–121. [Google Scholar] [CrossRef]
- Kerley, G.I.H.; Landman, M. The impacts of elephants on biodiversity in the Eastern Cape Subtropical Thickets. S. Afr. J. Sci. 2006, 102, 395–402. [Google Scholar]
- Pringle, R.M. Elephants as agents of habitat creation for small vertebrates at the patch scale. Ecology 2008, 89, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shahar, R. Woodland Dynamics under the Influence of Elephants and Fire in Northern Botswana. Vegetatio 1996, 123, 153–163. [Google Scholar] [CrossRef]
- Haynes, G. Elephants (and extinct relatives) as earth-movers and ecosystem engineers. Geomorphology 2012, 157–158, 99–107. [Google Scholar] [CrossRef]
- Douglas-Hamilton, I.; Douglas-Hamilton, O. Among the Elephants; Viking Press: New York, NY, USA, 1975. [Google Scholar]
- Pinter-Wollman, N.; Isbell, L.R.; Hart, L.A. Assessing translocation outcome: Comparing behavioural and physiological aspects of translocated and resident African elephants (Loxodonta africana). Biol. Conserv. 2009, 142, 1116–1124. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Letters: Free Access to Landsat Imagery. Science 2008, 320, 1011–1012. [Google Scholar] [CrossRef] [PubMed]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science (N. Y.) 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Broich, M.; Hansen, M.C.; Potapov, P.; Adusei, B.; Lindquist, E.; Stehman, S.V. Time-series analysis of multi-resolution optical imagery for quantifying forest cover loss in Sumatra and Kalimantan, Indonesia. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 277–291. [Google Scholar] [CrossRef]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Review ArticleDigital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Yin, H.; Pflugmacher, D.; Kennedy, R.E.; Sulla-menashe, D.; Hostert, P.; Mapping, A. Mapping Annual Land Use and Land Cover Changes Using MODIS Time Series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3421–3427. [Google Scholar] [CrossRef]
- Ju, J.; Roy, D.P. The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally. Remote Sens. Environ. 2008, 112, 1196–1211. [Google Scholar] [CrossRef]
- Mitchard, E.T.; Saatchi, S.S.; White, L.; Abernethy, K.; Jeffery, K.J.; Lewis, S.L.; Collins, M.; Lefsky, M.A.; Leal, M.E.; Woodhouse, I.H.; et al. Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: Overcoming problems of high biomass and persistent cloud. Biogeosciences 2012, 9, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Andréfouët, S.; Cohen, W.B.; Gómez, C.; Griffiths, P.; Hais, M.; Healey, S.P.; Helmer, E.H.; Hostert, P.; Lyons, M.B.; et al. Bringing an ecological view of change to landsat-based remote sensing. Front. Ecol. Environ. 2014, 12, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Asner, G.P.; Kellner, J.R.; Kennedy-Bowdoin, T.; Knapp, D.E.; Anderson, C.; Martin, R.E.; Chen, H.Y.H. Forest Canopy Gap Distributions in the Southern Peruvian Amazon. PLoS ONE 2013, 8, e60875. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.L.; Rosenqvist, A.; Mora, B. Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD+. Carbon Balance Manag. 2017, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite images time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Lambert, J.; Drenou, C.; Denux, J.; Balent, G. Monitoring forest decline through remote sensing time series analysis. GISci. Remote Sens. 2013, 15, 437–457. [Google Scholar] [CrossRef]
- DeVries, B.; Verbesselt, J.; Kooistra, L.; Herold, M. Detecting Tropical Deforestation and Degradation Using Landsat Time Series. In Proceedings of the IGARSS 2014/35th Canadian Symposium on Remote Sensing, Regina, SK, Canada, 13–18 July 2014; pp. 3–6. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Dutrieux, L.P.; Verbesselt, J.; Kooistra, L.; Herold, M. Monitoring forest cover loss using multiple data streams, a case study of a tropical dry forest in Bolivia. ISPRS J. Photogramm. Remote Sens. 2015, 107, 112–125. [Google Scholar] [CrossRef]
- Hutchinson, J.M.; Jacquin, A.; Hutchinson, S.L.; Verbesselt, J. Monitoring vegetation change and dynamics on U.S. Army training lands using satellite image time series analysis. J. Environ. Manag. 2015, 150, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.C.; Shimabukuro, Y.E.; Potapov, P.; Pittman, K. Comparing annual MODIS and PRODES forest cover change data for advancing monitoring of Brazilian forest cover. Remote Sens. Environ. 2008, 112, 3784–3793. [Google Scholar] [CrossRef]
- De Souza, C.M.; Hayashi, S.; Verissimo, A. Near real-time deforestation detection for enforcement of forest reserves in Mato Grosso. In Proceedings of the Land Governance inSupport of the MDGs: Responding to New Challenges, Washington, DC, USA, 9–10 March 2009. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-Density Cypress Forest. Sensors 2007, 11, 2636–2651. [Google Scholar] [CrossRef] [PubMed]
- Brando, P.M.; Goetz, S.J.; Baccini, A.; Nepstad, D.C.; Beck, P.S.A.; Christman, M.C. Seasonal and interannual variability of climate and vegetation indices across the Amazon. Proc. Natl. Acad. Sci. USA 2010, 107, 14685–14690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phompila, C.; Lewis, M.; Ostendorf, B.; Clarke, K. MODIS EVI and LST Temporal Response for Discrimination of Tropical Land Covers. Remote Sens. 2015, 7, 6026–6040. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014; Available online: http://www.R-project.org/ (accessed on 4 June 2018).
- Maidment, R.I.; Grimes, D.; Black, E.; Tarnavsky, E.; Young, M.; Greatrex, H.; Allan, R.P.; Stein, T.; Nkonde, E.; Senkunda, S.; et al. A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa. Nat. Sci. Data 2017, 4, 170063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarnavsky, E.; Grimes, D.; Maidment, R.; Black, E.; Allan, R.; Stringer, M.; Chadwick, R.; Kayitakire, F. Extension of the TAMSAT Satellite-based Rainfall Monitoring over Africa and from 1983 to present. J. Appl. Meteorol. Clim. 2014, 53, 2805–2822. [Google Scholar] [CrossRef]
- Maidment, R.; Grimes, D.; Allan, R.; Tarnavsky, E.; Stringer, M.; Hewison, T.; Roebeling, R.; Black, E. The 30-year TAMSAT African Rainfall Climatology and Time-series (TARCAT) Data Set. J. Geophys. Res. Atmos. 2014, 119, 10619–10644. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological Change Detection while Accounting for Abrupt and Gradual Trends in Satellite Image Time Series. Remote Sens. Environ. 2010, 114, 2970–2980. [Google Scholar] [CrossRef]
- Verbesselt, J.; Zeileis, A.; Herold, M. Near Real-Time Disturbance Detection in Terrestrial Ecosystems Using Satellite Image Time Series: Drought Detection in Somalia; Working Paper 2011-18; Working Papers in Economics and Statistics, Research Platform Empirical and Experimental Economics; Universitaet Innsbruck: Innsbruck, Austria, 2011; Available online: http://EconPapers.RePEc.org/RePEc:inn:wpaper:2011-18 (accessed on 4 June 2018).
- Chamber, Y.; Garg, A.; Mithal, V.; Brugere, I.; Lau, M.; Krishna, V.; Boriah, S.; Steinbach, M.; Kumar, V.; Potter, C.; et al. A Novel Time Series Based Approach to Detect Gradual Vegetation Changes in Forests. In Proceedings of the CIDU 2011: NASA Conference on Intelligent Data Understanding, Mountain View, CA, USA, 19–21 October 2011; pp. 248–262. [Google Scholar]
- Cohen, W.B.; Yang, Z.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—Tools for calibration and validation. Remote Sens. Environ. 2010, 114, 2911–2924. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L. Southern Africa Validation of the MODIS, L3JRC, and GlobCarbon Burned-Area Products. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1032–1044. [Google Scholar] [CrossRef]
- Deshayes, M.; Guyon, D.; Jeanjean, H.; Stach, N.; Jolly, A.; Hagolle, O. The contribution of remote sensing to the assessment of drought effects in forest ecosystems. Ann. For. Sci. 2006, 63, 579–595. [Google Scholar] [CrossRef] [Green Version]
- Getahun, K.; Van Rompaey, A.; Van Turnhout, P.; Poesen, J. Factors controlling patterns of deforestation in moist evergreen Afromontane forests of Southwest Ethiopia. For. Ecol. Manag. 2013, 304, 171–181. [Google Scholar] [CrossRef]
- Lambrechts, C. Aerial Survey of the Destruction of the Aberdare Range Forests; Division of Early Warning and Assessment: Nairobi, Kenya, 2003. [Google Scholar]
- Maeda, E.E.; Heiskanen, J.; Aragão, L.E.O.C.; Rinne, J. Can MODIS EVI monitor ecosystem productivity in the Amazon rainforest? Geophys. Res. Lett. 2014, 41, 7176–7183. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Dai, A.; van der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Chang. 2013, 4, 17–22. [Google Scholar] [CrossRef]
- Eklundh, L. Estimating relations between AVHRR NDVI and rainfall in East Africa at 10-day and monthly time scales. Int. J. Remote Sens. 1998, 19, 563–570. [Google Scholar] [CrossRef]
- Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.V.K.; Moore, B.; Vörösmarty, C.J. Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 1998, 396, 664–667. [Google Scholar] [CrossRef]
- Botta, A.; Ramankutty, N.; Foley, J.A. Long-term variations of climate and carbon fluxes over the Amazon basin. Geophys. Res. Lett. 2002, 29, 33-1–33-34. [Google Scholar] [CrossRef]
- Huete, A.R.; Didan, K.; Shimabukuru, Y.E.; Ratana, P.; Saleska, S.R.; Hutyra, L.R.; Yang, W.; Nemani, N.R.; Myneni, R. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 2006, 33, L06405. [Google Scholar] [CrossRef]
- Saleska, S.R.; Didan, K.; Huete, A.R.; da Rocha, H.R. Amazon forests green-up during 2005 drought. Science (N. Y.) 2007, 318, 612. [Google Scholar] [CrossRef] [PubMed]
- Hanna, V.K.; Ravichandran, M.S.; Kushwaha, S.P. Corridor analysis in Rajaji-Corbett elephant reserve—A Remote sensing and GIS approach. J. Indian Soc. Remote Sens. 2001, 29, 41–46. [Google Scholar] [CrossRef]
- Mallegowda, P.; Rengaian, G.; Krishnan, J.; Niphadkar, M. Assessing Habitat Quality of Forest-Corridors through NDVI Analysis in Dry Tropical Forests of South India: Implications for Conservation. Remote Sens. 2015, 7, 1619–1639. [Google Scholar] [CrossRef] [Green Version]
- Schneibel, A.; Frantz, D.; Röder, A.; Stellmes, M.; Fischer, K.; Hill, J. Using Annual Landsat Time Series for the Detection of Dry Forest Degradation Processes in South-Central Angola. Remote Sens. 2017, 9, 905. [Google Scholar] [CrossRef]
- Schroeder, T.A.; Healey, S.P.; Moisen, G.G.; Fresino, T.S.; Cohen, W.B.; Huang, C.; Kennedy, R.E.; Yang, Z. Improving estimates of forest disturbance by combining observations from Landsat time series with U.S. Forest Service Forest Inventory and Analysis data. Remote Sens. Environ. 2014, 154, 61–73. [Google Scholar] [CrossRef]
- Griffiths, P.; Kuemmerle, T.; Kennedy, R.E.; Abrudan, I.V.; Knorn, J.; Hostert, P. Using annual time-series of Landsat images to assess the effects of forest restitution in post-socialist Romania. Remote Sens. Environ. 2012, 118, 199–214. [Google Scholar] [CrossRef]
- Healey, S.P.; Cohen, W.B.; Yang, Z.; Kenneth Brewer, C.; Brooks, E.B.; Gorelick, N.; Hernandez, A.J.; Huang, C.; Joseph Hughes, M.; Kennedy, R.E.; et al. Mapping forest change using stacked generalization: An ensemble approach. Remote Sens. Environ. 2017, 204, 717–728. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
Dataset | Parameter | Spatial Resolution | Temporal Resolution | Source | Number of Scenes Per Study Site |
---|---|---|---|---|---|
MODIS MOD13Q1 | EVI | 250 m | 16 Day | https://espa.cr.usgs.gov | 386 |
TAMSAT | Rainfall | 4 km | Monthly | https://www.tamsat.org.uk | 132 |
MODIS MCD451A | Fire | 500 m | Monthly | https://earthexplorer.usgs.gov/ | 132 |
Year | Accuracy | Error Rate | Commission Error | Omission Error |
---|---|---|---|---|
2005 | 0.66 | 0.3 | 0.46 | 0 |
2006 | 0.66 | 0.3 | 0.40 | 0.20 |
2007 | 0.66 | 0.3 | 0.45 | 0.10 |
2008 | 0.73 | 0.3 | 0.40 | 0 |
2009 | 0.76 | 0.2 | 0.35 | 0 |
2010 | 0.64 | 0.4 | 0.47 | 0 |
2011 | 0.52 | 0.5 | 0.70 | 0 |
2012 | 0.87 | 0.1 | 0.20 | 0 |
2013 | 0.79 | 0.2 | 0.30 | 0 |
2014 | 0.86 | 0.1 | 0.21 | 0 |
2015 | 0.77 | 0.2 | 0.35 | 0 |
Overall (05–15) | 0.72 | 0.3 | 0.4 | 0.03 |
Year | Accuracy | Error Rate | Commission Error | Omission Error |
---|---|---|---|---|
2003 | 0.69 | 0.3 | 0.44 | 0 |
2004 | 0.77 | 0.2 | 0.33 | 0 |
2005 | 0.73 | 0.3 | 0.43 | 0 |
2006 | 0.57 | 0.4 | 0.50 | 0.25 |
2007 | 0.92 | 0.1 | 0.13 | 0 |
2008 | 0.75 | 0.3 | 0.17 | 0.33 |
2009 | 0.94 | 0.1 | 0 | 0.10 |
2010 | 0.94 | 0.1 | 0.25 | 0 |
2011 | 0.77 | 0.2 | 0.42 | 0 |
2012 | 0.76 | 0.2 | 0.40 | 0.9 |
2013 | 0.89 | 0.1 | 0.25 | 0 |
2014 | 0.92 | 0.1 | 0.14 | 0 |
2015 | 0.68 | 0.2 | 0.33 | 0 |
Overall (05–15) | 0.79 | 0.2 | 0.29 | 0.06 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morrison, J.; Higginbottom, T.P.; Symeonakis, E.; Jones, M.J.; Omengo, F.; Walker, S.L.; Cain, B. Detecting Vegetation Change in Response to Confining Elephants in Forests Using MODIS Time-Series and BFAST. Remote Sens. 2018, 10, 1075. https://doi.org/10.3390/rs10071075
Morrison J, Higginbottom TP, Symeonakis E, Jones MJ, Omengo F, Walker SL, Cain B. Detecting Vegetation Change in Response to Confining Elephants in Forests Using MODIS Time-Series and BFAST. Remote Sensing. 2018; 10(7):1075. https://doi.org/10.3390/rs10071075
Chicago/Turabian StyleMorrison, Jacqueline, Thomas P. Higginbottom, Elias Symeonakis, Martin J. Jones, Fred Omengo, Susan L. Walker, and Bradley Cain. 2018. "Detecting Vegetation Change in Response to Confining Elephants in Forests Using MODIS Time-Series and BFAST" Remote Sensing 10, no. 7: 1075. https://doi.org/10.3390/rs10071075
APA StyleMorrison, J., Higginbottom, T. P., Symeonakis, E., Jones, M. J., Omengo, F., Walker, S. L., & Cain, B. (2018). Detecting Vegetation Change in Response to Confining Elephants in Forests Using MODIS Time-Series and BFAST. Remote Sensing, 10(7), 1075. https://doi.org/10.3390/rs10071075