Assessing the Resilience of Coastal Wetlands to Extreme Hydrologic Events Using Vegetation Indices: A Review
Abstract
:1. Introduction
2. Threat Profile for Extreme Hydrologic Events on Coastal Wetlands
3. Remote Sensing Vegetation Indices Used to Monitor Extreme Hydrologic Event Impacts
3.1. Vegetation Indices to Assess Hurricane Impacts in Coastal Wetlands
3.1.1. Normalized Difference Vegetation Index Derived Studies
A Case-Study of Coastal Wetland Dynamics: 30-Year Landsat NDVI Time-Series Analysis to Monitor Extreme Hydrologic Event Impacts
3.1.2. Ehhanced Vegetation Index Studies
3.1.3. Soil Adjusted Vegetation Index Studies
3.1.4. Other Vegetation Index Studies
3.2. Remote Sensing Systems and Indices to Monitor Drought Impacts
3.3. Remote Sensing Systems and Indices to Monitor Flood Impacts
4. Satellite/Airborne Imagery and Remote Sensors Primary Data for Assessing the Impacts of Extreme Hydrologic Events
4.1. Airborne Imagery
4.2. Low, Moderate and High Spatial Resolution Remote Sensors
4.3. Hyperspectral Remote Sensor (HRS)
4.4. Active Remote Sensors (Radar and Lidar)
4.4.1. Radar
4.4.2. Lidar
5. Future Wetland Remote Sensing Studies
5.1. Algorithms for Multi Sensor Integrations in Wetland Studies
5.2. Large Spatial Scales
5.3. New Data and Methods
6. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Michener, W.K.; Blood, E.R.; Bildstein, K.L.; Brinson, M.M.; Gardner, L.R. Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecol. Appl. 1997, 7, 770–801. [Google Scholar] [CrossRef]
- Hardisky, M.A.; Gross, M.F.; Klemas, V. Remote Sensing of Coastal Wetlands. Bioscience 1986, 36, 453–460. [Google Scholar] [CrossRef]
- Webb, E.L.; Friess, D.A.; Krauss, K.W.; Cahoon, D.R.; Guntenspergen, G.R.; Phelps, J. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nat. Clim. Chang. 2013, 3, 458. [Google Scholar] [CrossRef]
- Chen, X.; Zong, Y.; Zhang, E.; Xu, J.; Li, S. Human impacts on the Changjiang (Yangtze) River basin, China, with special reference to the impacts on the dry season water discharges into the sea. Geomorphology 2001, 41, 111–123. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, W.; Zhang, W.; Yu, Y.; Su, Y.; Songw, C. Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect. Glob. Chang. Biol. 2010, 16, 680–695. [Google Scholar] [CrossRef]
- Langley, J.A.; Megonigal, J.P. Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 2010, 466, 96. [Google Scholar] [CrossRef] [PubMed]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef] [Green Version]
- Ericson, J.P.; Vörösmarty, C.J.; Dingman, S.L.; Ward, L.G.; Meybeck, M. Effective sea-level rise and deltas: Causes of change and human dimension implications. Glob. Planet. Chang. 2006, 50, 63–82. [Google Scholar] [CrossRef]
- Yu, J.; Zhan, C.; Li, Y.; Zhou, D.; Fu, Y.; Chu, X.; Xing, Q.; Han, G.; Wang, G.; Guan, B.; et al. Distribution of Carbon, Nitrogen and Phosphorus in Coastal Wetland Soil Related Land Use in the Modern Yellow River Delta. Sci. Rep. 2016, 6, 37940. [Google Scholar] [CrossRef] [PubMed]
- White, E.; Kaplan, D. Restore or retreat? Saltwater intrusion and water management in coastal wetlands. Ecosyst. Heal. Sustain. 2017, 3, 1258. [Google Scholar] [CrossRef]
- Guo, M.; Li, J.; Sheng, C.; Xu, J.; Wu, L. A review of wetland remote sensing. Sensors 2017, 17, 777. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, D.; Singh, A.; Fan, N.; Wang, D.; Duranceau, S.J. Hydro-geomorphic response of Everglades to changing climate and anthropogenic activities. J. Hydrol. 2016, 543, 861–872. [Google Scholar] [CrossRef]
- Konisky, D.M.; Hughes, L.; Kaylor, C.H. Extreme weather events and climate change concern. Clim. Chang. 2016, 134, 533–547. [Google Scholar] [CrossRef]
- Schubel, J.R.; Hirschberg, D.J. Estuarine Graveyards, Climatic Change, and the Importance of the Estuarine Environment. In Estuarine Interactions; Academic Press: New York, NY, USA, 1978; pp. 285–303. [Google Scholar]
- Scavia, D.; Field, J.C.; Boesch, D.F.; Buddenmeier, R.W.; Burkett, V.; Cayan, D.R.; Fogarty, M.; Harwell, M.A.; Howarth, R.W.; Mason, C.; et al. Climate Change Impacts on U.S. Coastal and Marine Ecosystems. Estuaries 2002, 25, 149–164. [Google Scholar] [CrossRef]
- Ozesmi, S.L.; Bauer, M.E.; Tiner, R.W.; Lang, M.W.; Klemas, V. V Satellite remote sensing of wetlands. Wetl. Ecol. Manag. 2002, 5, 381–402. [Google Scholar] [CrossRef]
- Wilcox, D.A.; Whillans, T.H. Techniques for restoration of disturbed coastal wetlands of the Great Lakes. Wetlands 1999, 19, 835–857. [Google Scholar] [CrossRef]
- Day, J.W.; Christian, R.; Boesch, D.M.; Yáñez-Arancibia, A.; Morris, J.; Twilley, R.; Naylor, L.; Schaffner, L.; Stevenson, C. Consequences of climate change on the ecogeomorphology of coastal wetlands. Estuaries Coasts 2008, 31, 477–491. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Tahsin, S.; Medeiros, C.S.; Singh, A. Resilience of coastal wetlands to extreme hydrologic events in Apalachicola Bay. Geophys. Res. Lett. 2016, 43, 7529–7537. [Google Scholar] [CrossRef]
- Cahoon, D.R.; Reed, D.J.; Day, J.W., Jr.; Steyer, G.D.; Boumans, R.M.; Lynch, J.C.; McNally, D.; Latif, N. The influence of Hurricane Andrew on sediment distribution in Louisiana coastal marshes. J. Coast. Res. 1995, 1995, 280–294. [Google Scholar]
- Reed, D.J. The response of coastal marshes to sea-level rise: Survival or submergence? Earth Surf. Process. Landf. 1995, 20, 39–48. [Google Scholar] [CrossRef]
- Goodbred, S.L.; Wright, E.E.; Hine, A.C. Sea-level change and storm-surge deposition in a late Holocene Florida salt marsh. J. Sediment. Res. 1998, 68, 240–252. [Google Scholar] [CrossRef]
- Klemas, V. Using Remote Sensing to Select and Monitor Wetland Restoration Sites: An Overview. J. Coast. Res. 2013, 29, 958–970. [Google Scholar] [CrossRef]
- Kentula, M.E. Wetland Restoration and Creation. Natl. Water Summ. Wetl. Resour. 2015, 2425, 87–92. [Google Scholar]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture. Remote. Sens. 2013, 5, 5006–5039. [Google Scholar] [CrossRef] [Green Version]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Major, D.J.; Baret, F.; Guyot, G. A ratio vegetation index adjusted for soil brightness. Int. J. Remote. Sens. 1990, 11, 727–740. [Google Scholar] [CrossRef]
- Rodgers, J.C.; Murrah, A.W.; Cooke, W.H. The impact of Hurricane Katrina on the coastal vegetation of the Weeks Bay Reserve, Alabama from NDVI data. Estuaries Coasts 2009, 32, 496–507. [Google Scholar] [CrossRef]
- Ramsey, E.W., III; Chappell, D.K.; Baldwin, D.G. AVHRR lmagery Used to Identify Hurricane Damage in a Forested Wetland of Louisiana. Photogramm. Eng. Remote. Sens. 1997, 63, 293–297. [Google Scholar]
- Ramsey, I.; Spruce, J.; Rangoonwala, A.; Suzuoki, Y.; Smoot, J.; Gasser, J.; Bannister, T. Daily MODIS data trends of hurricane-induced forest impact and early recovery. Photogramm. Eng. Remote. Sens. 2011, 17, 1113–1143. [Google Scholar] [CrossRef]
- Wang, Y. Detecting Vegetation Recovery Patterns After Hurricanes in South Florida Using NDVI Time Series. Master’s Thesis, University of Miami, Coral Gables, FL, USA, 2012. [Google Scholar]
- Mo, Y.; Kearney, M.S.; Riter, J.C.A.; Zhao, F.; Tilley, D.R. Assessing biomass of diverse coastal marsh ecosystems using statistical and machine learning models. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 189–201. [Google Scholar] [CrossRef]
- Hatter, L. Apalachicola Bay Part 2: Climate Change and Collapse. Available online: http://news.wfsu.org/post/apalachicola-bay-part-2-climate-change-and-collapse (accessed on 30 October 2015).
- Leitman, S.; Pine, W.E.; Kiker, G. Management Options during the 2011–2012 Drought on the Apalachicola River: A Systems Dynamic Model Evaluation. Environ. Manag. 2016, 58, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Justice, C.O.; Vermote, E.F.; Townshend, J.R.G.; Defries, R.S.; Roy, D.P.; Hall, D.K.; Salomonson, V.V.; Privette, J.L.; Riggs, G.; Strahler, A.H.; et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote. Sens. 1998, 36, 1228–1249. [Google Scholar] [CrossRef]
- Feng, Y.; Negron-juarez, R.I.; Patricola, C.M.; Collins, W.D.; Uriarte, M.; Hall, J.S.; Clinton, N.; Chambers, J.Q. Rapid remote sensing assessment of impacts from Hurricane Maria on forests of Puerto Rico. PeerJ Prepr. 2018, 6, 26597. [Google Scholar]
- Wang, F.; D’Sa, E.J. Potential of MODIS EVI in identifying hurricane disturbance to coastal vegetation in the Northern Gulf of Mexico. Remote. Sens. 2010, 2, 1–18. [Google Scholar] [CrossRef]
- Rogan, J.; Schneider, L.; Christman, Z.; Millones, M.; Lawrence, D.; Schmook, B. Hurricane disturbance mapping using MODIS EVI data in the southeastern Yucatán, Mexico. Remote. Sens. Lett. 2011, 2, 259–267. [Google Scholar] [CrossRef]
- Sesnie, S.E.; Dickson, B.G.; Rosenstock, S.S.; Rundall, J.M. A comparison of Landsat TM and MODIS vegetation indices for estimating forage phenology in desert bighorn sheep (ovis canadensis nelsoni) habitat in the Sonoran desert, USA. Int. J. Remote. Sens. 2012, 33, 276–286. [Google Scholar] [CrossRef]
- Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors 2007, 7, 2636–2651. [Google Scholar] [CrossRef] [PubMed]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote. Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Byrd, K.B.; Ballanti, L.; Thomas, N.; Nguyen, D.; Holmquist, J.R.; Simard, M.; Windham-Myers, L. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States. ISPRS J. Photogramm. Remote. Sens. 2018, 139, 255–271. [Google Scholar] [CrossRef]
- Khanna, S.; Santos, M.J.; Koltunov, A.; Shapiro, K.D.; Lay, M.; Ustin, S.L. Marsh Loss Due to Cumulative Impacts of Hurricane Isaac and the DeepWater Horizon Oil Spill in Louisiana. Remote. Sens. 2017, 9, 169. [Google Scholar] [CrossRef]
- Wang, W.; Qu, J.J.; Hao, X.; Liu, Y.; Stanturf, J.A. Post-hurricane forest damage assessment using satellite remote sensing. Agric. For. Meteorol. 2010, 150, 122–132. [Google Scholar] [CrossRef]
- Orville, H.D. AMS statement on meteorological drought. Bull. Am. Meteorol. Soc. 1990, 71, 1021–1023. [Google Scholar] [CrossRef]
- Quiring, S.M. Monitoring drought: An evaluation of meteorological drought indices. Geogr. Compass 2009, 3, 64–88. [Google Scholar] [CrossRef]
- Quiring, S.M.; Ganesh, S. Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas. Agric. For. Meteorol. 2010, 150, 330–339. [Google Scholar] [CrossRef]
- Ji, L.; Peters, A.J. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote. Sens. Environ. 2003, 87, 85–98. [Google Scholar] [CrossRef]
- Seiler, R.A.; Kogan, F.; Wei, G. Monitoring weather impact and crop yield from NOAA AVHRR data in Argentina. Adv. Space Res. 2000, 26, 1177–1185. [Google Scholar] [CrossRef]
- Kogan, F.N. Droughts of the Late 1980s in the United States as Derived from NOAA Polar-Orbiting Satellite Data. Bull. Am. Meteorol. Soc. 1995, 76, 655–668. [Google Scholar] [CrossRef] [Green Version]
- Jiao, W.; Zhang, L.; Chang, Q.; Fu, D.; Cen, Y.; Tong, Q. Evaluating an enhanced vegetation condition index (VCI) based on VIUPD for drought monitoring in the continental United States. Remote. Sens. 2016, 8, 224. [Google Scholar] [CrossRef]
- Mo, Y.; Kearney, M.; Momen, B. Drought-associated phenological changes of coastal marshes in Louisiana. Ecosphere 2017, 8. [Google Scholar] [CrossRef]
- Chapple, D.; Dronova, I. Vegetation Development in a Tidal Marsh Restoration Project during a Historic Drought: A Remote Sensing Approach. Front. Mar. Sci. 2017. [Google Scholar] [CrossRef]
- Sruthi, S.; Aslam, M.A.M. Agricultural Drought Analysis Using the NDVI and Land Surface Temperature Data; a Case Study of Raichur District. Aquat. Procedia 2015, 4, 1258–1264. [Google Scholar] [CrossRef]
- Zhang, X.; Yamaguchi, Y.; Li, F.; He, B.; Chen, Y. Assessing the Impacts of the 2009/2010 Drought on Vegetation Indices, Normalized Difference Water Index, and Land Surface Temperature in Southwestern China. Adv. Meteorol. 2017, 2017, 6837493. [Google Scholar] [CrossRef]
- Waite, W.P.; Macdonald, H.C. “Vegetation Penetration” With K-Band Imaging Radars. IEEE Trans. Geosci. Electron. 1971, 9, 147–155. [Google Scholar] [CrossRef]
- Bourgeau-Chavez, L.L.; Smith, K.B.; Brunzell, S.M.; Kasischke, E.S.; Romanowicz, E.A.; Richardson, C.J. Remote monitoring of regional inundation patterns and hydroperiod in the Greater Everglades using Synthetic Aperture Radar. Wetlands 2005, 25, 176–191. [Google Scholar] [CrossRef]
- Costa, M.P.F. Use of SAR satellites for mapping zonation of vegetation communities in the Amazon floodplain. Int. J. Remote Sens. 2004, 25, 1817–1835. [Google Scholar] [CrossRef]
- Costa, M.P.F.; Niemann, O.; Novo, E.; Ahern, F. Biophysical properties and mapping of aquatic vegetation during the hydrological cycle of the Amazon floodplain using JERS-1 and Radarsat. Int. J. Remote Sens. 2002, 23, 1401–1426. [Google Scholar] [CrossRef]
- Grings, F.M.; Ferrazzoli, P.; Jacobo-Berlles, J.C.; Karszenbaum, H.; Tiffenberg, J.; Pratolongo, P.; Kandus, P. Monitoring flood condition in marshes using EM models and Envisat ASAR observations. IEEE Trans. Geosci. Remote Sens. 2006, 44, 936–942. [Google Scholar] [CrossRef]
- Hess, L.L.; Melack, J.M.; Melack, J.M.; Filoso, S.; Wang, Y.; Wang, Y. Delineation of Inundated Area and Vegetation Along the Amazon Floodplain with the SIR-C Synthetic Aperture Radar. IEEE Trans. Geosci. Remote Sens. 1995, 33, 896–904. [Google Scholar] [CrossRef]
- Kiage, L.M.; Walker, N.D.; Balasubramanian, S.; Babin, A.; Barras, J. Applications of Radarsat-1 synthetic aperture radar imagery to assess hurricane-related flooding of coastal Louisiana. Int. J. Remote Sens. 2005, 26, 5359–5380. [Google Scholar] [CrossRef]
- Rykhus, R.; Lu, Z. Hurricane Katrina Flooding and Oil Slicks Mapped with Satellite Imagery; U.S. Geological Survey: Reston, VA, USA, 2005. [Google Scholar]
- Jain, S.K.; Singh, R.D.; Jain, M.K.; Lohani, A.K. Delineation of flood-prone areas using remote sensing techniques. Water Resour. Manag. 2005, 19, 333–347. [Google Scholar] [CrossRef]
- Thomas, R.F.; Kingsford, R.T.; Lu, Y.; Cox, S.J.; Sims, N.C.; Hunter, S.J. Mapping inundation in the heterogeneous floodplain wetlands of the Macquarie Marshes, using Landsat Thematic Mapper. J. Hydrol. 2015, 524, 194–213. [Google Scholar] [CrossRef]
- Ho, L.T.K.; Umitsu, M.; Yamaguchi, Y. Flood hazard mapping by satellite images and SRTM DEM in the Vu Gia-Thu Bon alluvial plain, Central Vietnam. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 275–280. [Google Scholar]
- Chaouch, N.; Temimi, M.; Hagen, S.; Weishampel, J.; Medeiros, S.; Khanbilvardi, R. A synergetic use of satellite imagery from SAR and optical sensors to improve coastal flood mapping in the Gulf of Mexico. Hydrol. Process. 2012, 26, 1617–1628. [Google Scholar] [CrossRef]
- Hassan, N.; Hamid, J.R.A.; Adnan, N.A.; Jaafar, M. Delineation of wetland areas from high resolution WorldView-2 data by object-based method. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2014; Volume 18, p. 012017. [Google Scholar]
- Kumar, L.; Sinha, P. Mapping salt-marsh land-cover vegetation using high-spatial and hyperspectral satellite data to assist wetland inventory. GIScience Remote. Sens. 2014, 51, 483–497. [Google Scholar] [CrossRef]
- Jollineau, M.; Howarth, P. Use of high-resolution imagery to map wetland environments in south-central Ontario, Canada. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 3089–3091. [Google Scholar]
- Jung, H.C. Wetland Hydrodynamics Using Interferometric Synthetic Aperture Radar, Remote Sensing, and Modeling. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2011. [Google Scholar]
- Muro, J.; Canty, M.; Conradsen, K.; Hüttich, C.; Nielsen, A.A.; Skriver, H.; Remy, F.; Strauch, A.; Thonfeld, F.; Menz, G. Short-term change detection in wetlands using Sentinel-1 time series. Remote Sens. 2016, 8, 795. [Google Scholar] [CrossRef]
- Wu, W.-T.; Zhou, Y.-X.; Tian, B. Coastal wetlands facing climate change and anthropogenic activities: A remote sensing analysis and modelling application. Ocean Coast. Manag. 2017, 138, 1–10. [Google Scholar] [CrossRef]
- Mueller, N.; Lewis, A.; Roberts, D.; Ring, S.; Melrose, R.; Sixsmith, J.; Lymburner, L.; McIntyre, A.; Tan, P.; Curnow, S.; et al. Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sens. Environ. 2016, 174, 341–352. [Google Scholar] [CrossRef]
- Michishita, R.; Gong, P.; Xu, B. Spectral mixture analysis for bi-sensor wetland mapping using Landsat TM and Terra MODIS data. Int. J. Remote Sens. 2012, 33, 3373–3401. [Google Scholar] [CrossRef]
- Aber, J. Lighter-than-air Platforms for Small-format Aerial Photography. Trans. Kans. Acad. Sci. 2004, 33, 3373–3401. [Google Scholar] [CrossRef]
- Adams, S.M.; Friedland, C.J.; Levitanc, M.L. Unmanned Aerial Vehicle Data Acquisition for Damage Assessment in Hurricane Events. In Proceedings of the 8th International Workshop on Remote Sensing for Disaster Management, Tokyo, Japan, 30 September–1 October 2010; Volume 30. [Google Scholar]
- Müllerová, J.; Brůna, J.; Bartaloš, T.; Dvořák, P.; Vítková, M.; Pyšek, P. Timing Is Important: Unmanned Aircraft vs. Satellite Imagery in Plant Invasion Monitoring. Front. Plant Sci. 2017, 8, 887. [Google Scholar] [CrossRef] [PubMed]
- Szantoi, Z.; Malone, S.; Escobedo, F.; Misas, O.; Smith, S.; Dewitt, B. A tool for rapid post-hurricane urban tree debris estimates using high resolution aerial imagery. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 548–556. [Google Scholar] [CrossRef]
- Jiang, S.; Friedland, C.J. Automatic urban debris zone extraction from post-hurricane very high-resolution satellite and aerial imagery. Geomat. Nat. Hazards Risk 2016, 7, 933–952. [Google Scholar] [CrossRef]
- Morgan, J.L.; Gergel, S.E.; Coops, N.C. Aerial Photography: A Rapidly Evolving Tool for Ecological Management. Bioscience 2010, 60, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.B. Introduction to Remote Sensing, 2nd ed.; The Guilford Press: New York, NY, USA, 1996; ISBN 0748406638. [Google Scholar]
- Chambers, J.Q.; Fisher, J.I.; Zeng, H.; Chapman, E.L.; Baker, D.B.; Hurtt, G.C. Hurricane Katrina’s carbon footprint on U.S. Gulf Coast forests. Science 2007, 318, 1107. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.K.; Saraf, A.K.; Goswami, A.; Ahmad, T. Flood inundation mapping using NOAA AVHRR data. Water Resour. Manag. 2006, 20, 949–959. [Google Scholar] [CrossRef]
- Wang, Y.; Colby, J.D.; Mulcahy, K.A. An efficient method for mapping flood extent in a coastal floodplain using Landsat TM and DEM data. Int. J. Remote. Sens. 2002, 23, 3681–3696. [Google Scholar] [CrossRef]
- Todhunter, P.E.; Rundquist, B.C. Terminal Lake Flooding and Wetland Expansion in Nelson County, North Dakota. Phys. Geogr. 2004, 25, 68–85. [Google Scholar] [CrossRef]
- Robinove, C.J. Interpretation of a Landsat image of an unusual flood phenomenon in Australia. Remote. Sens. Environ. 1978, 7, 219–225. [Google Scholar] [CrossRef]
- Barras, J.A.; Brock, J.C.; Morton, R.A.; Travers, L.J. Remotely Sensed Imagery Revealing the Effects of Hurricanes Gustav and Ike on Coastal Louisiana, 2008; U.S. Geological Survey: Reston, VA, USA, 2010. [Google Scholar]
- Nghiem, S.V.; Brakenridge, G.R.; Nguyen, D.T. Hurricanes Harvey and Irma—High-Resolution Flood Mapping and Monitoring from Sentinel SAR with the Depolarization Reduction Algorithm for Global Observations of InundatioN (DRAGON); American Geophysical Union: Washington, DC, USA, 2017. [Google Scholar]
- Seker, D.Z.; Direk, S.; Musaoglu, N.; Gazioglu, C. Determination of Effects of Coastal Deformation Caused by Waves and Storms at Black Sea Coast of Turkey Utilizing InSAR Technique; American Geophysical Union: Washington, DC, USA, 2013. [Google Scholar]
- Reeder, S.L.; Rankey, E.C. A Tale of Two Storms: An Integrated Field, Remote Sensing, and Modeling Study Examining the Impact of Hurricanes Frances and Jeanne on Carbonate Systems, Bahamas; Swart, P.K., Eberli, G.P., McKenzie, J.A., Jarvis, I., Stevens, T., Eds.; International Association of Sedimentologists: Ghent, Belgium, 2009; ISBN 9781444312065. [Google Scholar]
- Goetz, A.F.H. Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sens. Environ. 2009, 113, S5–S16. [Google Scholar] [CrossRef]
- Dor, E.B.; Malthus, T.; Plaza, A.; Schläpfer, D. Hyperspectral Remote Sensing; SPIE: Bellingham, WA, USA, 2012; ISBN 9780819487872. [Google Scholar]
- Zhang, H.; Chen, J.M.; Huang, B.; Song, H.; Li, Y. Reconstructing Seasonal Variation of Landsat Vegetation Index Related to Leaf Area Index by Fusing with MODIS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2014, 7, 891–901. [Google Scholar] [CrossRef]
- Porter, D.E.; Field, D.W.; Klemas, V.V.; Jensen, J.R.; Malhotra, A.; Field, R.T.; Walker, S.P. RESAAP Final Report: NOAA/NERRS Remote Sensing Applications Assessment Project; University of South Carolina: Columbia, SC, USA, 2006. [Google Scholar]
- Medeiros, S.C.; Hagen, S.C. Review of wetting and drying algorithms for numerical tidal flow models. Int. J. Numer. Methods Fluids 2013, 71, 473–487. [Google Scholar] [CrossRef]
- Townsend, P.A. Relationships between forest structure and the detection of flood inundation in forested wetlands using C-band SAR. Int. J. Remote Sens. 2002, 23, 443–460. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Vermillon, C.; Story, M.H.; Choudhury, M.A.; Gafoor, A. Monsoon flood boundary delineation and damage assessment using space borne imaging radar and Landsat data. Photogramm. Eng. Remote Sens. 1987, 53, 405–413. [Google Scholar]
- Henry, J.B.; Chastanet, P.; Fellah, K.; Desnos, Y.L. Envisat multi-polarized ASAR data for flood mapping. Int. J. Remote Sens. 2006, 27, 1921–1929. [Google Scholar] [CrossRef]
- Horritt, M.S.; Mason, D.C.; Luckman, A.J. Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model. Int. J. Remote Sens. 2001, 22, 2489–2507. [Google Scholar] [CrossRef]
- Hooshyar, M.; Singh, A.; Wang, D. Hydrologic controls on junction angle of river networks. Water Resour. Res. 2017. [Google Scholar] [CrossRef]
- Medeiros, S.; Hagen, S.; Weishampel, J.; Angelo, J. Adjusting lidar-derived digital terrain models in coastal marshes based on estimated aboveground biomass density. Remote Sens. 2015, 7, 3507–3525. [Google Scholar] [CrossRef]
- Hladik, C.; Alber, M. Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model. Remote Sens. Environ. 2012, 121, 224–235. [Google Scholar] [CrossRef]
- Moeslund, J.E.; Arge, L.; Bøcher, P.K.; Nygaard, B.; Svenning, J.C. Geographically comprehensive assessment of salt-meadow vegetation-elevation relations using LiDAR. Wetlands 2011, 31, 471. [Google Scholar] [CrossRef]
- Huang, C.; Peng, Y.; Lang, M.; Yeo, I.-Y.Y.; McCarty, G. Wetland inundation mapping and change monitoring using Landsat and airborne LiDAR data. Remote Sens. Environ. 2014, 141, 231–242. [Google Scholar] [CrossRef]
- Hooshyar, M.; Kim, S.; Wang, D.; Medeiros, S.C. Wet channel network extraction by integrating LiDAR intensity and elevation data. Water Resour. Res. 2015, 51, 10029–10046. [Google Scholar] [CrossRef]
- Kim, S.; McGaughey, R.J.; Andersen, H.-E.; Schreuder, G. Tree species differentiation using intensity data derived from leaf-on and leaf-off airborne laser scanner data. Remote Sens. Environ. 2009, 113, 1575–1586. [Google Scholar] [CrossRef]
- Tahsin, S.; Medeiros, S.C.; Hooshyar, M.; Singh, A. Optical cloud pixel recovery via machine learning. Remote Sens. 2017, 9, 527. [Google Scholar] [CrossRef]
- Barducci, A.; Guzzi, D.; Marcoionni, P.; Pippi, I. Aerospace wetland monitoring by hyperspectral imaging sensors: A case study in the coastal zone of San Rossore Natural Park. J. Environ. Manag. 2009, 90, 2278–2286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K. Analysis of non-linear inundation from sea-level rise using LIDAR data: A case study for South Florida. Clim. Chang. 2010, 106, 537–565. [Google Scholar] [CrossRef]
- Klemas, V. Remote sensing of emergent and submerged wetlands: An overview. Int. J. Remote Sens. 2013, 34, 6286–6320. [Google Scholar] [CrossRef]
- Klemas, V.V.; Dobson, J.E.; Ferguson, R.L.; Haddad, K.D. A coastal land cover classification system for the NOAA Coastwatch Change Analysis Project. J. Coast. Res. 1993, 9, 862–872. [Google Scholar]
- Birkett, C. The global remote sensing of lakes, wetlands and rivers for hydrological and climate research. In Proceedings of the IGARSS ’95 Quantitative Remote Sensing for Science and Applications, Firenze, Italy, 10–14 July 1995; pp. 1979–1981. [Google Scholar]
- Bartsch, A.; Wagner, W.; Scipal, K.; Pathe, C.; Sabel, D.; Wolski, P. Global monitoring of wetlands-the value of ENVISAT ASAR Global mode. J. Environ. Manag. 2009, 90, 2226–2233. [Google Scholar] [CrossRef] [PubMed]
- Marechal, C.; Pottier, E.; Hubert-Moy, L.; Rapinel, S. One year wetland survey investigations from quad-pol RADARSAT-2 time-series SAR images. Can. J. Remote Sens. 2012, 38, 240–252. [Google Scholar] [CrossRef]
- Irons, J.R. Landsat Science. Available online: https://landsat.gsfc.nasa.gov/landsat-9/landsat-9-spectral-bands/ (accessed on 2 April 2018).
- Mandanici, E.; Bitelli, G. Preliminary Comparison of Sentinel-2 and Landsat 8 Imagery for a Combined Use. Remote Sens. 2016, 8, 1014. [Google Scholar] [CrossRef]
- Huck, A. Sentinel-3 Data Benefit Users. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-3/news/-/article/sentinel-3-data-benefit-users (accessed on 3 April 2018).
Threat Types | Brief Description | Recommended Methods |
---|---|---|
Extreme events—Meteorological Changes | ||
Wetland acreage decrease | Sea Level Rise (SLR, aggregated with human activities) | Wetland protection, restoration (removing exotic plants, removing bulkheads and fill, elevation grading, creating flushing channels and planting native vegetation) and improvement of stressed systems [24] |
Wetland shrinkage | SLR converts Coastal Wetlands (CWs) into open water | Artificial wetland creation, conservation of potential migration areas [25] |
Surface elevation of CW cannot keep pace with SLR | SLR threatens coastal salt-marshes and mangrove forests | Coastal climate change adaptation policy and expansion of monitoring [3] |
Topographically alteration in the Watershed | Alterations can damage the natural hydrology of watershed area, including concentration pits, terraces, diversions, stream channelization, ditches and others. | New Wetland Creation; Channel Excavation or Backfill [25] |
Geomorphological Changes | ||
Alteration of CW’s geomorphology | Intense and frequent hurricanes, SLR, changes in sediment, nutrient inputs and freshwater | Changes in human behavior for dependency on wetland [4] |
Sediment accumulation | Culturally-accelerated sedimentation alters the natural depths and hydro-periods of wetlands | Filled Wetland Construction [17] |
Biological Changes | ||
Invasive species | Intrusion of invasive species can reduce habitat diversity | Biological Removal; Prescribed burn [17] |
Index | RS System/Images | Spatial Resolution (m) | Research Topics | Image Used | References |
---|---|---|---|---|---|
EHE—Hurricane | |||||
q | Landsat-5 | 30 m | Impacts of Hurricane Katrina at 2005 at coastal vegetation at Weeks Bay Reserve and surrounding area of coastal AL | 3 Images before landfall, after landfall, 8 months after landfall | [30] |
NDVI | MODIS-Terra | 1 km | Recovery rate of mangrove after the two major hurricanes in South Florida | 10 years (2001 to 2010) time series | [33] |
NDVI | AVHRR | 1.1 km | To assess the impacted area of forested wetlands at Louisiana | 2 years (1991–1993) time series between June and November, plus a Composite image during 1993 June | [31] |
SR, NDVI, ARVI, SAVI, SARVI, EVI | Landsat-MSS, TM, ETM+, OLI; ASTER; AVHRR; MODIS; SPOT; SENTINEL-2 MSI | Multiple (30 m 15 m, 1.1 km 1 km 10 m 20 m) | Biomass mapping of a marsh CW | [34] | |
NDVI | Landsat 5 and 7 | 30 m | CW resilience under EHEs from 1984 to 2015 at Apalachicola Bay | 30-year time-series | [20] |
EVI | MODIS | 1 km | The temporal severity of disturbance caused by hurricane Maria compared to other events | 17-year (2000–2017) time-series | [38] |
EVI | MODIS-Terra and Aqua | 250 m | Hurricane Dean (August 2007) damage map to the forests in the Yucatán Peninsula of Mexico | Pre-hurricane EVI composites (2007): 20 July (Aqua), 28 July (Terra), 5 August (Aqua), 13 August (Terra). Post-hurricane composites: 21 August (Aqua), 29 August (Terra), 6 September (Aqua), 14 September (Terra) 22 September (Aqua). | [40] |
mNDVI | AVIRIS | 20 m | To investigate the ability of the saltmarshes in Barataria Bay, Louisiana, USA, to recover hurricane Isaac in 2012 | 3 images -14 September 2010 (DeepWater Horizon oil spill) 15 August 2011 19 October 2012 (Hurricane Isaac) | [45] |
NDII | MODIS | 1 km | Identify and estimate forest damage impacted by Hurricane Katrina | 3 years (2003–2006) time series of vegetation indices Total 24 images were available | [46] |
EHE—Drought | |||||
VCI | AVHRR | 1.1 km | Detect drought onset and measure the intensity, duration and impact of drought | 5-year (1985–1990) time-series | [52] |
VCI, PDSI, SPI, percent normal, deciles | AVHRR | 8 km | Monitoring drought at Texas | Images of 18 growing-seasons (March to August 1982–1999) | [49] |
NDVI | MODIS | 250 m | agricultural drought monitoring and early warning system for the farmers | 10 years (2002–2012) monthly | [56] |
NDVI, EVI, NDWI, LST. | MODIS | 1 km and 0.5 km | impacts of the 2009/2010 drought in southwestern China on vegetation | 4 sets of 11 years (2000–2011) time-series | [57] |
VIUPD derived VCI | MODIS | 250 m | longer-term drought monitoring, such as agricultural droughts | 2011 (April–October) | [53] |
EHE—Flood | |||||
N/A | K-band radar images | N/A | standing water is present beneath the vegetation canopies | [58] | |
N/A | SAR | N/A | Flood detection in wetland with a limited number of scenes | limited scenes after 29 August 2005 | [64,65] |
N/A | IRS LISS III, 1999 and Landsat TM, 1995 | Multiple (2.5 m; 30 m) | mapping the flood-affected areas in Koa catchment, Bihar | Landsat TM: 27 May 1995–18 October 1995 IRS-1C LISS III: March 1999; December 1999 | [66] |
NDWI | Landsat TM, ETM+ | 30 m | to identify flood inundated in New South Wales | 21 years (1989–2010) time-series data: Landsat 5 TM and Landsat 7 ETM+ images | [67] |
mNDWI | LANDSAT | 30 m | spectral analysis for flooded area prediction | [68] |
Satellite | Sensor | Date/Decommission | Spatial Resolution (m) | Spectral Resolution | Repeat Cycle (days) |
---|---|---|---|---|---|
High Resolution Sensor | |||||
WorldView-1 & 2 [70] | * PAN, * MS | 18 September 2007; 8 October 2009 | 0.46 m (both 1 and 2) | PAN (0.40–0.90 µm); MS (0.40–1.04 µm) | 1.7 days (≤1 m GSD) 5.9 days (0.51 m * GSD); 1.1 days (≤1 m GSD) 3.7 days (0.52 m GSD) |
QuickBird [71], | BGIS 2000 sensor | 18 October 2001 | PAN: 0.65 m (nadir) to 0.73 m (20° off-nadir) MS: 2.62 m (nadir) to 2.90 m (20 off-nadir) | PAN (0.45–0.90 µm); MS (0.45–0.52 µm; 0.52–0.60 µm; 0.63–0.69 µm; 0.76–0.90 µm) | 1–3.5 days, depending on latitude (30° off-nadir) |
IKONOS [72] | laser sensors, imagers, radar sensors, electro-optical astronomical sensors, planetary sensors | 24 September 1999 | PAN: 0.82–1 m; MS: 3.2–4 m | PAN (0.49–0.90 µm); MS band 1,2,3,4 (0.45–0.52 µm; 0.52–0.60 µm; 0.63–0.69 µm; 0.76–0.90 µm) | 14 days (max) |
OrbView-3 [24] | PAN, MS | 26 June 2003 | PAN: 1 m MS: 4 m | PAN (1 m); MS (4 m). | 3 day |
Medium Resolution Sensor | |||||
RADARSAT [69] | SAR | 4 November 1995 | 8–100 m (26–328 ft) | RADARSAT-1: Band C (5,3 Ghz); RADARSAT-2: Band C (5,405 Ghz) | 24 days |
JERS-1 [73] | -An L-band SAR; -A nadir-pointing optical camera (OPS); -A side-looking optical camera (AVNIR). | 11 February 1992 | 18 m | MS: Band 1,2 (0.52–0.60 µm; 0.63–0.69 µm); NIR band 3,4 (0.76–0.86 µm; 0.76–0.86 µm); SWIR: Band 5,6,7,8 (1.60–1.71 µm; 2.01–2.12 µm; 2.13–2.25 µm; 2.27–2.40 µm) | 44 days |
SENTINEL-1 [74] | C-synthetic aperture radar (SAR) | April 2014 | 5 m | Band-C (8400 to 8450 MHz) | 6 days |
LANDSAT 8 [75] | * OLI, * TIRS | February 2013 | 30 m | PAN (0.50–0.67 µm); MS (0.43–0.67 µm); NIR (0.85–0.87 µm); SWIR (1.55–2.2 µm); Cirrus (1.36–1.38 µm); Thermal (10.60–12.51 µm). | 16 days |
Landsat (ETM+) [76] | Opto-mechanical | 15 April 1999 | 30 m | MS: Band 1–3 (0.45 um- 0.69 µm); NIR: Band 4 (0.77–0.90 µm); SWIR: Band-5,7 (1.55–1.75, 2.09–2.35 µm); Thermal: Band-6 (10.40–12.50 µm); PAN: Band 8 (.52-.90 µm). | 16 days |
Landsat 5 [77] | TM | March 1984– January 2013 | 30 m | MS: Band 1–3 (0.45–0.69 µm); NIR: Band 4: (0.76–0.90 µm); SWIR: Band-5,7 (1.55–1.75, 2.08–2.35); Thermal: Band-6 (10.40–12.50) | 16 |
Low Resolution Sensor | |||||
MODIS [77] | Aqua/Terra | 18 December 1999 | 1 Km | 36 spectral bands ranging from 0.4 µm to 14.4 µm (nd at varying spatial resolutions (2 bands 0.6µm–0.9µm, 5 bands at 0.4µm–2.1µm and 29 bands at 0.4µm–14.4µm) | 1 day |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahsin, S.; Medeiros, S.C.; Singh, A. Assessing the Resilience of Coastal Wetlands to Extreme Hydrologic Events Using Vegetation Indices: A Review. Remote Sens. 2018, 10, 1390. https://doi.org/10.3390/rs10091390
Tahsin S, Medeiros SC, Singh A. Assessing the Resilience of Coastal Wetlands to Extreme Hydrologic Events Using Vegetation Indices: A Review. Remote Sensing. 2018; 10(9):1390. https://doi.org/10.3390/rs10091390
Chicago/Turabian StyleTahsin, Subrina, Stephen C. Medeiros, and Arvind Singh. 2018. "Assessing the Resilience of Coastal Wetlands to Extreme Hydrologic Events Using Vegetation Indices: A Review" Remote Sensing 10, no. 9: 1390. https://doi.org/10.3390/rs10091390