Analysis Ready Data: Enabling Analysis of the Landsat Archive
Abstract
:1. Introduction
2. ARD Processing and Tile Structure
2.1. Input Landsat Data and Processing
- Tier 1 products that have a geodetic accuracy with a 12 m or better Root Mean Square Error (RMSE),
- Tier 2 products that have a RMSE greater than 12 m,
- Near real-time Tier Landsat 7 ETM+ and Landsat-8 OLI/TIRS products available for rapid download.
2.2. ARD Projection
2.3. ARD Tiling
3. ARD Contents
3.1. Overview
3.2. ARD top of Atmosphere Reflectance and Brightness Temperature, and Viewing and Solar Geometry Data
3.3. ARD Surface Reflectance Data
3.4. ARD Quality Assessment Bands
3.4.1. Landsat 4 TM, Landsat 5 TM, and Landsat 7 ETM+ ARD QA Bands
3.4.2. Landsat 8 OLI ARD Quality Assessment Bands
3.5. ARD Filename Convention, Format, Metadata and Documentation
4. ARD Future Revision Schedule
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free Access to Landsat Imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef] [PubMed]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The global Landsat archive: Status, consolidation, and direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Kline, K.; Scaramuzza, P.L.; Kovalskyy, V.; Hansen, M.C.; Loveland, T.R.; Vermote, E.F.; Zhang, C. Web-enabled Landsat Data (WELD): Landsat ETM+ Composited Mosaics of the Conterminous United States. Remote Sens. Environ. 2010, 114, 35–49. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Lewis, A.; Oliver, S.; Lymburner, L.; Evans, B.; Wyborn, L.; Mueller, N.; Raevksi, G.; Hooke, J.; Woodcock, R.; Sixsmith, J.; et al. The Australian geoscience data cube—Foundations and lessons learned. Remote Sens. Environ. 2017, 202, 276–292. [Google Scholar] [CrossRef]
- Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land Cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [Google Scholar] [CrossRef]
- Storey, J.; Roy, D.P.; Masek, J.; Gascon, F.; Dwyer, J.; Choate, M. A note on the temporary mis-registration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. Remote Sens. Environ. 2016, 186, 121–122. [Google Scholar] [CrossRef]
- Townshend, J.R.G.; Justice, C.O.; Gurney, C.; McManus, J. The impact of misregistration on change detection. IEEE Trans. Geosci. Remote Sens. 1992, 30, 1054–1060. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.S.; Storey, J.C.; Choate, M.J.; Hayes, R.W. Four years of Landsat-7 on-orbit geometric calibration and performance. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2786–2795. [Google Scholar] [CrossRef]
- Storey, J.; Choate, M.; Lee, K. Landsat 8 Operational Land Imager on-orbit geometric calibration and performance. Remote Sens. 2014, 6, 11127–11152. [Google Scholar] [CrossRef]
- Snyder, J.P. Flattening the Earth: Two Thousand Years of Map Projections; The University of Chicago Press: Chicago, IL, USA, 1993. [Google Scholar]
- Homer, C.; Dewitz, J.; Fry, J.; Coan, M.; Hossain, N.; Larson, C.; Herold, N.; McKerrow, A.; Van Driel, J.N.; Wickham, J. Completion of the 2001 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sens. 2007, 73, 337–341. [Google Scholar]
- Johnson, D.; Mueller, R. The 2009 cropland data layer. Photogramm. Eng. Remote Sens. 2010, 76, 1201–1205. [Google Scholar]
- Shlien, S. Geometric correction, registration, and resampling of Landsat imagery. Can. J. Remote Sens. 1979, 5, 74–89. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.K.; Roy, D.P.; Yan, L.; Huang, H.; Li, J. Landsat 15 m panchromatic assisted downscaling (LPAD) of 30 m reflective wavelength data to Sentinel-2 20 m resolution. Remote Sens. 2017, 9, 755. [Google Scholar]
- Roy, D.P.; Li, J.; Zhang, H.K.; Yan, L. Best practices for the reprojection and resampling of Sentinel-2 Multi Spectral Instrument Level 1C data. Remote Sens. Lett. 2016, 7, 1023–1032. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Roy, D.P.; Li, Z.; Zhang, H.K.; Huang, H. Sentinel-2A multi-temporal misregistration characterization and an orbit-based sub-pixel registration methodology. Remote Sens. Environ. 2018, 215, 495–506. [Google Scholar] [CrossRef]
- Kovalskyy, V.; Roy, D.P. The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30m Landsat data product generation. Remote Sens. Environ. 2013, 130, 280–293. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P. Landsat 5 Thematic Mapper reflectance and NDVI 27-year time series inconsistencies due to satellite orbit change. Remote Sens. Environ. 2016, 186, 217–233. [Google Scholar] [CrossRef]
- Markham, B.L.; Storey, J.C.; Williams, D.L.; Irons, J.R. Landsat sensor performance: history and current status. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2691–2694. [Google Scholar] [CrossRef]
- Markham, B.L.; Helder, D.L. Forty-year calibrated record of earth-reflected radiance from Landsat: A review. Remote Sens. Environ. 2012, 122, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Morfitt, R.; Barsi, J.; Levy, R.; Markham, B.; Micijevic, E.; Ong, L.; Scaramuzza, P.; Vanderwerff, K. Landsat-8 Operational Land Imager (OLI) radiometric performance on-orbit. Remote Sens. 2015, 7, 2208–2237. [Google Scholar] [CrossRef]
- Markham, B.; Barsi, J.; Kvaran, G.; Ong, L.; Kaita, E.; Biggar, S.; Czapla-Myers, J.; Mishra, N.; Helder, D. Landsat-8 operational land imager radiometric calibration and stability. Remote Sens. 2014, 6, 12275–12308. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef] [Green Version]
- Flood, N.; Danaher, T.; Gill, T.; Gillingham, S. An operational scheme for deriving standardised surface reflectance from Landsat TM/ETM+ and SPOT HRG imagery for Eastern Australia. Remote Sens. 2013, 5, 83–109. [Google Scholar] [CrossRef]
- Roy, D.P.; Zhang, H.K.; Ju, J.; Gomez-Dans, J.L.; Lewis, P.E.; Schaaf, C.B.; Sun, Q.; Li, J.; Huang, H.; Kovalskyy, V. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance. Remote Sens. Environ. 2016, 176, 255–271. [Google Scholar] [CrossRef]
- Shuai, Y.; Masek, J.G.; Gao, F.; Schaaf, C.B. An algorithm for the retrieval of 30-m snow-free albedo from Landsat surface reflectance and MODIS BRDF. Remote Sens. Environ. 2011, 115, 2204–2216. [Google Scholar] [CrossRef]
- Richter, R. Correction of atmospheric and topographic effects for high spatial resolution satellite imagery. Int. J. Remote Sens. 1997, 18, 1099–1111. [Google Scholar] [CrossRef]
- Li, F.; Jupp, D.L.; Thankappan, M.; Lymburner, L.; Mueller, N.; Lewis, A.; Held, A. A physics-based atmospheric and BRDF correction for Landsat data over mountainous terrain. Remote Sens. Environ 2012, 124, 756–770. [Google Scholar] [CrossRef]
- Roy, D.P.; Qin, Y.; Kovalskyy, V.; Vermote, E.F.; Ju, J.; Egorov, A.; Hansen, M.C.; Kommareddy, I.; Yan, L. Conterminous United States demonstration and characterization of MODIS-based Landsat ETM+ atmospheric correction. Remote Sens. Environ. 2014, 140, 433–449. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Ju, J.; Roy, D.P.; Vermote, E.; Masek, J.; Kovalskyy, V. Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods. Remote Sens. Environ. 2012, 122, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Claverie, M.; Vermote, E.F.; Franch, B.; Masek, J.G. Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products. Remote Sens. Environ. 2015, 169, 390–403. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.-K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Kotchenova, S.; Vermote, E.; Matarrese, R.; Klemm, F., Jr. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Appl. Opt. 2006, 45, 6762–6774. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, Y.J.; Tanre, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over the land from EOS-MODIS. J. Geophys. Res. Atmos. 1997, 102, 17051–17068. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Lutz, B.; Roy, D.; Leff, C.; Lewicki, S.; Geir, E.; Ziskin, D.; Kilpatrick, K.; Chu, A. A review of EOS Terra quality assessment (QA). In Proceedings of the IEEE Geoscience and Remote Sensing Symposium 2000 (IGARSS), Honolulu, HI, USA, 24–28 July 2000. [Google Scholar]
- Roy, D.; Borak, J.; Devadiga, S.; Wolfe, R.; Zheng, M.; Descloitres, J. The MODIS land product quality assessment approach. Remote Sens. Environ. 2002, 83, 62–76. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.I.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckman, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Lau, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat data continuity mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef]
- Kovalskyy, V.; Roy, D.P. A one year Landsat 8 conterminous United States study of cirrus and non-cirrus clouds. Remote Sens. 2015, 7, 564–578. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Quayle, B.; Lorenz, E.; Morelli, F. Active Fire Detection Using Landsat-8/OLI Data. Remote Sens. Environ. 2016, 185, 210–220. [Google Scholar] [CrossRef]
- Kumar, S.S.; Roy, D.P. Global Operational Land Imager (GOLI) Landsat-8 reflectance based active fire detection algorithm. Int. J. Digit. Earth 2018, 11, 154–178. [Google Scholar] [CrossRef]
- Forster, B.C. Derivation of atmospheric correction procedures for Landsat MSS with particular reference to urban data. Int. J. Remote Sens. 1984, 5, 799–817. [Google Scholar] [CrossRef]
- Braaten, J.D.; Cohen, W.B.; Yang, Z. Automated cloud and cloud shadow identification in Landsat MSS imagery for temperate ecosystems. Remote Sens. Environ. 2015, 169, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus Sentinel-2A calibration and products validation status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- Malakar, N.K.; Hulley, G.C.; Hook, S.J.; Laraby, K.; Cook, M.; Schott, J.R. An Operational Land Surface Temperature Product for Landsat Thermal Data: Methodology and Validation. IEEE Trans. Geosci. Remote Sens. 2018, in press. [Google Scholar] [CrossRef]
- Laraby, K.G.; Schott, J.R. Uncertainty estimation method and Landsat 7 global validation for the Landsat surface temperature product. Remote Sens. Environ. 2018, 216, 472–481. [Google Scholar] [CrossRef]
- Montanaro, M.; Gerace, A.; Lunsford, A.; Reuter, D. Stray Light Artifacts in Imagery from the Landsat 8 Thermal Infrared Sensor. Remote Sens. 2014, 6, 10435–10456. [Google Scholar] [CrossRef] [Green Version]
- Laraby, K.G.; Schott, J.R.; Raqueno, N. Developing a confidence metric for the Landsat land surface temperature product. Proc. SPIE 2016, 9840, 98400C-1–98400C-14. [Google Scholar]
- Loveland, T.R.; Irons, J.R. Landsat 8: the plans, the reality, and the legacy. Remote Sens. Environ. 2016, 185, 1–6. [Google Scholar] [CrossRef]
- Egorov, A.V.; Roy, D.P.; Zhang, H.K.; Hansen, M.C.; Kommareddy, A. Demonstration of percent tree cover classification using Landsat analysis ready data (ARD) and sensitivity analysis with respect to Landsat ARD processing level. Remote Sens. 2018, 10, 209. [Google Scholar] [CrossRef]
- Roy, D.P.; Yan, L. Robust Landsat-based crop time series modelling. Remote Sens. Environ. 2018. [Google Scholar] [CrossRef]
- Loveland, T.; Zhu, Z.; Barber, C.; Woodcock, C.; Smith, K.; Zhou, Q.; Gallant, A.; Vogelmann, J.; Xian, G.; Pengra, B. Challenges in implementing an operational continuous US national land change monitoring capability. Remote Sens. Environ. in preparation.
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Justice, C.; Vermote, E.; Townshend, J.; Defries, R.; Roy, D.; Hall, D.; Salomonson, V.; Privette, J.; Riggs, G.; Strahler, A.; et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1228–1249. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P.; Yan, L.; Li, Z.; Huang, H.; Vermote, E.; Skakun, S.; Roger, J.-C. Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, nadir BRDF adjusted reflectance and NDVI differences. Remote Sens. Environ. 2018, 215, 482–494. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C.O. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018. in review. [Google Scholar]
- Helder, D.; Markham, B.; Morfitt, R.; Storey, J.; Barsi, J.; Gascon, F.; Clerc, S.; LaFrance, B.; Masek, J.; Roy, D.; et al. Observations and Recommendations for the Calibration of Landsat 8 OLI and Sentinel 2 MSI for improved data interoperability. Remote Sens. 2018, 10, 1340. [Google Scholar] [CrossRef]
- Goward, S.N.; Williams, D.L.; Arvidson, T.; Rocchio, L.E.; Irons, J.R.; Russell, C.A.; Johnston, S.S. Landsat’s Enduring Legacy: Pioneering Global Land Observations from Space; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2017. [Google Scholar]
Conterminous U.S. | Alaska | Hawaii | |
---|---|---|---|
First standard parallel | 29.5° | 55.0° | 8.0° |
Second standard parallel | 45.5° | 65.0° | 18.0° |
Longitude of central meridian | −96.0° | −154.0° | −157.0° |
Latitude of projection origin | 23.0° | 50.0° | 3.0° |
False Easting (meters) | 0.0 | 0.0 | 0.0 |
False Northing (meters) | 0.0 | 0.0 | 0.0 |
Region | Upper Left Tile (UL Corner) | Lower Right Tile (LR Corner) | ||||||
---|---|---|---|---|---|---|---|---|
(h) | (v) | ulX (m) | ulY (m) | (h) | (v) | lrX (m) | lrY (m) | |
CONUS | 0 | 0 | −2,565,585 | 3,314,805 | 32 | 21 | 2,384,415 | 14,805 |
Alaska | 0 | 0 | −851,715 | 2,474,325 | 16 | 13 | 1,698,285 | 374,325 |
Hawaii | 0 | 0 | −444,345 | 2,168,895 | 4 | 2 | 305,655 | 1,718,895 |
Band Name | Data Type | Units | Valid Range | Fill Value | Saturated Value | Scale Factor |
---|---|---|---|---|---|---|
Band nρ* TOA Reflectance | INT16 | Unitless | 0–10,000 | −9999 | 20,000 | 0.0001 |
Band nT* TOA Brightness Temperature | INT16 | Kelvin | 0–10,000 | −9999 | 20,000 | 0.1 |
Solar Azimuth Angle | INT16 | Degrees | −18,000–18,000 | −32,768 | NA | 0.0100 |
Solar Zenith Angle | INT16 | Degrees | −9000–9000 | −32,768 | NA | 0.0100 |
Sensor Azimuth Angle | INT16 | Degrees | −18,000–18,000 | −32,768 | NA | 0.0100 |
Sensor Zenith Angle | INT16 | Degrees | −9000–9000 | −32,768 | NA | 0.0100 |
Band Name | Data Type | Units | Valid Range | Fill Value | Saturate Value | Scale Factor |
---|---|---|---|---|---|---|
Pixel QA | UINT16 | Bit Index | 1–255 | 1 (bit 0) | NA | NA |
Radiometric Saturation QA | UINT8 | Bit Index | 0–255 | 1 (bit 0) | NA | NA |
Internal SR QA | UINT8 | Bit Index | 0–255 | NA | NA | NA |
Internal SR Atmospheric Opacity | INT16 | Unitless | 0–10,000 | −9999 | 20,000 | 0.0010 |
Lineage QA | UINT8 | Decimal index | 0–3 | 0 | NA | NA |
Bit | Interpretation |
---|---|
0 | Fill |
1 | Clear |
2 | Water |
3 | Cloud shadow |
4 | Snow |
5 | Cloud |
6, 7 | Cloud Confidence (00 = None; 01 = Low; 10 = Medium; 11 = High) |
Bit | Interpretation |
---|---|
0 | Data Fill Flag (0 valid data, 1 invalid data) |
1 | Band 1 Data Saturation Flag (0 valid data, 1 saturated data) |
2 | Band 2 Data Saturation Flag (0 valid data, 1 saturated data) |
3 | Band 3 Data Saturation Flag (0 valid data, 1 saturated data) |
4 | Band 4 Data Saturation Flag (0 valid data, 1 saturated data) |
5 | Band 5 Data Saturation Flag (0 valid data, 1 saturated data) |
6 | Band 6 Data Saturation Flag (0 valid data, 1 saturated data) |
7 | Band 7 Data Saturation Flag (0 valid data, 1 saturated data) |
Bit | Interpretation |
---|---|
0 | Dense Dark Vegetation (DDV) |
1 | Cloud |
2 | Cloud Shadow |
3 | Adjacent Cloud |
4 | Snow |
5 | Land/Water |
6 | Unused |
7 | Unused |
Band Name | Data Type | Units | Valid Range | Fill Value |
---|---|---|---|---|
Pixel QA | UINT16 | Bit Index | 1–2047 | 1 (bit 0) |
Radiometric Saturation QA | UINT16 | Bit Index | 0–4095 | 1 (bit 0) |
Aerosol QA | UINT8 | Bit Index | 0–255 | NA |
Lineage QA | UINT8 | Decimal Index | 0–3 | 0 |
Bit | Interpretation |
---|---|
0 | Fill |
1 | Clear |
2 | Water |
3 | Cloud shadow |
4 | Snow |
5 | Cloud |
6, 7 | Cloud Confidence: 00 = None; 01 = Low; 10 = Medium; 11 = High |
8, 9 | Cirrus Confidence: 00 = Not set; 01 = Low from OLI Band 9 reflectance; 10 = Medium from OLI Band 9 reflectance; 11 = High from OLI Band 9 reflectance |
10 | Terrain Occlusion |
Bit | Description |
---|---|
0 | Data Fill Flag (0 valid data, 1 invalid data) |
1 | Band 1 Data Saturation Flag (0 valid data, 1 saturated data) |
2 | Band 2 Data Saturation Flag (0 valid data, 1 saturated data) |
3 | Band 3 Data Saturation Flag (0 valid data, 1 saturated data) |
4 | Band 4 Data Saturation Flag (0 valid data, 1 saturated data) |
5 | Band 5 Data Saturation Flag (0 valid data, 1 saturated data) |
6 | Band 6 Data Saturation Flag (0 valid data, 1 saturated data) |
7 | Band 7 Data Saturation Flag (0 valid data, 1 saturated data) |
8 | Not used |
9 | Band 9 Data Saturation Flag (0 valid data, 1 saturated data) |
10 | Band 10 Data Saturation Flag (0 valid data, 1 saturated data) |
11 | Band 11 Data Saturation Flag (0 valid data, 1 saturated data) |
Bit | Description |
---|---|
0 | Fill Value |
1 | Aerosol Retrieval–Valid |
2 | Aerosol Retrieval–Interpolated |
3 | Water Pixel |
4 | Water Aerosol Retrieval Failed–Needs Interpolated (Internal Use Only) |
5 | Neighbor of Failed Aerosol Retrieval (Internal Use Only) |
6, 7 | Aerosol Content: 00 = Climatology; 01 = Low; 10 = Medium; 11 = High |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dwyer, J.L.; Roy, D.P.; Sauer, B.; Jenkerson, C.B.; Zhang, H.K.; Lymburner, L. Analysis Ready Data: Enabling Analysis of the Landsat Archive. Remote Sens. 2018, 10, 1363. https://doi.org/10.3390/rs10091363
Dwyer JL, Roy DP, Sauer B, Jenkerson CB, Zhang HK, Lymburner L. Analysis Ready Data: Enabling Analysis of the Landsat Archive. Remote Sensing. 2018; 10(9):1363. https://doi.org/10.3390/rs10091363
Chicago/Turabian StyleDwyer, John L., David P. Roy, Brian Sauer, Calli B. Jenkerson, Hankui K. Zhang, and Leo Lymburner. 2018. "Analysis Ready Data: Enabling Analysis of the Landsat Archive" Remote Sensing 10, no. 9: 1363. https://doi.org/10.3390/rs10091363
APA StyleDwyer, J. L., Roy, D. P., Sauer, B., Jenkerson, C. B., Zhang, H. K., & Lymburner, L. (2018). Analysis Ready Data: Enabling Analysis of the Landsat Archive. Remote Sensing, 10(9), 1363. https://doi.org/10.3390/rs10091363