A New GIS-Based Model for Karst Dolines Mapping Using LiDAR; Application of a Multidepth Threshold Approach in the Yucatan Karst, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Material and Methods
2.3. Sensitivity and Accuracy
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhu, J.; Taylor, T.P.; Currens, J.C.; Crawford, M.M. Improved karst sinkhole mapping in Kentucky using LiDAR techniques: A pilot study in Floyds Fork Watershed. J. Cave Karst Stud. 2014, 76, 207–216. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P.D. Karst Hydrogeology and Geomorphology; Unwin Hyman: Boston, MA, USA, 1989. [Google Scholar]
- Doerfliger, N.; Jeannin, P.-Y.; Zwahlen, F. Water vulnerability assessment in karst environments: A new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ. Geol. 1999, 39, 165–176. [Google Scholar] [CrossRef]
- Sauro, U. Dolines and sinkholes: Aspects of evolution and problems of classification. Acta Carsol. 2016, 32, 41–52. [Google Scholar]
- Péntek, K.; Veress, M.; Lóczy, D. A morphometric classification of solution dolines. Z. Für Geomorphol. 2007, 51, 19–30. [Google Scholar] [CrossRef]
- Gutierrez, F.; Cooper, A.H.; Johnson, K.S. Identification, prediction, and mitigation of sinkhole hazards in evaporite karst areas. Environ. Geol. 2008, 53, 1007–1022. [Google Scholar] [CrossRef]
- Fleury, S. Land Use Policy and Practice on Karst Terrains: Living on Limestone; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; ISBN 1-4020-9670-4. [Google Scholar]
- Dindaroğlu, T.; Bolat, Ö. Determination of Spatial Distribution of Sinkholes and Land Use Type in the Karst Ecosystem; International Forestry Symposium (IFS 2016): Kastamonu, Turkey, 2016. [Google Scholar]
- de Carvalho, O.A.; Guimarães, R.F.; Montgomery, D.R.; Gillespie, A.R.; Trancoso Gomes, R.A.; de Souza Martins, É.; Silva, N.C. Karst depression detection using ASTER, ALOS/PRISM and SRTM-derived digital elevation models in the Bambuí Group, Brazil. Remote Sens. 2013, 6, 330–351. [Google Scholar] [CrossRef]
- Liang, F.; Du, Y. An automated method to extract typical karst landform entities from contour lines on topographic maps. In Proceedings of the Geomorphometry 2013, Nanjing, China, 16–20 October 2013. [Google Scholar]
- Applegate, P. Detection of sinkholes developed on shaly Ordovician limestones, Hamilton County, Ohio, using digital topographic data: Dependence of topographic expression of sinkholes on scale, contour interval, and slope. J. Cave Karst Stud. 2003, 65, 126–129. [Google Scholar]
- Theilen-Willige, B.; Malek, H.A.; Charif, A.; El Bchari, F.; Chaïbi, M. Remote sensing and GIS contribution to the investigation of karst landscapes in NW-Morocco. Geosciences 2014, 4, 50–72. [Google Scholar] [CrossRef]
- Artugyan, L.; Urdea, P. Using Digital Elevation Model (DEM) in karst terrain analysis. Study case: Anina Mining Area (Banat Mountains, Romania). Carpathian J. Earth Environ. Sci. 2016, 11, 55–64. [Google Scholar]
- Martín-Vivaldi Caballero, M.E.; Gómez-Zotano, J.; Olmedo-Cobo, J.A.; Pezzi-Ceretto, M.C. Geomorphology of the Sierra Gorda karst, South Spain. J. Maps 2016, 12, 1143–1151. [Google Scholar] [CrossRef] [Green Version]
- Antonić, O.; Hatic, D.; Pernar, R. DEM-based depth in sink as an environmental estimator. Ecol. Model. 2001, 138, 247–254. [Google Scholar] [CrossRef]
- Jenness, J.; Brost, B.; Beier, P. Land Facet Corridor Designer: Extension for ArcGIS; Jenness Enterprises: Flagstaff, AZ, USA, 2013. [Google Scholar]
- Evans, I.S. Geomorphometry and landform mapping: What is a landform? Geomorphology 2012, 137, 94–106. [Google Scholar] [CrossRef]
- Zandbergen, P.A. The effect of cell resolution on depressions in digital elevation models. Appl. GIS 2006, 2, 04-1. [Google Scholar] [CrossRef]
- Obu, J.; Podobnikar, T. Algoritem za prepoznavanje kraških kotanj na podlagi digitalnega modela reliefa (Algorithm for Karst Depression Recognition Using Digital Terrain Model). Geod. Vestn. 2013, 57, 260–270. [Google Scholar] [CrossRef]
- Rahimi, M.; Alexander Jr, E.C. Locating sinkholes in LiDAR coverage of a glacio-fluvial karst, Winona County, MN. In Proceedings of the Thirteenth Multidisciplinary Conference, Carlsbad, NM, USA, 5–10 May 2013. [Google Scholar]
- Lamelas, M.; Marinoni, O.; Hoppe, A.; De La Riva, J. Doline probability map using logistic regression and GIS technology in the central Ebro Basin (Spain). Environ. Geol. 2008, 54, 963–977. [Google Scholar] [CrossRef]
- Kakavas, M.; Nikolakopoulos, K.; Zagana, E. Karst Features Detection and Mapping Using Airphotos, DSMs and GIS Techniques; International Society for Optics and Photonics: Tuolouse, France, 2015. [Google Scholar]
- Tarboton, D.G.; Bras, R.L.; Rodriguez-Iturbe, I. On the extraction of channel networks from digital elevation data. Hydrol. Process. 1991, 5, 81–100. [Google Scholar] [CrossRef]
- Mukherjee, A. GIS analysis of sinkhole distribution in Nixa, Missouri. In Proceedings of the 2012 GSA Annual Meeting, Charlotte, NC, USA, 4–7 November 2012. [Google Scholar]
- Moreno-Gómez, M.; Pacheco, J.; Liedl, R.; Stefan, C. Evaluating the applicability of European karst vulnerability assessment methods to the Yucatan karst, Mexico. Environ. Earth Sci. 2018, 77, 682. [Google Scholar] [CrossRef]
- Lugo-Hubp, J.; Aceves-Quesado, J.F.; Espinosa-Pereño, R. Rasgos geomorfológicos mayores de la península de Yucatán. Rev. Mex. De Cienc. Geológicas 1992, 10, 143–150. [Google Scholar]
- Pope, K.O.; Ocampo, A.C.; Duller, C.E. Surficial geology of the Chicxulub impact crater, Yucatan, Mexico. Earth Moon Planets 1993, 63, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Connors, M.; Hildebrand, A.R.; Pilkington, M.; Ortiz-Aleman, C.; Chavez, R.E.; Urrutia-Fucugauchi, J.; Graniel-Castro, E.; Camara-Zi, A.; Vasquez, J.; Halpenny, J.F. Yucatan karst features and the size of Chicxulub crater. Geophys. J. Int. 1996, 127, F11–F14. [Google Scholar] [CrossRef]
- Bauer-Gottwein, P.; Gondwe, B.R.; Charvet, G.; Marín, L.E.; Rebolledo-Vieyra, M.; Merediz-Alonso, G. Review: The Yucatán Peninsula karst aquifer, México. Hydrogeo J. 2011, 19, 507–524. [Google Scholar] [CrossRef]
- Weidie, A. Geology of Yucatan Platform. In Geology and Hydrogeology of the Yucatan and Quaternary Geology of Northeastern Yucatan Peninsula; New Orleans Geological Society: New Orleans, LA, USA, 1985. [Google Scholar]
- Pope, K.; Duller, C. Satellite observations of ancient and modern water resources in the Yucatan Peninsula. In Memoria, Simposio Latinamericano Sobre Sensores Remotos: Sociedad de Especialistas Latin Americano en Percepción Remoto y Instituto de Geografıa; Universidad Autónoma de México: Mexico City, Mexico, 1989; pp. 91–98. [Google Scholar]
- Hildebrand, A.R.; Pilkington, M.; Connors, M.; Ortiz-Aleman, C.; Chavez, R.E. Size and structure of the Chicxulub crater revealed by horizontal gravity gradients and cenotes. Nature 1995, 376, 415. [Google Scholar] [CrossRef]
- Perry, E.; Marin, L.; McClain, J.; Velazquez, G. Ring of cenotes (sinkholes), northwest Yucatan, Mexico: Its hydrogeologic characteristics and possible association with the Chicxulub impact crater. Geology 1995, 23, 17–20. [Google Scholar] [CrossRef]
- Rebolledo-Vieyra, M.; Urrutia-Fucugauchi, J.; Marín, L.E.; Trejo-García, A.; Sharpton, V.L.; Soler-Arechalde, A. UNAM scientific shallow-drilling program of the Chicxulub impact crater. Int. Geol. Rev. 2000, 42, 928–940. [Google Scholar] [CrossRef]
- Hanshaw, B.B.; Back, W. Chemical Mass-Wasting of the Northern Yucatan Peninsula by Groundwater Dissolution. Geology 1980, 8, 222–224. [Google Scholar] [CrossRef]
- González-Herrera, R.; Sánchez-y-Pinto, I.; Gamboa-Vargas, J. Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico. Hydrogeol. J. 2002, 10, 539–552. [Google Scholar] [CrossRef]
- Vinson, G. Upper Cretaceous and tertiary stratigraphy of Guatemala. Aapg Bull. 1962, 46, 425–456. [Google Scholar]
- Lopez-Ramos, E. Geological summary of the Yucatán Peninsula. In The Ocean Basins and Margins, Volume 3: The Gulf of Mexico and the Caribbean; Nairn, A.E.M., Stehli, F.G., Eds.; Plenum: New York, NY, USA, 1975. [Google Scholar]
- Doehring, D.O.; Butler, J.H. Hydrogeologic constraints on Yucatán’s development. Science 1974, 186, 591–595. [Google Scholar] [CrossRef]
- Lesser, I.; Weidie, A. Region 25, Yucatán Peninsula. In Hydrogeology: The Geology of North America; Geological Society of America: Boulder, CO, USA, 1988; pp. 237–242. [Google Scholar]
- Marín, L.; Steinich, B.; Pacheco, J.; Escolero, O. Hydrogeology of a contaminated sole-source karst aquifer, Mérida, Yucatán, Mexico. Geofísica Int. 2000, 39, 359–365. [Google Scholar]
- SMN Datos climáticos diarios del CLICOM del SMN a través de su plataforma web del CICESE. Available online: http://clicom-mex.cicese.mx (accessed on 6 October 2018).
- Sánchez, O.S.; Islebe, G.A.; Hernández, M.V. Flora arbórea y caracterización de gremios ecológicos en distintos estados sucesionales de la selva mediana de Quintana Roo. For. Veracruzana 2007, 9, 17–26. [Google Scholar]
- Zamora Crescencio, P.; García Gil, G.; Flores Guido, J.S.; Ortiz, J.J. Estructura y composición florística de la selva mediana subcaducifolia en el sur del estado de Yucatán, México. Polibotánica 2008, 39–66. [Google Scholar]
- SEMARNAP Mapa de Suelos Dominantes de la República Mexicana. Obtenidos a Través de la Plataforma CONABIO. Available online: http://www.conabio.gob.mx (accessed on 18 May 2018).
- Escolero, O.; Marín, L.E.; Steinich, B.; Pacheco, J.; Cabrera, S.; Alcocer, J. Development of a protection strategy of karst limestone aquifers: The Merida Yucatan, Mexico case study. Water Resour. Manag. 2002, 16, 351–367. [Google Scholar] [CrossRef]
- Hall, F. Physical and chemical survey of cenotes of Yucatan. In The Cenotes of Yucatán; Pearse, A.S., Creaser, A.P., Hall, F.G., Eds.; Carnegie Institute of Washington: Washington, DC, USA, 1936; pp. 5–16. [Google Scholar]
- Socki, R.; Gaona-Vizcayno, S.; Perry, E.; Villasuso-Pino, M. A Chemical Drill: Sulfur Isotope Evidence for the Mechanism of Formation of Deep Sinkholes in Tropical Karst; Geological Society of America Abstracts with Programs: Yucatan, Mexico, 1984; Volume 16, p. 662. [Google Scholar]
- Aguilar, Y.; Bautista, F.; Mendoza, M.E.; Frausto, O.; Ihl, T. Density of karst depressions in Yucatan State, Mexico. J. Cave Karst Stud. 2016, 78, 51. [Google Scholar] [CrossRef]
- INEGI Modelo Digital de Elevación Tipo Superficie con 5m de resolución derivado de datos de sensores remotos satelitales y aerotransportados. Obtenidos a través de la plataforma. Available online: www.inegi.org.mx. (accessed on 16 February 2018).
- Jenks, G.F. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, Volume 7, 186–190. [Google Scholar]
- Gravelius, H. Grundrifi der gesamten Gewcisserkunde. In Band I: Flufikunde (Compendium of Hydrology, Vol. I. Rivers, in German); Goschen: Berlin, Germany, 1914. [Google Scholar]
- Doctor, D.H.; Young, J.A. An evaluation of automated GIS tools for delineating karst sinkholes and closed depressions from 1-meter LIDAR-derived digital elevation data. In Proceedings of the Thirteenth Multidisciplinary Conference, Carlsbad, NM, USA, 5–10 May 2013. [Google Scholar]
- Fragoso-Servón, P.; Bautista, F.; Frausto, O.; Pereira, A. Caracterización de las depresiones kársticas (forma, tamaño y densidad) a escala 1: 50,000 y sus tipos de inundación en el Estado de Quintana Roo, México. Rev. Mex. De Cienc. Geológicas 2014, 31, 127–137. [Google Scholar]
Jenks Class | Threshold Depth | Estimated Dolines | Dolines from Imagery | TP | FP | FN | Sensitivity % | Precision % | Accuracy % |
---|---|---|---|---|---|---|---|---|---|
1 | 2.4 | 454 | 545 | 275 | 179 | 270 | 50 | 61 | 38 |
2 | 2.9 | 406 | 545 | 305 | 101 | 240 | 56 | 75 | 47 |
3 | 3.5 | 356 | 545 | 277 | 79 | 268 | 51 | 78 | 44 |
4 | 4.1 | 283 | 545 | 245 | 38 | 300 | 45 | 87 | 42 |
5 | 4.8 | 253 | 545 | 213 | 40 | 332 | 39 | 84 | 36 |
6 | 5.6 | 155 | 545 | 141 | 14 | 404 | 26 | 91 | 25 |
7 | 6.5 | 86 | 545 | 80 | 6 | 465 | 15 | 93 | 15 |
8 | 7.7 | 34 | 545 | 32 | 2 | 513 | 06 | 94 | 06 |
9 | 9.45 | 19 | 545 | 18 | 1 | 526 | 03 | 98 | 03 |
10 | 14.7 | 22 | 545 | 21 | 1 | 523 | 04 | 98 | 04 |
MDTA | Variable | 655 | 545 | 464 | 191 | 81 | 85 | 71 | 63 |
MDTA | Estimated Dolines | Dolines from Imagery | TP | FP | FN | Sensitivity % | Precision % | Accuracy % |
---|---|---|---|---|---|---|---|---|
Scenario 1 | 4056 | 545 | 479 | 3577 | 66 | 88 | 12 | 12 |
Scenario 2 | 1122 | 545 | 472 | 650 | 73 | 87 | 42 | 39 |
Scenario 3 | 655 | 545 | 464 | 191 | 81 | 85 | 71 | 63 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Gómez, M.; Liedl, R.; Stefan, C. A New GIS-Based Model for Karst Dolines Mapping Using LiDAR; Application of a Multidepth Threshold Approach in the Yucatan Karst, Mexico. Remote Sens. 2019, 11, 1147. https://doi.org/10.3390/rs11101147
Moreno-Gómez M, Liedl R, Stefan C. A New GIS-Based Model for Karst Dolines Mapping Using LiDAR; Application of a Multidepth Threshold Approach in the Yucatan Karst, Mexico. Remote Sensing. 2019; 11(10):1147. https://doi.org/10.3390/rs11101147
Chicago/Turabian StyleMoreno-Gómez, Miguel, Rudolf Liedl, and Catalin Stefan. 2019. "A New GIS-Based Model for Karst Dolines Mapping Using LiDAR; Application of a Multidepth Threshold Approach in the Yucatan Karst, Mexico" Remote Sensing 11, no. 10: 1147. https://doi.org/10.3390/rs11101147
APA StyleMoreno-Gómez, M., Liedl, R., & Stefan, C. (2019). A New GIS-Based Model for Karst Dolines Mapping Using LiDAR; Application of a Multidepth Threshold Approach in the Yucatan Karst, Mexico. Remote Sensing, 11(10), 1147. https://doi.org/10.3390/rs11101147