Land Surface Albedo Derived on a Ten Daily Basis from Meteosat Second Generation Observations: The NRT and Climate Data Record Collections from the EUMETSAT LSA SAF
Abstract
:1. Introduction
2. Methods
2.1. Definition of Surface Albedo
2.2. Algorithm for Retrieval of Surface Albedo
2.2.1. Atmospheric Correction
2.2.2. Modeling the Surface Bidirectional Reflectance Distribution Function
2.2.2.1. Theory of Linear Model Inversion on Daily Basis
2.2.2.2. Temporal Composition on Monthly Composite Window
2.2.3. Surface Albedo Determination
2.2.3.1. Spectral Albedo obtained by Angular Integration
2.2.3.2. Broadband Albedo Obtained by Spectral Integration
2.3. MTAL Product
2.3.1. Product Generation and Distribution
2.3.2. Examples of MTAL Albedo Maps
3. Validation Data and Protocol
3.1. Product Requirements
3.2. Validation Protocol
- First, Section 4.2 describes the temporal analysis that is done for a period of 10 years between 2004 and 2014. The analysis is performed over several ground reference sites from the AERONET network (https://aeronet.gsfc.nasa.gov/). Here, a large number of stations (337) were selected to get statistics representative of all the regions included in the MSG-disk (Europe, Africa and South America). MTAL-R is compared to SPOT-VGT and statistics are drawn up by considering regions of 50 km by 50 km centered on the AERONET stations. The strategy to estimate the mean albedo for each satellite product is given in Section 3.3.3.
- Second, Section 4.3 reports the spatial analysis that is performed over the SEVIRI grid. Surface albedo data (SW-BH) for the year 2012 is considered for this analysis. MTAL-R derived SW-BH albedo product is compared to SPOT-VGT and MODIS albedo products after a data re-projection to the SEVIRI grid.
3.3. Surface Albedo Data Used for Comparison
3.3.1. Ground Observations
- Agoufou (Mali), Niamey (Niger), Banizoumbou (Niger)—AMMA (http://bd.amma-catch.org/amma-catch2/main.jsf)
- Gobabeb (Namibia), Evora (Portugal)—LSA SAF (http://lsa-saf.eumetsat.int/)
- Toravere (Estonia), Payerne (Switzerland)—BSRN (http://bsrn.awi.de/)
3.3.2. Satellite Products
3.3.2.1. SPOT-VGT Surface Albedo Product
3.3.2.2. MODIS Surface Albedo Product
3.3.3. Preprocessing of Data for Validation
3.3.3.1. Data Selection Based on Quality Information
3.3.3.2. Interpolation in Time
3.3.3.3. Strategy for Constructing Equivalent Spatial Albedo Values
- SPOT-VGT data are observed separately for the continental tiles of Europe, Africa, North-America, South-America and Asia. Because the MSG-disk comprises Europe, Africa, North-America, a big part of South-America and a small part of Asia, it was decided to only use the first three continental tiles. After merging them on a global map they were re-projected onto the MSG-SEVIRI grid. Only data from the year 2012 were considered for this exercise.
- MODIS products are released in the form of 10° longitude × 10° latitude tiles in a sinusoidal projection. In a first step, the tiles are aggregated with the help of the MODIS Reprojection Tool (MRT) to form a global data file that is later re-sampled onto an equirectangular projection. The resulting global data files in the new projection are re-projected again onto the MSG-SEVIRI grid. This approach is applied for MODIS data for the year 2012.
4. Results
4.1. MTAL-R versus Ground Truth, Indirect Comparison with SPOT-VGT
4.2. MTAL-R versus SPOT-VGT: Temporal Domain
4.2.1. Time Series
4.2.2. Time Series of the Mean Bias for All Sites
4.2.3. Pass Rate for the MTAL-R Requirement Thresholds
4.3. MTAL-R versus SPOT-VGT and MODIS: Spatial Domain
5. Discussion and Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Lattanzio, A.; Schulz, J.; Matthews, J.; Okuyama, A.; Theodore, B.; Bates, J.J.; Knapp, K.R.; Kosaka, Y.; Schüller, L. Land Surface Albedo from Geostationary Satelites: A Multiagency Collaboration within SCOPE-CM. Bull. Am. Meteorol. Soc. 2013, 94, 205–214. [Google Scholar] [CrossRef]
- He, T.; Liang, S.; Yu, Y.; Wang, D.; Gao, F.; Liu, Q. Greenland surface albedo changes in July 1981–2012 from satellite observations. Environ. Res. Lett. 2013, 8, 044043. [Google Scholar] [CrossRef] [Green Version]
- Bazile, E.; El Haiti, M.; Bogatchev, A.; Spiridonov, V. Improvement of the snow parameterization in ARPEGE/ALADIN. In Proceedings of the SRNWP/HIRLAM Workshop Surface Processes, Turbulence and Mountain Effects, Madrid, Spain, 22–24 October 2001. [Google Scholar]
- Crook, J.A.; Forster, P.M. Comparison of surface albedo feedback in climate models and observations. Geophys. Res. Lett. 2014, 41, 1717–1723. [Google Scholar] [CrossRef] [Green Version]
- Global Climate Observing System (GCOS). Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC; Report GCOS-92 (WMO/TD No. 1219); GCOS: Asheville, NC, USA; 2004; 136p. [Google Scholar]
- Munier, S.; Carrer, D.; Planque, C.; Camacho, F.; Albergel, C.; Calvet, J.-C. Satellite Leaf Area Index: Global scale analysis of the tendencies per vegetation type over the last 17 years. Remote Sens. 2018, 10, 424. [Google Scholar] [CrossRef]
- Grenfell, T.C.; Perovich, D.K. Seasonal and spatial evolution of albedo in a snow ice land ocean environment. J. Geophys. Res. 2004, 109, C01001. [Google Scholar] [CrossRef]
- Planque, C.; Carrer, D.; Roujean, J.-L. Analysis of MODIS albedo changes over steady woody covers in France during the period of 2001–2013. Remote Sens. Environ. 2017, 191, 13–29. [Google Scholar] [CrossRef]
- Lebourgeois, F.; Pierrat, J.-C.; Perez, V.; Piedallu, C.; Cecchini, S.; Ulrich, E. Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving global circulation models. Int. J. Biometeorol. 2010, 54, 563–581. [Google Scholar] [CrossRef] [PubMed]
- Csiszar, I.; Gutman, G. Mapping global land surface albedo from NOAA AVHRR. J. Geophys. Res. 1999, 104, 6215–6228. [Google Scholar] [CrossRef] [Green Version]
- Strugnell, N.C.; Lucht, W. An Algorithm to Infer Continental-Scale Albedo from AVHRR Data, Land Cover Class, and Field Observations of Typical BRDFs. J. Clim. 2001, 14, 1360–1376. [Google Scholar] [CrossRef]
- Leroy, M.; Deuzé, J.L.; Bréon, F.M.; Hautecoeur, O.; Herman, M.; Buriez, J.C.; Tanré, D.; Bouffiès, S.; Chazette, P.; Roujean, J.-L. Retrieval of atmospheric properties and surface bidirectional reflectances over the land from POLDER/ADEOS. J. Geophys. Res. 1997, 102, 17023–17037. [Google Scholar] [CrossRef]
- Wang, Z.; Schaaf, C.B.; Chopping, M.J.; Strahler, A.H.; Wang, J.; Roman, M.O.; Rocha, A.V.; Woodcock, C.E.; Shuai, Y. Evaluation of Moderate-resolution Imaging Spectroradiometer (MODIS) snow albedo product (MCD43A) over tundra. Remote Sens. Environ. 2012, 117, 264–280. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P.; et al. First Operational BRDF, Albedo and Nadir Reflectance Products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Ba, M.B.; Nicholson, S.E.; Frouin, R. Satellite-Derived Surface Radiation Budget over the African Continent. Part II: Climatologies of the Various Components. J. Clim. 2001, 14, 60–76. [Google Scholar] [CrossRef] [Green Version]
- He, T.; Liang, S.L.; Wang, D.; Shi, Q.; Tao, X. Estimation of high-resolution land surface shortwave albedo from AVIRIS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4919–4928. [Google Scholar] [CrossRef]
- Franchistéguy, L.; Geiger, B.; Roujean, J.-L.; Samain, O. Retrieval of land surface albedo over France using SPOT4/VEGETATION data. In Proceedings of the 2nd International VEGETATION User Conference, Antwerp, Belgium, 24–26 March 2004; EUR 21552 EN. Antwerp, F., Veroustraete, E., Bartholomé, W., Verstraeten, W., Eds.; Office for Official Publications of the European Communities: Luxembourg, 2005; pp. 57–62. [Google Scholar]
- Carrer, D.; Smets, B.; Ceamanos, X.; Roujean, J.-L.; Lacaze, R. Copernicus Global Land SPOT/VEGETATION and PROBA-V Surface Albedo Products—1 Km Version 1; Algorithm Theoretical Basis Document, Issue 2.11, Copernicus Global Land Operations Vegetation and Energy CGLOPS-1, Framework Service Contract N° 199494; Japan Radio Company (JRC): Tokyo, Japan, 2018. [Google Scholar]
- Wang, D.; Liang, S.; He, T.; Yu, Y. Direct estimation of land surface albedo from VIIRS data: Algorithm improvement and preliminary validation. J. Geophys. Res. Atmos. 2013, 118, 12577–12586. [Google Scholar] [CrossRef]
- He, T.; Liang, S.; Wu, H.; Wang, D. Prototyping GOES-R albedo algorithm based on modis data. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 4261–4264. [Google Scholar]
- Geiger, B.; Carrer, D.; Franchisteguy, L.; Roujean, J.-L.; Meurey, C. Land surface albedo derived on a daily basis from Meteosat second generation observations. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3841–3856. [Google Scholar] [CrossRef]
- Muller, J.P.; López, G.; Watson, G.; Shane, N.; Kennedy, T.; Yuen, P.; Lewis, P.; Fischer, J.; Guanter, L.; Domench, C.; et al. The ESA GlobAlbedo project for mapping the Earth’s land surface albedo for 15 years from European sensors. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012. [Google Scholar]
- Muller, J.-P. GlobAlbedo Final Validation ReportRep.; University College London: London, UK, 2013; Available online: http://www.globalbedo.org/docs/ GlobAlbedo_FVR_V1_2_web.pdf (accessed on 31 July 2018).
- Liang, S.; Zhao, X.; Liu, S.; Yuan, W.; Cheng, X.; Xiao, Z.; Zhang, X.; Liu, Q.; Cheng, J.; Tang, H.; et al. A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies. Int. J. Digit. Earth 2013, 6, 5–33. [Google Scholar] [CrossRef] [Green Version]
- Ceamanos, X.; Carrer, D.; Roujean, J.-L. Improved retrieval of direct and diffuse downwelling surface shortwave flux in cloudless atmosphere using dynamic estimates of aerosol content and type: Application to the LSA-SAF project. Atmos. Chem. Phys. 2014, 14, 8209–8232. [Google Scholar] [CrossRef]
- Drame, M.S.; Ceamanos, X.; Roujean, J.L.; Boone, A.; Lafore, J.P.; Carrer, D.; Geoffroy, O. On the Importance of Aerosol Composition for Estimating Incoming Solar Radiation: Focus on the Western African Stations of Dakar and Niamey during the Dry Season. Atmosphere 2015, 6, 1608–1632. [Google Scholar] [CrossRef] [Green Version]
- Carrer, D.; Roujean, J.L.; Meurey, C. Comparing operational MSG/SEVIRI land surface albedo products from Land SAF with ground measurements and MODIS. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1714–1728. [Google Scholar] [CrossRef]
- Ohring, G.; Wielicki, B.; Spencer, R.; Emery, B.; Datla, R. Satellite Instrument Calibration for Measuring Global Climate Change: Report of a Workshop. Bull. Am. Meteorol. Soc. 2005, 86, 1303–1314. [Google Scholar] [CrossRef] [Green Version]
- Trigo, I.F.; Dacamara, C.C.; Viterbo, P.; Roujean, J.-L.; Olesen, F.; Barroso, C.; Camacho-de-Coca, F.; Carrer, D.; Freitas, S.C.; García-Haro, J.; et al. The Satellite Application Facility for Land Surface Analysis. Int. J. Remote Sens. 2011, 32, 2725–2744. [Google Scholar] [CrossRef]
- Carrer, D.; Pique, G.; Ferlicoq, M.; Ceamanos, X.; Ceschia, E. What is the potential of cropland albedo management in the fight against global warming? A case study based on the use of cover crops. Environ. Res. Lett. 2018, 13, 044030. [Google Scholar] [CrossRef]
- Lattanzio, A.; Fell, F.; Bennartz, R.; Trigo, I.F.; Schultz, J. Quality assessment and improvement of the EUMETSAT Meteosat Surface Albedo Climate Data Record. Atmos. Meas. Tech. 2015, 8, 4561–4571. [Google Scholar] [CrossRef] [Green Version]
- Bates, J.J.; Privette, J.L.; Kearns, E.J.; Glance, W.; Zhao, X. Sustained Production of Multidecadal Climate Records: Lessons from the NOAA Climate Data Record Program. Bull. Am. Meteorol. Soc. 2016, 97, 1573–1581. [Google Scholar] [CrossRef]
- Yang, W.; John, V.; Zhao, X.; Lu, H.; Knapp, K. Satellite Climate Data Records: Development, Applications, and Societal Benefits. Remote Sens 2016, 8, 331. [Google Scholar] [CrossRef]
- Loew, A. Terrestrial satellite records for climate studies: How long is long enough? A test case for the Sahel. Theor. Appl. Climatol. 2014, 115, 427–440. [Google Scholar] [CrossRef]
- Nicodemus, F.; Richmond, J.C.; Hsia, J.J.; Ginsberg, I.W.; Limperis, T. Geometrical Considerations and Nomenclature for Reflectance; NBS Monograph 160; U.S. Department of Commerce: Washington, DC, USA, 1977.
- Pinty, B.; Roveda, F.; Verstraete, M.M.; Gobron, N.; Govaerts, Y.; Martonchik, J.V.; Diner, D.J.; Kahn, R.A. Surface albedo retrieval from Meteosat. J. Geophys. Res. 2000, 105, 18099–18134. [Google Scholar] [CrossRef]
- Rahman, H.; Dedieu, G. SMAC: A simplified method for the atmospheric correction of satellite measurements in the solar spectrum. Int. J. Remote Sens. 1994, 15, 123–143. [Google Scholar] [CrossRef]
- Berthelot, B. Coefficients SMAC Pour MSG; Noveltis Internal Report NOV-3066-NT-834; Noveltis Internal: Ramonville Saint Agne, France, 2001. [Google Scholar]
- Derrien, M.; Le Gléau, H. MSG/SEVIRI cloud mask and type from SAFNWC. Int. J. Remote Sens. 2005, 26, 4707–4732. [Google Scholar] [CrossRef]
- Ceamanos, X.; Douté, S.; Fernando, J.; Schmidt, F.; Pinet, P.; Lyapustin, A. Surface reflectance of Mars observed by CRISM/MRO: 1. Multi-angle Approach for Retrieval of Surface Reflectance from CRISM observations (MARS ReCO). J. Geophys. Res. Planets 2013, 118, 540–559. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in Fortran; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Roujean, J.-L.; Leroy, M.; Deschamps, P.-Y. A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. J. Geophys. Res. 1992, 97, 20455–20468. [Google Scholar] [CrossRef]
- Lucht, W.; Lewis, P. Theoretical noise sensitivity of BRDF and albedo retrieval from the EOS-MODIS and MISR sensors with respect to angular sampling. Int. J. Remote Sens. 2000, 21, 81–98. [Google Scholar] [CrossRef]
- Wang, D.; Liang, S.; He, T.; Yu, Y.; Schaaf, C.; Wang, Z. Estimating daily mean land surface albedo from MODIS data. J. Geophys. Res. Atmos. 2015, 120, 4825–4841. [Google Scholar] [CrossRef] [Green Version]
- Geiger, B.; Samain, O. Albedo Determination, Algorithm Theoretical Basis Document of the Cyclopes Project; Version 2.0; Météo-France/CNRM: Paris, France, 2004. [Google Scholar]
- Strahler, A.H.; Muller, J.P.; MODIS Science Team Members. MODIS BRDF/Albedo Product: Algorithm Theoretical Basis Document, Version 5.0. USA. 1999. Available online: http://eunchul.com/Algorithms/BRDF/3.MODIS_BRDF_Albedo_Product_Algorithm_Theoretical_Basis_Do.pdf (accessed on 31 July 2018).
- Wu, X.; Xiao, Q.; Wen, J.; Liu, Q.; You, D.; Dou, B.; Tang, Y. Upscaling in situ albedo for validation of coarse scale albedo product over heterogeneous surfaces. Int. J. Digit. Earth 2017, 10, 604–622. [Google Scholar] [CrossRef]
- Matsuoka, M.; Takagi, M.; Akatsuka, S.; Honda, R.; Nonomura, A.; Moriya, H.; Yoshioka, H. Bidirectional reflectance modeling of the geostationary sensor HIMAWARI-8/AHI using a kernel-driven BRDF model. SPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 3–9. [Google Scholar]
- Channan, S.; Collins, K.; Emanuel, W.R. Global Mosaics of the Standard MODIS Land Cover Type Data; University of Maryland and the Pacific Northwest National Laboratory: College Park, MD, USA, 2014. [Google Scholar]
- Coakley, J.-A. Reflectance and Albedo, Surface, Encyclopedia of the Atmosphere; Academic Press: Cambridge, MA, USA, 2003; pp. 1914–1923. [Google Scholar]
Product Variable | Product Key | Product ID | Product Name | Coverage | Spatial Resolution | Composite Period | Frequency of Production |
---|---|---|---|---|---|---|---|
Total shortwave bi-hemispherical broadband albedo [0.3–4.0 µm] | SW-BH | LSA-102 LSA-150 | MTAL MTAL-R | MSG disk | SEVIRI native resolution | 31-days of data | 10 days (5th, 15th and 25th of each month) |
Product Name | Accuracy | ||
---|---|---|---|
Threshold | Target | Optimal | |
MTAL MTAL-R | 10% | AL > 0.15: 10% AL < 0.15: 0.02 | 5% |
Analysis | Area | Period | Albedo Products |
---|---|---|---|
Local in ground stations (Section 4.1) | 50 km × 50 km boxes centered over AERONET stations | Depending on the availability of ground measurements | Ground measurements, MTAL-R, SPOT-VGT |
Temporal (Section 4.2) | 50 km × 50 km boxes centered over AERONET stations | 2004–2014 | MTAL-R, SPOT-VGT |
Spatial (Section 4.3) | Full MSG disk | 2012 | MTAL-R, SPOT-VGT, MODIS |
Pass | Fail | Total Number of Stations | |
---|---|---|---|
MTAL-R < 0.15 | 114 (42.2%) | 156 (57.8%) | 270 |
MTAL-R > 0.15 | 237 (73.4%) | 86 (26.6%) | 323 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrer, D.; Moparthy, S.; Lellouch, G.; Ceamanos, X.; Pinault, F.; Freitas, S.C.; Trigo, I.F. Land Surface Albedo Derived on a Ten Daily Basis from Meteosat Second Generation Observations: The NRT and Climate Data Record Collections from the EUMETSAT LSA SAF. Remote Sens. 2018, 10, 1262. https://doi.org/10.3390/rs10081262
Carrer D, Moparthy S, Lellouch G, Ceamanos X, Pinault F, Freitas SC, Trigo IF. Land Surface Albedo Derived on a Ten Daily Basis from Meteosat Second Generation Observations: The NRT and Climate Data Record Collections from the EUMETSAT LSA SAF. Remote Sensing. 2018; 10(8):1262. https://doi.org/10.3390/rs10081262
Chicago/Turabian StyleCarrer, Dominique, Suman Moparthy, Gabriel Lellouch, Xavier Ceamanos, Florian Pinault, Sandra C. Freitas, and Isabel F. Trigo. 2018. "Land Surface Albedo Derived on a Ten Daily Basis from Meteosat Second Generation Observations: The NRT and Climate Data Record Collections from the EUMETSAT LSA SAF" Remote Sensing 10, no. 8: 1262. https://doi.org/10.3390/rs10081262