Assessment of SM2RAIN-Derived and State-of-the-Art Satellite Rainfall Products over Northeastern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Rainfall Datasets
2.2.1. Ground Station Data
2.2.2. SM2RAIN-CCI Rainfall Dataset
2.2.3. State-of-the-Art Rainfall Datasets
2.3. Datasets Pre-Processing
2.4. Performance Evaluation Methods
3. Results
3.1. Evaluation Using 5-Day SM2RAIN-CCI Rainfall Estimates during the Calibration Periods
3.2. 5-Day SM2RAIN-CCI Performance Evaluation under Different Bioclimatic Conditions
3.3. Daily Performance of SM2RAIN-CCI and the State-of-the-Art Rainfall Datasets in the NEB Biomes
3.3.1. Seasonal and Regional Daily Analysis for SM2RAIN-CCI
3.3.2. Seasonal and Regional Daily Analysis for CHIRPS
3.3.3. Seasonal and Regional Daily Analysis for MSWEP
3.3.4. Seasonal and Regional Daily Analysis for CMORPH
3.3.5. The Effect of Topography on the Performance of Rainfall Products
4. Discussion
5. Conclusions
- The reliability of rainfall products (i.e., CHIRPS, CMORPH, MSWEP, and SM2RAIN-CCI) was dependent on the topography (see Table 11) and bioclimatic conditions (see Table 12) of NEB. They provided R values higher than 0.40, with median values of B, PDO, FAR, CSI, and ACC equal to 0.95, 0.06, 0.84, and 0.89, respectively.
- MSWEP performed substantially better than the other datasets for all biomes in terms of R, but CHIRPS performed better in terms of the estimation of rain amount (see Table 12).
- The performance of SM2RAIN-CCI suggested that the SM2RAIN algorithm tended to fail in very dry or very wet conditions (see Table 12).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stott, P.A.; Christidis, N.; Otto, F.E.L.; Sun, Y.; Vanderlinden, J.-P.; Van Oldenborgh, G.J.; Vautard, R.; Von Storch, H.; Walton, P.; Yiou, P.; et al. Attribution of extreme weather and climate-related events. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 23–41. [Google Scholar] [CrossRef] [PubMed]
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate variability and vulnerability to climate change: A review. Glob. Chang. Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K.E.; Fasullo, J.T.; Shepherd, T.G. Attribution of climate extreme events. Nat. Clim. Chang. 2015, 5, 725–730. [Google Scholar] [CrossRef]
- Awange, J.L.; Mpelasoka, F.; Goncalves, R.M. When every drop counts: Analysis of Droughts in Brazil for the 1901–2013 period. Sci. Total Environ. 2016, 566, 1472–1488. [Google Scholar] [CrossRef] [PubMed]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, present, and future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Brito, S.S.B.; Cunha, A.P.M.A.; Cunningham, C.C.; Alvalá, R.C.; Marengo, J.A.; Carvalho, M.A. Frequency, duration and severity of drought in the Semiarid Northeast Brazil region. Int. J. Climatol. 2018, 38, 517–529. [Google Scholar] [CrossRef]
- Gutiérrez, A.P.A.; Engle, N.L.; De Nys, E.; Molejón, C.; Martins, E.S. Drought preparedness in Brazil. Weather Clim. Extrem. 2014, 3, 95–106. [Google Scholar] [CrossRef]
- Toté, C.; Patricio, D.; Boogaard, H.; van der Wijngaart, R.; Tarnavsky, E.; Funk, C. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sens. 2015, 7, 1758–1776. [Google Scholar] [CrossRef]
- Martins, M.A.; Tomasella, J.; Rodriguez, D.A.; Alvalá, R.C.S.; Giarolla, A.; Garofolo, L.L.; Júnior, J.L.S.; Paolicchi, L.T.L.C.; Pinto, G.L.N. Improving drought management in the Brazilian semiarid through crop forecasting. Agric. Syst. 2018, 160, 21–30. [Google Scholar] [CrossRef]
- Villarini, G.; Mandapaka, P.V.; Krajewski, W.F.; Moore, R.J. Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Maggioni, V.; Sapiano, M.R.P.; Adler, R.F.; Tian, Y.; Huffman, G.J. An Error Model for Uncertainty Quantification in High-Time-Resolution Precipitation Products. J. Hydrometeorol. 2014, 15, 1274–1292. [Google Scholar] [CrossRef]
- Peng, J.; Niesel, J.; Loew, A.; Zhang, S.; Wang, J. Evaluation of satellite and reanalysis soil moisture products over southwest China using ground-based measurements. Remote Sens. 2015, 7, 15729–15747. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Sheffield, J.; Pan, M.; Wood, E.F. Evaluation of the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sens. Environ. 2015, 159, 181–193. [Google Scholar] [CrossRef]
- Oliveira, P.T.; Santos E Silva, C.M.; Lima, K.C. Climatology and trend analysis of extreme precipitation in subregions of Northeast Brazil. Theor. Appl. Climatol. 2016, 130, 1–14. [Google Scholar] [CrossRef]
- Rao, V.B.; Franchito, S.H.; Santo, C.M.E.; Gan, M.A. An update on the rainfall characteristics of Brazil: Seasonal variations and trends in 1979–2011. Int. J. Climatol. 2016, 36, 291–302. [Google Scholar] [CrossRef]
- Lyra, G.B.; Oliveira-Júnior, J.F.; Zeri, M. Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Alagoas state, Northeast of Brazil. Int. J. Climatol. 2014, 34, 3546–3558. [Google Scholar] [CrossRef]
- Horita, F.E.A.; Porto De Albuquerque, J.; Marchezini, V.; Mendiondo, E.M. A qualitative analysis of the early warning process in disaster management. In Proceedings of the 13th International Conference on Information Systems for Crisis Response and Management (ISCRAM), Rio de Janeiro, Brasil, 22–25 May 2016; pp. 1–9. [Google Scholar]
- Paredes, F.; Barbosa, H.A.; Lakshmi-Kumar, T. Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. J. Arid Environ. 2016, 139, 26–40. [Google Scholar] [CrossRef]
- Michaelides, S.; Levizzani, V.; Anagnostou, E.; Bauer, P.; Kasparis, T.; Lane, J.E. Precipitation: Measurement, remote sensing, climatology and modeling. Atmos. Res. 2009, 94, 512–533. [Google Scholar] [CrossRef]
- Krajewski, W.F.; Smith, J.A. Radar hydrology: Rainfall estimation. Adv. Water Resour. 2002, 25, 1387–1394. [Google Scholar] [CrossRef]
- Ciabatta, L.; Massari, C.; Brocca, L.; Gruber, A.; Reimer, C.; Hahn, S.; Paulik, C.; Dorigo, W.; Kidd, R.; Wagner, W. SM2RAIN-CCI: A new global long-term rainfall data set derived from ESA CCI soil moisture. Earth Syst. Sci. Data 2018, 10, 267–280. [Google Scholar] [CrossRef]
- Maggioni, V.; Sapiano, M.R.P.; Adler, R.F. Estimating Uncertainties in High-Resolution Satellite Precipitation Products: Systematic or Random Error? J. Hydrometeorol. 2016, 17, 1119–1129. [Google Scholar] [CrossRef]
- Beck, H.E.; Van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; De Roo, A. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.-L. A review of global precipitation datasets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2017, 56, 79–107. [Google Scholar] [CrossRef]
- Balsamo, G.; Albergel, C.; Beljaars, A.; Boussetta, S.; Brun, E.; Cloke, H.; Dee, D.; Dutra, E.; Muñoz Sabater, J.; Pappenberger, F.; et al. ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci. 2015, 19, 389–407. [Google Scholar] [CrossRef]
- Cannon, F.; Ralph, F.M.; Wilson, A.M.; Lettenmaier, D.P. GPM Satellite Radar Measurements of Precipitation and Freezing Level in Atmospheric Rivers: Comparison with Ground-Based Radars and Reanalyses. J. Geophys. Res. Atmos. 2017, 122, 12747–12764. [Google Scholar] [CrossRef]
- Loew, A.; Bell, W.; Brocca, L.; Bulgin, C.E.; Burdanowitz, J.; Calbet, X.; Donner, R.V.; Ghent, D.; Gruber, A.; Kaminski, T.; et al. Validation practices for satellite-based Earth observation data across communities. Rev. Geophys. 2017, 55, 779–817. [Google Scholar] [CrossRef] [Green Version]
- Melo, D.D.; Xavier, A.C.; Bianchi, T.; Oliveira, P.T.S.; Scanlon, B.R.; Lucas, M.C.; Wendland, E. Performance evaluation of rainfall estimates by TRMM multi-satellite precipitation analysis 3B42V6 and V7 over Brazil. J. Geophys. Res. 2015, 120, 9426–9436. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Maggioni, V.; Meyers, P.C.; Robinson, M.D. A Review of Merged High-Resolution Satellite Precipitation Product Accuracy during the Tropical Rainfall Measuring Mission (TRMM) Era. J. Hydrometeorol. 2016, 17, 1101–1117. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Ayehu, G.T.; Tadesse, T.; Gessesse, B.; Dinku, T. Validation of new satellite rainfall products over the Upper Blue Nile Basin, Ethiopia. Atmos. Meas. Tech. Discuss. 2017, 11, 1921–1936. [Google Scholar] [CrossRef]
- Nogueira, S.M.C.; Moreira, M.A.; Volpato, M.M.L. Evaluating precipitation estimates from Eta, TRMM and CHRIPS data in the south-southeast region of Minas Gerais state-Brazil. Remote Sens. 2018, 10, 313. [Google Scholar] [CrossRef]
- Brocca, L.; Moramarco, T.; Melone, F.; Wagner, W. A new method for rainfall estimation through soil moisture observations. Geophys. Res. Lett. 2013, 40, 853–858. [Google Scholar] [CrossRef] [Green Version]
- Massari, C.; Brocca, L.; Pellarin, T.; Kerr, Y.; Crow, W.; Cascon, C.; Ciabatta, L. Rainfall estimation over-land using SMOS soil moisture observations: SM2RAIN, LMAA and SMART algorithms. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 17–22 April 2016; Volume 18. [Google Scholar]
- Ciabatta, L.; Brocca, L.; Massari, C.; Moramarco, T.; Puca, S.; Rinollo, A.; Gabellani, S.; Wagner, W. Integration of Satellite Soil Moisture and Rainfall Observations over the Italian Territory. J. Hydrometeorol. 2015, 16, 1341–1355. [Google Scholar] [CrossRef]
- Ciabatta, L.; Brocca, L.; Massari, C.; Moramarco, T.; Gabellani, S.; Puca, S.; Wagner, W. Rainfall-runoff modelling by using SM2RAIN-derived and state-of-the-art satellite rainfall products over Italy. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 163–173. [Google Scholar] [CrossRef]
- Brocca, L.; Massari, C.; Ciabatta, L.; Moramarco, T.; Penna, D.; Zuecco, G.; Pianezzola, L.; Borga, M.; Matgen, P.; Martínez-Fernández, J. Rainfall estimation from in situ soil moisture observations at several sites in Europe: An evaluation of the SM2RAIN algorithm. J. Hydrol. Hydromech. 2015, 63, 201–209. [Google Scholar] [CrossRef]
- Chiaravalloti, F.; Brocca, L.; Procopio, A.; Massari, C.; Gabriele, S. Assessment of GPM and SM2RAIN-ASCAT rainfall products over complex terrain in southern Italy. Atmos. Res. 2018, 206, 64–74. [Google Scholar] [CrossRef]
- Massari, C.; Camici, S.; Ciabatta, L.; Brocca, L. Exploiting satellite-based surface soil moisture for flood forecasting in the Mediterranean area: State update versus rainfall correction. Remote Sens. 2018, 10, 292. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Parinussa, R.M.; Dorigo, W.A.; De Jeu, R.A.M.; Wagner, W.; Van Dijk, A.I.J.M.; McCabe, M.F.; Evans, J.P. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Wagner, W.; Hahn, S.; Kidd, R.; Melzer, T.; Bartalis, Z.; Hasenauer, S.; Figa-Saldaña, J.; de Rosnay, P.; Jann, A.; Schneider, S.; et al. The ASCAT soil moisture product: A review of its specifications, validation results, and emerging applications. Meteorol. Z. 2013, 22, 5–33. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Gruber, A.; De Jeu, R.A.M.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.M.; et al. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- Cui, C.; Xu, J.; Zeng, J.; Chen, K.S.; Bai, X.; Lu, H.; Chen, Q.; Zhao, T. Soil moisture mapping from satellites: An intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over two dense network regions at different spatial scales. Remote Sens. 2018, 10, 33. [Google Scholar] [CrossRef]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M.; Rudolf, B. GPCC’s new land surface precipitation climatology based on quality controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 2014, 115, 15–40. [Google Scholar] [CrossRef]
- Abera, W.; Brocca, L.; Rigon, R. Comparative evaluation of different satellite rainfall estimation products and bias correction in the Upper Blue Nile (UBN) basin. Atmos. Res. 2016, 178–179, 471–483. [Google Scholar] [CrossRef]
- Xaver, A.; Dorigo, W.; Brocca, L.; Ciabatta, L. Assessing the performance of satellite-based precipitation products over the Mediterranean region. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 23–28 April 2017; Volume 19. [Google Scholar]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; Van Dijk, A.I.J.M.; Weedon, G.P.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar] [CrossRef] [Green Version]
- Kousky, V.E. Frontal Influences on Northeast Brazil. Mon. Weather Rev. 1979, 107, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- Uvo, C.B.; Repelli, C.A.; Zebiak, S.E.; Kushnir, Y. The relationships between tropical Pacific and Atlantic SST and northeast Brazil monthly precipitation. J. Clim. 1998, 11, 551–562. [Google Scholar] [CrossRef]
- Marengo, J.A.; Bernasconi, M. Regional differences in aridity/drought conditions over Northeast Brazil: Present state and future projections. Clim. Chang. 2015, 129, 103–115. [Google Scholar] [CrossRef]
- Barbosa, H.A.; Lakshmi Kumar, T.V.; Silva, L.R.M. Recent trends in vegetation dynamics in the South America and their relationship to rainfall. Nat. Hazards 2015, 77, 883–899. [Google Scholar] [CrossRef]
- Barbosa, H.A.; Lakshmi Kumar, T.V. Influence of rainfall variability on the vegetation dynamics over Northeastern Brazil. J. Arid Environ. 2016, 124, 377–387. [Google Scholar] [CrossRef]
- Barbosa, H.A.; Huete, A.R.; Baethgen, W.E. A 20-year study of NDVI variability over the Northeast Region of Brazil. J. Arid Environ. 2006, 67, 288–307. [Google Scholar] [CrossRef]
- Schulz, C.; Koch, R.; Cierjacks, A.; Kleinschmit, B. Land change and loss of landscape diversity at the Caatinga phytogeographical domain—Analysis of pattern-process relationships with MODIS land cover products (2001–2012). J. Arid Environ. 2017, 136, 54–74. [Google Scholar] [CrossRef]
- Souza, R.; Feng, X.; Antonino, A.; Montenegro, S.; Souza, E.; Porporato, A. Vegetation response to rainfall seasonality and interannual variability in tropical dry forests. Hydrol. Process. 2016, 30, 3583–3595. [Google Scholar] [CrossRef]
- Oliveira-Filho, A.T.; Ratter, J.A. Vegetation Physiognomies and Woody Flora of the Cerrado Biome. Cerrados Br. Ecol. Nat. Hist. Neotrop. Savanna 2002, 42, 91–120. [Google Scholar] [CrossRef]
- Scarano, F.R.; Ceotto, P. Brazilian Atlantic forest: Impact, vulnerability, and adaptation to climate change. Biodivers. Conserv. 2015, 24, 2319–2331. [Google Scholar] [CrossRef]
- Salazar, L.; Nobre, C.; Oyama, M. Climate change consequences on the biome distribution in tropical South America. Geophys. Res. Lett. 2007, 34, 252–254. [Google Scholar] [CrossRef]
- Xavier, A.C.; King, C.W.; Scanlon, B.R. Daily gridded meteorological variables in Brazil (1980–2013). Int. J. Climatol. 2016, 36, 2644–2659. [Google Scholar] [CrossRef]
- Hofstra, N.; New, M. Spatial variability in correlation decay distance and influence on angular-distance weighting interpolation of daily precipitation over Europe. Int. J. Climatol. 2009, 29, 1872–1880. [Google Scholar] [CrossRef] [Green Version]
- Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil As a Natural Raingauge: Estimating Global Rainfall From Satellite Soil Moisture Data. J. Geophys. Res. Atmos. 2014, 119, 5128–5141. [Google Scholar] [CrossRef]
- Bai, L.; Shi, C.; Li, L.; Yang, Y.; Wu, J. Accuracy of CHIRPS satellite-rainfall products over mainland China. Remote Sens. 2018, 10, 362. [Google Scholar] [CrossRef]
- Dinku, T.; Funk, C.; Peterson, P.; Maidment, R.; Tadesse, T.; Gagain, H.; Ceccato, P. Validation of the CHIRPS Satellite Rainfall Estimates over Eastern of Africa. Q. J. R. Meteorol. Soc. 2018. [Google Scholar] [CrossRef]
- Jiang, S.; Ren, L.; Yong, B.; Hong, Y.; Yang, X.; Yuan, F. Evaluation of latest TMPA and CMORPH precipitation products with independent rain gauge observation networks over high-latitude and low-latitude basins in China. Chin. Geogr. Sci. 2016, 26, 439–455. [Google Scholar] [CrossRef]
- Purcell, L.C.; Sinclair, T.R.; McNew, R.W. Drought avoidance assessment for summer annual crops using long-term weather data. Agron. J. 2003, 95, 1566–1576. [Google Scholar] [CrossRef]
- Martinez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A. A soil water based index as a suitable agricultural drought indicator. J. Hydrol. 2015, 522, 265–273. [Google Scholar] [CrossRef]
- Kimani, M.W.; Hoedjes, J.C.B.; Su, Z. An assessment of satellite-derived rainfall products relative to ground observations over East Africa. Remote Sens. 2017, 9, 430. [Google Scholar] [CrossRef]
- Kumar, B.; Patra, K.C.; Lakshmi, V. Daily rainfall statistics of TRMM and CMORPH: A case for trans-boundary Gandak River basin. J. Earth Syst. Sci. 2016, 125, 919–934. [Google Scholar] [CrossRef]
- Lei, F.; Crow, W.; Shen, H.; Parinussa, R.; Holmes, T. The Impact of Local Acquisition Time on the Accuracy of Microwave Surface Soil Moisture Retrievals over the Contiguous United States. Remote Sens. 2015, 7, 13448–13465. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Fernández, N.; Muñoz Sabater, J.; Richaume, P.; de Rosnay, P.; Kerr, Y.; Albergel, C.; Drusch, M.; Mecklenburg, S. SMOS near real time soil moisture product: Processor overview and first validation results. Hydrol. Earth Syst. Sci. Discuss. 2017, 21, 1–23. [Google Scholar] [CrossRef]
- Ciabatta, L.; Marra, A.C.; Panegrossi, G.; Casella, D.; Sanò, P.; Dietrich, S.; Massari, C.; Brocca, L. Daily precipitation estimation through different microwave sensors: Verification study over Italy. J. Hydrol. 2017, 545, 436–450. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.-J.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS mission: New tool for monitoring key elements ofthe global water cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Liu, Y.Y.; Johnson, F.M.; Parinussa, R.M.; Sharma, A. A global comparison of alternate AMSR2 soil moisture products: Why do they differ? Remote Sens. Environ. 2015, 161, 43–62. [Google Scholar] [CrossRef]
- Rodriguez-Fernández, N.J.; Kerr, Y.H.; van der Schalie, R.; Al-Yaari, A.; Wigneron, J.-P.; de Jeu, R.; Richaume, P.; Dutra, E.; Mialon, A.; Drusch, M.; et al. Long Term Global Surface Soil Moisture Fields Using an SMOS-Trained Neural Network Applied to AMSR-E Data. Remote Sens. 2016, 8, 959. [Google Scholar] [CrossRef]
- Paredes-Trejo, F.; Barbosa, H. Evaluation of the SMOS-derived soil water deficit index as agricultural drought index in Northeast of Brazil. Water 2017, 9, 377. [Google Scholar] [CrossRef]
- Haile, A.T.; Habib, E.; Rientjes, T. Evaluation of the climate prediction center (CPC) morphing technique (CMORPH) rainfall product on hourly time scales over the source of the Blue Nile River. Hydrol. Process. 2013, 27, 1829–1839. [Google Scholar] [CrossRef]
- Funk, C.; Hoell, A.; Stone, D. Examining the contribution of the observed global warming trend to the California droughts of 2012/13 and 2013/14. Bull. Am. Meteorol. Soc. 2014, 95, S11. [Google Scholar]
- Pablos, M.; Martínez-Fernández, J.; Sánchez, N.; González-Zamora, Á. Temporal and spatial comparison of agricultural drought indices from moderate resolution satellite soil moisture data over northwest Spain. Remote Sens. 2017, 9, 1168. [Google Scholar] [CrossRef]
Biome | Area (km2) | Average Elevation (m a.s.l.) * | Average Slope (%) | Benchmark Station (name) | MAR 1 (mm) | MAT 1 (°C) |
---|---|---|---|---|---|---|
Amazônia | 109,133 | 111.42 | 3.32 | Zé Doca | 1773.90 | 28.33 |
Mata Atlântica | 158,871 | 271.10 | 7.07 | Itiruçu | 751.80 | 20.70 |
Cerrado | 454,860 | 413.26 | 3.39 | Barreiras | 1059.90 | 26.23 |
Caatinga | 809,069 | 416.23 | 4.43 | Barbalha | 1066.80 | 27.17 |
Acronym | Version | Data Source(s) | Spatial Resolution | Spatial Coverage | Temporal Resolution | Temporal Coverage |
---|---|---|---|---|---|---|
GBGR | 2.1 | Gauge | 0.25° | Brazil | Daily | 1998–2015 |
CHIRPS | 2.0 | Gauge, satellite | 0.05° | 50°N–50°S | Daily | 1981–present |
CMORPH | 0.x | Satellite | 0.25° | 60°N–60°S | Daily | 2002–present |
MSWEP | 2.1 | Gauge, satellite, reanalysis | 0.10° | Global | 3-hourly | 1979–2016 |
Name | Formula | Perfect Score |
---|---|---|
Pearson correlation coefficient | 1 | |
Root mean square error | 0 | |
Mean absolute error | 0 | |
Percent bias | 0 |
Name | Formula | Perfect Score |
---|---|---|
Probability of Detection | 1 | |
False Alarm Ratio | 0 | |
Critical Success Index | 1 | |
Accuracy | 1 |
R [-] | RMSE [mm] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Period | Median | Mean | Min. | Max. | SD | Median | Mean | Min. | Max. | SD |
1998–2001 | 0.56 | 0.54 | −1.00 | 0.91 | 0.15 | 14.91 | 15.60 | 4.61 | 51.22 | 4.90 |
2002–2006 | 0.61 | 0.60 | −0.90 | 0.94 | 0.15 | 15.87 | 16.64 | 1.90 | 49.65 | 4.35 |
2007–2013 | 0.76 | 0.75 | −0.31 | 0.89 | 0.09 | 12.64 | 13.36 | 5.67 | 38.37 | 3.68 |
AMZ | MAT | |||||||||
Month | R [-] | ME [mm] | MAE [mm] | B [%] | MRA [mm] | R [-] | ME [mm] | MAE [mm] | B [%] | MRA [mm] |
Jan | 0.80 | −72.92 | 72.92 | −36.50 | 192.67 | 0.91 | −25.53 | 29.77 | −30.10 | 84.85 |
Feb | 0.62 | −103.81 | 103.81 | −39.10 | 265.48 | 0.79 | −28.96 | 32.93 | −35.00 | 82.68 |
Mar | 0.15 | −141.40 | 141.40 | −43.40 | 326.08 | 0.63 | −44.10 | 44.77 | −42.70 | 103.35 |
Apr | 0.14 | −118.01 | 122.69 | −36.80 | 320.62 | 0.80 | −39.72 | 40.06 | −36.50 | 108.88 |
May | 0.53 | 5.66 | 54.47 | 2.80 | 200.71 | 0.59 | −34.27 | 34.27 | −29.20 | 117.38 |
Jun | 0.47 | 68.52 | 68.52 | 68.20 | 100.54 | 0.58 | −30.39 | 32.28 | −23.50 | 129.08 |
Jul | 0.51 | 73.66 | 73.66 | 123.30 | 59.72 | 0.80 | −12.74 | 15.32 | −11.10 | 114.52 |
Aug | 0.65 | 59.96 | 59.96 | 293.20 | 20.25 | 0.71 | −1.27 | 11.14 | −1.50 | 86.78 |
Sep | 0.80 | 40.41 | 40.41 | 248.20 | 16.28 | 0.82 | 5.30 | 9.88 | 9.30 | 57.12 |
Oct | 0.17 | 29.52 | 32.27 | 119.40 | 24.17 | 0.77 | −3.36 | 15.67 | −5.40 | 61.41 |
Nov | 0.49 | 6.68 | 17.14 | 16.20 | 42.86 | 0.74 | −28.07 | 30.13 | −29.30 | 93.90 |
Dec | 0.80 | −24.17 | 31.26 | −26.90 | 89.75 | 0.90 | −34.82 | 36.87 | −37.90 | 91.87 |
CER | CAAT | |||||||||
Month | R [-] | ME [mm] | MAE [mm] | B [%] | MRA [mm] | R [-] | ME [mm] | MAE [mm] | B [%] | MRA [mm] |
Jan | 0.85 | −32.03 | 40.24 | −18.60 | 171.84 | 0.93 | −35.13 | 40.73 | −37.50 | 93.63 |
Feb | 0.84 | −35.43 | 37.79 | −19.80 | 179.34 | 0.85 | −34.61 | 34.64 | −34.80 | 99.31 |
Mar | 0.52 | −38.01 | 44.84 | −19.30 | 197.26 | 0.66 | −38.44 | 39.81 | −32.40 | 118.54 |
Apr | 0.83 | −12.55 | 29.89 | −8.90 | 140.75 | 0.85 | −16.13 | 26.48 | −15.80 | 101.93 |
May | 0.92 | 11.43 | 19.65 | 16.40 | 69.71 | 0.90 | 10.87 | 15.67 | 17.20 | 63.27 |
Jun | 0.65 | 20.84 | 20.84 | 127.60 | 16.33 | 0.69 | 18.42 | 18.48 | 50.70 | 36.32 |
Jul | 0.59 | 20.38 | 20.38 | 279.90 | 7.28 | 0.77 | 16.54 | 16.54 | 62.10 | 26.66 |
Aug | 0.70 | 19.70 | 19.70 | 683.90 | 2.88 | 0.77 | 14.80 | 14.80 | 93.10 | 15.91 |
Sep | 0.92 | 17.53 | 17.53 | 134.70 | 13.01 | 0.84 | 13.21 | 13.21 | 133.80 | 9.89 |
Oct | 0.86 | 8.43 | 17.95 | 16.30 | 50.60 | 0.91 | 8.09 | 12.12 | 40.30 | 19.35 |
Nov | 0.87 | −13.31 | 19.30 | −10.90 | 121.44 | 0.87 | −3.03 | 9.39 | −7.30 | 41.86 |
Dec | 0.94 | −23.94 | 28.98 | −15.70 | 152.63 | 0.88 | −16.14 | 19.77 | −26.70 | 60.47 |
AMZ | MAT | |||||||
Month | POD [-] | FAR [-] | CSI [-] | ACC [-] | POD [-] | FAR [-] | CSI [-] | ACC [-] |
Jan | 0.79 | 0.31 | 0.48 | 0.67 | 0.92 | 0.12 | 0.78 | 0.83 |
Feb | 0.62 | 0.45 | 0.26 | 0.61 | 0.93 | 0.13 | 0.77 | 0.82 |
Mar | 0.48 | 0.61 | 0.16 | 0.59 | 0.92 | 0.16 | 0.74 | 0.79 |
Apr | 0.38 | 0.70 | 0.11 | 0.60 | 0.90 | 0.18 | 0.68 | 0.77 |
May | 0.43 | 0.46 | 0.20 | 0.55 | 0.87 | 0.15 | 0.69 | 0.75 |
Jun | 0.52 | 0.27 | 0.33 | 0.54 | 0.84 | 0.18 | 0.63 | 0.72 |
Jul | 0.67 | 0.14 | 0.55 | 0.63 | 0.82 | 0.16 | 0.64 | 0.73 |
Aug | 0.85 | 0.03 | 0.82 | 0.83 | 0.85 | 0.12 | 0.71 | 0.77 |
Sep | 0.92 | 0.02 | 0.90 | 0.90 | 0.90 | 0.07 | 0.81 | 0.85 |
Oct | 0.92 | 0.03 | 0.90 | 0.90 | 0.92 | 0.06 | 0.82 | 0.87 |
Nov | 0.94 | 0.04 | 0.88 | 0.89 | 0.91 | 0.10 | 0.73 | 0.84 |
Dec | 0.90 | 0.11 | 0.77 | 0.81 | 0.93 | 0.09 | 0.79 | 0.86 |
CER | CAAT | |||||||
Month | POD [-] | FAR [-] | CSI [-] | ACC [-] | POD [-] | FAR [-] | CSI [-] | ACC [-] |
Jan | 0.78 | 0.21 | 0.52 | 0.72 | 0.94 | 0.11 | 0.78 | 0.85 |
Feb | 0.71 | 0.23 | 0.43 | 0.68 | 0.92 | 0.13 | 0.74 | 0.82 |
Mar | 0.67 | 0.21 | 0.41 | 0.67 | 0.89 | 0.16 | 0.69 | 0.78 |
Apr | 0.80 | 0.10 | 0.64 | 0.77 | 0.89 | 0.11 | 0.74 | 0.81 |
May | 0.92 | 0.03 | 0.86 | 0.89 | 0.91 | 0.06 | 0.82 | 0.86 |
Jun | 0.98 | 0.00 | 0.98 | 0.98 | 0.92 | 0.02 | 0.89 | 0.90 |
Jul | 0.99 | 0.00 | 0.99 | 0.99 | 0.95 | 0.01 | 0.93 | 0.94 |
Aug | 0.99 | 0.00 | 0.99 | 0.99 | 0.98 | 0.00 | 0.97 | 0.97 |
Sep | 0.97 | 0.01 | 0.95 | 0.96 | 0.99 | 0.01 | 0.98 | 0.98 |
Oct | 0.93 | 0.06 | 0.82 | 0.88 | 0.98 | 0.02 | 0.95 | 0.96 |
Nov | 0.85 | 0.18 | 0.60 | 0.76 | 0.98 | 0.04 | 0.93 | 0.94 |
Dec | 0.82 | 0.18 | 0.56 | 0.75 | 0.96 | 0.06 | 0.87 | 0.91 |
AMZ | MAT | |||||||
Month | POD [-] | FAR [-] | CSI [-] | ACC [-] | POD [-] | FAR [-] | CSI [-] | ACC [-] |
Jan | 0.73 | 0.22 | 0.44 | 0.72 | 0.91 | 0.11 | 0.76 | 0.83 |
Feb | 0.64 | 0.32 | 0.28 | 0.71 | 0.91 | 0.10 | 0.76 | 0.84 |
Mar | 0.54 | 0.40 | 0.19 | 0.71 | 0.89 | 0.14 | 0.71 | 0.80 |
Apr | 0.55 | 0.42 | 0.17 | 0.72 | 0.89 | 0.18 | 0.68 | 0.76 |
May | 0.78 | 0.23 | 0.46 | 0.72 | 0.89 | 0.16 | 0.70 | 0.77 |
Jun | 0.89 | 0.11 | 0.73 | 0.81 | 0.87 | 0.16 | 0.62 | 0.74 |
Jul | 0.94 | 0.04 | 0.87 | 0.89 | 0.81 | 0.12 | 0.61 | 0.73 |
Aug | 0.96 | 0.02 | 0.94 | 0.95 | 0.84 | 0.11 | 0.70 | 0.78 |
Sep | 0.97 | 0.02 | 0.95 | 0.95 | 0.88 | 0.07 | 0.79 | 0.83 |
Oct | 0.95 | 0.03 | 0.91 | 0.93 | 0.93 | 0.07 | 0.83 | 0.87 |
Nov | 0.93 | 0.05 | 0.84 | 0.89 | 0.92 | 0.13 | 0.74 | 0.83 |
Dec | 0.84 | 0.09 | 0.69 | 0.79 | 0.91 | 0.09 | 0.76 | 0.85 |
CER | CAAT | |||||||
Month | POD [-] | FAR [-] | CSI [-] | ACC [-] | POD [-] | FAR [-] | CSI [-] | ACC [-] |
Jan | 0.75 | 0.19 | 0.49 | 0.72 | 0.90 | 0.08 | 0.75 | 0.86 |
Feb | 0.71 | 0.25 | 0.41 | 0.70 | 0.88 | 0.09 | 0.71 | 0.83 |
Mar | 0.72 | 0.24 | 0.43 | 0.72 | 0.86 | 0.11 | 0.67 | 0.81 |
Apr | 0.84 | 0.13 | 0.63 | 0.78 | 0.90 | 0.10 | 0.76 | 0.83 |
May | 0.96 | 0.06 | 0.88 | 0.91 | 0.93 | 0.06 | 0.84 | 0.88 |
Jun | 1.00 | 0.01 | 0.99 | 0.99 | 0.95 | 0.03 | 0.91 | 0.92 |
Jul | 1.00 | 0.00 | 1.00 | 1.00 | 0.97 | 0.01 | 0.95 | 0.95 |
Aug | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 0.01 | 0.99 | 0.99 |
Sep | 0.98 | 0.02 | 0.96 | 0.97 | 1.00 | 0.01 | 0.99 | 0.99 |
Oct | 0.93 | 0.05 | 0.83 | 0.89 | 0.98 | 0.02 | 0.95 | 0.96 |
Nov | 0.84 | 0.15 | 0.62 | 0.78 | 0.96 | 0.03 | 0.90 | 0.93 |
Dec | 0.80 | 0.16 | 0.57 | 0.76 | 0.94 | 0.04 | 0.84 | 0.90 |
AMZ | MAT | |||||||
Month | POD [-] | FAR [-] | CSI [-] | ACC [-] | POD [-] | FAR [-] | CSI [-] | ACC [-] |
Jan | 0.84 | 0.23 | 0.50 | 0.75 | 0.94 | 0.09 | 0.79 | 0.88 |
Feb | 0.77 | 0.34 | 0.34 | 0.73 | 0.94 | 0.08 | 0.78 | 0.88 |
Mar | 0.69 | 0.45 | 0.23 | 0.70 | 0.92 | 0.11 | 0.74 | 0.85 |
Apr | 0.72 | 0.47 | 0.22 | 0.71 | 0.92 | 0.13 | 0.70 | 0.83 |
May | 0.87 | 0.24 | 0.54 | 0.75 | 0.93 | 0.12 | 0.74 | 0.84 |
Jun | 0.94 | 0.10 | 0.79 | 0.86 | 0.93 | 0.15 | 0.69 | 0.82 |
Jul | 0.97 | 0.04 | 0.90 | 0.93 | 0.94 | 0.15 | 0.72 | 0.83 |
Aug | 0.99 | 0.02 | 0.97 | 0.97 | 0.96 | 0.11 | 0.80 | 0.86 |
Sep | 0.99 | 0.02 | 0.96 | 0.97 | 0.97 | 0.06 | 0.86 | 0.91 |
Oct | 0.98 | 0.03 | 0.94 | 0.95 | 0.96 | 0.05 | 0.87 | 0.92 |
Nov | 0.95 | 0.05 | 0.87 | 0.92 | 0.94 | 0.09 | 0.74 | 0.87 |
Dec | 0.91 | 0.10 | 0.74 | 0.84 | 0.95 | 0.06 | 0.79 | 0.90 |
CER | CAAT | |||||||
Month | POD [-] | FAR [-] | CSI [-] | ACC [-] | POD [-] | FAR [-] | CSI [-] | ACC [-] |
Jan | 0.86 | 0.20 | 0.56 | 0.77 | 0.95 | 0.08 | 0.79 | 0.89 |
Feb | 0.83 | 0.25 | 0.48 | 0.74 | 0.93 | 0.09 | 0.76 | 0.87 |
Mar | 0.84 | 0.24 | 0.50 | 0.74 | 0.94 | 0.11 | 0.73 | 0.86 |
Apr | 0.92 | 0.14 | 0.69 | 0.82 | 0.95 | 0.09 | 0.80 | 0.89 |
May | 0.97 | 0.05 | 0.88 | 0.92 | 0.98 | 0.06 | 0.88 | 0.93 |
Jun | 1.00 | 0.01 | 0.99 | 0.99 | 0.99 | 0.02 | 0.95 | 0.97 |
Jul | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 0.01 | 0.98 | 0.98 |
Aug | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.99 | 0.99 |
Sep | 0.99 | 0.01 | 0.97 | 0.98 | 1.00 | 0.00 | 0.99 | 0.99 |
Oct | 0.96 | 0.05 | 0.85 | 0.92 | 0.99 | 0.02 | 0.96 | 0.98 |
Nov | 0.90 | 0.14 | 0.66 | 0.82 | 0.98 | 0.03 | 0.93 | 0.96 |
Dec | 0.89 | 0.16 | 0.62 | 0.81 | 0.97 | 0.04 | 0.88 | 0.94 |
AMZ | MAT | |||||||
Month | POD [-] | FAR [-] | CSI [-] | ACC [-] | POD [-] | FAR [-] | CSI [-] | ACC [-] |
Jan | 0.82 | 0.21 | 0.54 | 0.74 | 0.97 | 0.11 | 0.82 | 0.87 |
Feb | 0.74 | 0.37 | 0.31 | 0.71 | 0.96 | 0.12 | 0.80 | 0.86 |
Mar | 0.70 | 0.45 | 0.25 | 0.68 | 0.96 | 0.16 | 0.76 | 0.83 |
Apr | 0.72 | 0.51 | 0.22 | 0.67 | 0.98 | 0.20 | 0.74 | 0.79 |
May | 0.89 | 0.27 | 0.56 | 0.73 | 0.99 | 0.17 | 0.81 | 0.82 |
Jun | 0.96 | 0.11 | 0.82 | 0.86 | 1.00 | 0.24 | 0.76 | 0.76 |
Jul | 0.98 | 0.04 | 0.92 | 0.93 | 1.00 | 0.19 | 0.81 | 0.81 |
Aug | 0.99 | 0.02 | 0.96 | 0.97 | 1.00 | 0.14 | 0.86 | 0.86 |
Sep | 0.99 | 0.01 | 0.98 | 0.98 | 1.00 | 0.09 | 0.91 | 0.91 |
Oct | 0.98 | 0.03 | 0.94 | 0.95 | 0.99 | 0.08 | 0.89 | 0.91 |
Nov | 0.94 | 0.05 | 0.85 | 0.90 | 0.97 | 0.12 | 0.78 | 0.86 |
Dec | 0.89 | 0.10 | 0.74 | 0.82 | 0.98 | 0.08 | 0.83 | 0.90 |
CER | CAAT | |||||||
Month | POD [-] | FAR [-] | CSI [-] | ACC [-] | POD [-] | FAR [-] | CSI [-] | ACC [-] |
Jan | 0.83 | 0.20 | 0.56 | 0.75 | 0.94 | 0.07 | 0.80 | 0.89 |
Feb | 0.80 | 0.28 | 0.46 | 0.71 | 0.92 | 0.11 | 0.74 | 0.85 |
Mar | 0.84 | 0.29 | 0.47 | 0.72 | 0.93 | 0.14 | 0.71 | 0.83 |
Apr | 0.91 | 0.18 | 0.67 | 0.79 | 0.96 | 0.13 | 0.79 | 0.85 |
May | 0.98 | 0.06 | 0.89 | 0.92 | 0.99 | 0.08 | 0.88 | 0.91 |
Jun | 1.00 | 0.01 | 0.99 | 0.99 | 1.00 | 0.03 | 0.96 | 0.97 |
Jul | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 0.02 | 0.98 | 0.98 |
Aug | 1.00 | 0.00 | 0.99 | 0.99 | 1.00 | 0.01 | 0.99 | 1.00 |
Sep | 0.99 | 0.01 | 0.98 | 0.98 | 1.00 | 0.00 | 1.00 | 1.00 |
Oct | 0.95 | 0.06 | 0.85 | 0.91 | 1.00 | 0.02 | 0.96 | 0.97 |
Nov | 0.90 | 0.15 | 0.68 | 0.81 | 0.98 | 0.03 | 0.93 | 0.95 |
Dec | 0.86 | 0.17 | 0.61 | 0.78 | 0.96 | 0.04 | 0.88 | 0.93 |
Biome | Dataset | R vs. Elevation [-] | B vs. Elevation [-] | POD vs. Elevation [-] |
---|---|---|---|---|
AMZ | SM2RAIN-CCI | 0.20 | −0.06 * | 0.00 * |
CAAT | 0.18 | −0.02 * | 0.15 | |
CER | 0.22 | 0.11 | 0.15 | |
MAT | 0.37 | 0.30 | 0.24 | |
AMZ | CHIRPS | 0.09 * | 0.03 * | 0.13 |
CAAT | 0.02 * | 0.04 * | 0.13 | |
CER | −0.17 | −0.13 | 0.15 | |
MAT | 0.07 * | −0.10 | 0.28 | |
AMZ | MSWEP | 0.22 | −0.11 | 0.17 |
CAAT | 0.07 * | −0.09 * | 0.16 | |
CER | −0.09 * | −0.11 | 0.15 | |
MAT | −0.20 | −0.30 | 0.29 | |
AMZ | CMORPH | 0.24 | 0.26 | 0.06 * |
CAAT | 0.05 * | 0.01 * | 0.13 | |
CER | −0.05 * | 0.05 * | 0.10 | |
MAT | 0.09 * | 0.28 | −0.22 |
Biome | Dataset | R [-] | B [%] | POD [-] | FAR [-] | CSI [-] | ACC [-] |
---|---|---|---|---|---|---|---|
AMZ | SM2RAIN-CCI | 0.17 | −0.65 | 0.76 | 0.18 | 0.53 | 0.67 |
CAAT | 0.36 | 9.15 | 0.95 | 0.05 | 0.87 | 0.90 | |
CER | 0.38 | 12.80 | 0.89 | 0.08 | 0.73 | 0.82 | |
MAT | 0.32 | −20.70 | 0.90 | 0.12 | 0.75 | 0.81 | |
AMZ | CHIRPS | 0.52 | 5.30 | 0.86 | 0.11 | 0.68 | 0.79 |
CAAT | 0.53 | −1.60 | 0.94 | 0.05 | 0.86 | 0.90 | |
CER | 0.53 | 0.30 | 0.90 | 0.08 | 0.76 | 0.84 | |
MAT | 0.41 | −2.50 | 0.90 | 0.11 | 0.74 | 0.81 | |
AMZ | MSWEP | 0.56 | −5.10 | 0.92 | 0.12 | 0.73 | 0.83 |
CAAT | 0.66 | −13.20 | 0.98 | 0.04 | 0.89 | 0.94 | |
CER | 0.62 | −3.80 | 0.94 | 0.08 | 0.80 | 0.88 | |
MAT | 0.66 | −8.50 | 0.94 | 0.09 | 0.78 | 0.87 | |
AMZ | CMORPH | 0.49 | −4.35 | 0.93 | 0.13 | 0.74 | 0.82 |
CAAT | 0.55 | −23.10 | 0.98 | 0.05 | 0.90 | 0.93 | |
CER | 0.52 | 4.30 | 0.94 | 0.10 | 0.78 | 0.86 | |
MAT | 0.43 | −67.50 | 0.99 | 0.13 | 0.82 | 0.86 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paredes-Trejo, F.; Barbosa, H.A.; Rossato Spatafora, L. Assessment of SM2RAIN-Derived and State-of-the-Art Satellite Rainfall Products over Northeastern Brazil. Remote Sens. 2018, 10, 1093. https://doi.org/10.3390/rs10071093
Paredes-Trejo F, Barbosa HA, Rossato Spatafora L. Assessment of SM2RAIN-Derived and State-of-the-Art Satellite Rainfall Products over Northeastern Brazil. Remote Sensing. 2018; 10(7):1093. https://doi.org/10.3390/rs10071093
Chicago/Turabian StyleParedes-Trejo, Franklin, Humberto Alves Barbosa, and Luciana Rossato Spatafora. 2018. "Assessment of SM2RAIN-Derived and State-of-the-Art Satellite Rainfall Products over Northeastern Brazil" Remote Sensing 10, no. 7: 1093. https://doi.org/10.3390/rs10071093
APA StyleParedes-Trejo, F., Barbosa, H. A., & Rossato Spatafora, L. (2018). Assessment of SM2RAIN-Derived and State-of-the-Art Satellite Rainfall Products over Northeastern Brazil. Remote Sensing, 10(7), 1093. https://doi.org/10.3390/rs10071093